
AN SNMP AGENT FOR
STATEFUL INTRUSION INSPECTION
Luciano Paschoal Gaspary
Universidade do Vale do Rio dos Sinos – Centro de Ciências Exatas e Tecnológicas
Av. Unisinos 950 – CEP 93.022-000 – São Leopoldo, Brazil
paschoal@exatas.unisinos.br

Edgar Meneghetti
Liane Rockenbach Tarouco
Universidade Federal do Rio Grande do Sul – Instituto de Informática
Av. Bento Gonçalves 9500 – CEP 91.591-970 – Porto Alegre, Brazil
edgar@cesup.ufrgs.br, liane@penta.ufrgs.br

Abstract: Intrusion Detection Systems (IDSs) have been increasingly used in organizations, in ad-
dition to other security mechanisms, to detect intrusions to systems and networks. In the
recent years several IDSs have been released, but (a) the high number of false alarms gen-
erated, (b) the lack of a high-level notation for attack signature specification, and (c) the
difficulty to integrate IDSs with existing network management infrastructure hinder their
wide-spread and efficient use. In this paper we address these problems by presenting an
SNMP agent for stateful intrusion inspection. By using a state machine-based language
called PTSL (Protocol Trace Specification Language), the network manager can describe
attack signatures that should be monitored. The signatures to be used by the agent are
configured by the network manager through the IETF Script MIB. Once programmed, the
agent starts monitoring the occurrence of the signatures on the network traffic and stores
statistics, according to their occurrence, in an extended RMON2 MIB. These statistics may
be retrieved from any SNMP-based management application and can be used to accom-
plish signature-based analysis. The paper also describes two experiments that have been
carried out with the agent to assess its performance and to demonstrate its effectiveness in
terms of false alarm generation rates.

Keywords: Network security management, intrusion detection, misuse detection, stateful inspection,
intrusion detection SNMP agent, RMON2.

1. INTRODUCTION
Due mainly to the weaknesses of firewall technologies in blocking some malicious

incoming network traffic and to the growing number of attacks being initiated from
hosts located in the same network as the victim host, Intrusion Detection Systems
(IDSs) have been incorporated into the organizations security infrastructure. In order
to satisfy the demand for such systems, several IDSs as Snort [1], NFR [2], Bro [3] and
Stat [4] (to mention just a few) have been released to the market in the recent years.
Despite the intensive research on intrusion detection, (a) reducing the false alarm (false
positive) rates generated by IDSs, (b) providing the network manager with a high-level
notation for attack signature specification, and (c) integrating security mechanisms

L. Gaspary, E. Meneghetti, L. Tarouco

with the already existing network management infrastructure are some of the current
challenges in the field.

Intrusion Detection Systems employ either anomaly or signature analysis (mis-
use) to detect attacks. Anomaly-based analysis uses statistical methods to distinguish
normal from unexpected behavior, while signature-based analysis tries to match the
content of data sources (e.g. network packets and system logs) with the specification
of known attacks (attack signatures). Regardless of the technique used, around 90%
of the alarms generated by an IDS are false positives [5].

In IDSs that employ anomaly analysis, it is difficult to determine what should be
considered normal and abnormal. While attacks such as distributed denial of service,
which generate considerable network traffic changes, may be detected at close to zero
percent false positive rates (good examples may be found in [6, 7]), the same does not
happen to many attacks that do not produce such substantial changes in the network
traffic. In the case of these more subtle attacks, depending on the thresholds defined,
either they may not be detected or many false alarms may be generated.

With IDSs that use signature analysis, the problem of high false alarm rates also
occurs, mainly due to the limited expressive capability of the languages available to
model attack signatures and to incomplete representation of signatures. In general, the
signature concern is to observe packet fields and not protocol interactions (stateless
inspection). An example of the effect of this limitation is the behavior of some IDSs
when configured to detect the TCP SYN/TCP RST port scanning technique. The
signature used by them consists of the observation of TCP packets with the RST flag
on. The problem of this approach is that a TCP RST packet is not generated only
by a station that does not have a certain kind of service available (when it receives
a connection request). A station also uses this type of packet in order to restart an
ongoing connection. As those IDSs are not able to correlate packets or the signature
is not precise enough they cannot distinguish between TCP RSTs that represent port
scanning from those used during a conventional connection, triggering alarms in both
cases. The problem of false alarm generation is also related to the fact that we are not
always able to capture the essence of the potential threat. The techniques used by the
intruders and the threats posed by them to the system evolve over time and become
more sophisticated, while the signatures lag behind. In some cases, there is also a
motivation to specify a signature that will generate a large false alarm rate because the
intent is to capture and analyse other but similar hypothetical scenarios.

With reference to the integration of security mechanisms and current Network Man-
agement Systems (NMSs), there is still a wide gap between security and network
management, despite some initiatives (as the ones proposed in [6, 7, 8]). There is no
Management Information Base (MIB) related to intrusion detection available. Sev-
eral Network Management Systems offer an interface to configure Intrusion Detection
Systems and are able to receive events generated by them. However, as stated by Qin
et al., these systems lack efficient and effective capabilities of analyzing and managing
the alarms sent by the IDS.

This paper addresses the false alarm rate, the lack of a high-level notation for at-
tack signature specification and the lack of integration of IDSs and NMSs problems,
by presenting an SNMP agent for intrusion detection that makes stateful inspection of
data (packets) collected directly from the network. By using a state machine-based
language called PTSL (Protocol Trace Specification Language) [9], the network man-
ager can describe attack signatures that should be monitored. The signatures to be

An SNMP Agent for Stateful Intrusion Inspection

used by the agent are configured by the network manager through the IETF Script
MIB [10]. Once programmed, the agent starts monitoring the occurrence of the sig-
natures on the network traffic and stores statistics, according to their occurrence, in
an extended RMON2 MIB [11]. These statistics may be retrieved from any ordinary
SNMP-based management application and can be used to accomplish signature-based
analysis.

The main contribution of our work is the development of an agent that is able
to do stateful inspection. As it will be shown along the paper, the agent provides
accurate detection of both brute force and subtle attacks (concerning network traffic
pattern changes). We have also developed a high-level and easy-to-learn language to
specify attack signatures. The agent is fully integrated to the SNMP architecture. The
configuration of the agent and the retrieval of results may be done using the SNMPv3
protocol.

The paper is organized as follows. Section 2 presents some related work. Section
3 presents PTSL language and some attack signatures described using this language.
Section 4 approaches the internal architecture of the agent. In section 5 experiments
that have been carried out with the agent are described. Section 6 closes the paper by
presenting some final remarks and future work perspectives.

2. RELATED WORK
The problem of false alarms originates from the lack of accuracy in the process of

detecting intrusions. As mentioned in the introduction, in the case of signature-based
IDSs this imprecision is closely related (a) to the capabilities of the attack signature
specification language provided and the respective intrusion detection engine or (b)
to inprecise signature representation. Snort [1], for instance, uses a pattern matching
model for detection of network attack signatures using identifiers such as TCP fields,
IP addresses, TCP/UDP port numbers, ICMP type/code, and strings contained in the
packet payload. Filtering rules are applied to each packet and stateful analysis is only
partially provided (limited to TCP stream reassembly and inspection, and detection
of some portscan e fingerprinting attacks), leading to a high number of false alarms.
NFR [2] and Bro [3] suffer from the same problem. Statl [4], on the other hand, is
an extensible state/transition-based attack description language used by Stat intrusion
detection suite. This language allows one to describe computer penetrations as se-
quences of actions that an attacker performs to compromise a computer system. The
detailed description of the signatures specified in Statl results in a lower number of
false alarms (if compared to Snort, NFR and Bro).

Julisch et al propose in [12] some techniques to process alarm logs and filter false
positives. This approach is based on the identification of alarm patterns, on the under-
standing of their root cause and, if non-malicious, on the usage of these alarm patterns
for filtering. Finding filtering rules and the risk of filtering out true positives are some
of the difficulties to implementing this approach.

None of the Intrusion Detection Systems listed so far offer mechanisms to make
their integration with Network Management Systems easier. In the recent years, how-
ever, some efforts have been made to bridge this gap [6, 7, 8]. Qin et al. have proposed
in [6, 7] the use of MIB II variables for network intrusion detection. This detection
technique is clearly anomaly-based and, therefore, tend to be more efficient to detect
attacks that generate considerable changes in the network traffic. In [8], Qin et. al

L. Gaspary, E. Meneghetti, L. Tarouco

extend their previous work by proposing (a) an approach to integrate NMSs and IDSs
and (b) a hierarchical correlation architecture for improving the detection accuracy
and identifying coordinated intrusions.

Our work should be regarded as a complement to the efforts just mentioned. By
proposing an SNMP agent for stateful intrusion inspection we provide an alternate
approach, based on signature analysis, that is able to cope with both traffic-based in-
trusions (e.g DDoS) and slower traffic and stealth attacks, generating few false alarms.
In the next section we introduce PTSL (Protocol Trace Specification Language) that
is the language to be used by the network manager to specify attack signatures.

3. REPRESENTATION OF ATTACK SIGNATURES
USING PTSL

PTSL (Protocol Trace Specification Language) is a language developed to allow
the representation of protocol traces based on the concept of finite state machines
(FSM). It is part of Trace, an architecture that supports high-layer protocol, service and
application management through passive observation of protocol interactions (traces)
in the network traffic. A full description of the language can be found in [9]. In this
paper, we focus on how PTSL can be used to describe stateful network-based attack
signatures.

The language is composed of graphical (Graphical PTSL) and textual (Textual
PTSL) notations. These notations are not equivalent. The textual notation allows the
complete representation of a trace (attack signature), including the specification of the
FSM and the events that trigger transitions. In turn, the graphical notation covers only
a subset of the textual notation, offering the possibility of graphically representing the
FSM and only labelling the events that trigger transitions.

3.1 Graphical PTSL Notation
Several attack signatures have been modelled using PTSL. Figures 1 and 2 illustrate

some of these specifications, described using the graphical notation of the language.
Figure 1 shows a signature that can be used to detect the TCP SYN/TCP RST port
scanning technique.

��� � � � � �	��

����� � �	��
������ � � � � � � �	��� � � �
��� � � � � ! � ����� ��" # $ %'& (*) % & % $ & + (" & , $ # - - . - /	�
0�� 1�� � ��
�2 �����32 ������2 + (" & , $ # - - . - /
4	��� ! �
536*� � � � 7 8 $. # - ('
	# , $ 9 (# : ;�# , + # " <
= � � !�>3 ?	� ! �	� ��8 % 2�� @BA�8 /*C � � �
� D	E F �	E D G*;IH*�

�	��
J�����

C

�	��
������

.) : %

Figure 1. Signature to detect TCP SYN/TCP RST port scanning

Figure 2 shows other examples. In (a) one can see the signature to detect the
rpcinfo command (available in Unix environments). This command returns a list
of server processes that accept RPCs (Remote Procedure Calls), which is a useful in-
formation for the intruder. Similarly, in (b) it is shown the signature to detect the
showmount command. Although (a) and (b) may appear in legitimate traffic, the oc-

An SNMP Agent for Stateful Intrusion Inspection

currence of these signatures during unusual time periods or with high frequency can be
regarded as attack evidence (e.g. someone scanning stations running portmapper).
The signature described in (c) is composed of an HTTP request where the attacker
uses the string /scripts/..\%C0\%AF../winnt/system32/cmd.exe?/c+dir+c:\ as argu-
ment. An URL like this indicates that he intends to execute some script or CGI at the
HTTP server to obtain a list of the files located in the server. The signature to detect
the SYN flood attack is depicted in (d). This attack consists of sending a huge number
of connection setup packets (TCP packet with the SYN flag on with a fake source ad-
dress) to a target host. This fake address must be unreachable or non-existent (usually
a reserved value). When the target host receives these SYN packets, it creates a new
entry on its connection table and sends a SYN/ACK packet back to the possible client.
After sending the reply packet, the target host waits for acknowledgement from the
client to establish the connection. As the source address is fake, the server will wait
a long time for this reply. In a given time, the connection queue of the server will be
full and all new connection requests will be discarded, creating a denial of service.
Unlike other examples presented, this attack is identified by observing unsuccessful
occurrences of the trace.

K�L M N O P Q R S T U V W X

Y3Z	[\]*^ _*` a R b c�d

Y3Z	[\]*^ _*` a R b c e*f�f
g	[�Z
R W	Q ` h ^ ` c�d d d

T h i b j

K�L M N O P ^ k W lI]*W m U ` X

Y3Z�[
Q b R i a

Y3Z�[nBb ` Z�W Q ` oBW m U `

p

T h	i b j

Y3Z�[
h m]BR

(a) (b)

K�L M N O P q�g	g�Z
^ m ^ R b S ` ^ ` Q T U _ X

nBr�g
s ^ S Q T R ` ^ s t t u v
[3e u vxw�y�t
t s lIT U U ` s ^ a ^ ` b] p j s S]
h	t b z b { s S | h T Q | S } u

T h i b

K�L M N O P g	[�Z
~	a UBV i W W h X

g	[�Zxw3[��

g [�Z�~�����s w�[��

T h	i b j
5000

(c) (d)

5000

Figure 2. Graphical representation of attack signatures

Representation of states and transitions. As for PTSL graphical notation,
one can observe from the previous examples that states are represented by circles.
From the initial state (idle) other n states can be created, but they must always be
reachable. The final state is identified by two concentric circles. In all examples
presented, the initial and final states are the same. State transitions are represented by
unidirectional arrows. The continuous arrow indicates that the transition is triggered
by the client host, while the dotted arrow determines that the transition is triggered by
an event coming from the server host. The text associated with a transition is merely
a label to the event that triggers it; the full specification can only be made via textual
notation.

L. Gaspary, E. Meneghetti, L. Tarouco

Representation of timeouts. Transitions, by default, do not have a time limit to
be triggered. To associate a timeout with a transition, an explicit value (in millisec-
onds) must be set. In the example shown in figure 2d, the value 5000 associated to
transition TCP ACK indicates that the transition from state 2 to the initial state has up
to five seconds to be triggered.

Representation of information for cataloging and version control. The
graphical notation also offers a constructor where information about the signature,
which are relevant to cataloguing and version control of specifications, are included.
The data stored for a signature are: Version, Description, Key, Owner and Last
Update. Besides these data, there is also a Port field, used to indicate the TCP or
UDP port of the monitored protocol.

3.2 Textual PTSL Notation
Figure 3 presents the textual specification of the signature previously shown in fig-

ure 1. All specifications written in Textual PTSL start with the Trace keyword and
end with the EndTrace keyword (lines 1 and 36). Catalog and version control infor-
mation come right after the Trace keyword (lines 2–7). Forthwith, the specification
is split into three sections: MessagesSection (lines 9–21), GroupsSection (not
used in this example and not detailed in the paper) and StatesSection (lines 23–
34). In MessagesSection and GroupsSection the events that trigger transitions are
defined. The FSM that specifies the trace is defined in StatesSection.

Representation of messages. Whenever the fields of a captured packet match
the ones specified at a Message for the current state, a transition is triggered in the
FSM. The way those fields are specified depends on the type of protocol to be mon-
itored. In the case of binary protocols (e.g. IP, TCP and UDP), known by their fixed
length fields, the identification of a field is determined by a bit offset starting from the
beginning of the protocol header; it is also needed to specify the size of the field, in bits
(this is the BitCounter strategy). On the other hand, in the case of variable-length
character-based protocols, where fields are usually split by white space characters
(e.g. HTTP), the identification of a field is made by its position inside the message
(FieldCounter strategy). In GET /scripts/..\%C0\%AF../winnt/system32/cmd.exe?
/c+dir+c:\, for instance, GET is at position 0 and /scripts/..\%C0\%AF../winnt/
system32/cmd.exe?/c+dir+c:\ is at position 1.

The signature shown in figure 1 is for a binary protocol. The TCP SYN message
specification is shown in figure 3 (lines 11–14). In line 12 the message is defined
as being of type client, meaning that the state transition associated with the mes-
sage will be triggered by the client host. In line 13 the only field that is supposed
to be analyzed is specified. All information necessary to identify it are: fetch strat-
egy (BitCounter), protocol encapsulation (Ethernet/IP), field position (110), field
length (1), expected value (1), comparison operator (=), and, optionally, a field de-
scription. The reply message TCP RST is shown in lines 16–19. The message type is
defined in line 17 as server, i.e., the state transition will be triggered by the server
host. Finally, the field to be analyzed is defined in line 18. Since the messages of the
signatures illustrated in figure 2a, b and d are composed of binary protocol fields, they
should be specified in a similar way.

An SNMP Agent for Stateful Intrusion Inspection

1 Trace "TCP SYN - TCP RST"
2 Version: 1.0
3 Description: Trace to detect port scanning.
4 Key: TCP, SYN, RST, port scanning
5 Port:
6 Owner: Luciano Paschoal Gaspary
7 Last Update: Tue, 16 Aug 2000 15:30:58 GMT
8
9 MessagesSection

10
11 Message "TCP SYN"
12 MessageType: client
13 BitCounter Ethernet/IP 110 1 1 = "Field SYN - 1 means TCP Connect"
14 EndMessage
15
16 Message "TCP RST"
17 MessageType: server
18 BitCounter Ethernet/IP 109 1 1 = "Field RST"
19 EndMessage
20
21 EndMessagesSection
22
23 StatesSection
24 FinalState idle
25
26 State idle
27 "TCP SYN" GotoState 2
28 EndState
29
30 State 2
31 "TCP RST" GotoState idle
32 EndState
33
34 EndStatesSection
35
36 EndTrace

Figure 3. Representation of a signature using Textual PTSL

As opposed to the example mentioned above, the signature specified in figure 2c
is for a character-based protocol (HTTP). The attack is composed of a single tran-
sition and is recognized whenever an HTTP GET request packet with the argument
/scripts/..\%C0\%AF../winnt/ system32/cmd.exe?/c+dir+c:\ is observed. Figure 4
presents part (the MessagesSection) of the textual specification for the trace shown
in figure 2c. Lines 3–8 describe the HTTP request. In line 5 the GET field is defined.
The information needed to identify a character-based protocol field are: fetch strategy
(FieldCounter), protocol encapsulation (Ethernet/IP/TCP), field position (0), ex-
pected value (GET), comparison operator (=), and, optionally, a field description.

1 MessagesSection
2

3 Message "GET /scripts/..\%C0\%AF../winnt/system32/cmd.exe?/c+dir+c:\"
4 MessageType: client
5 FieldCounter Ethernet/IP/TCP 0 GET =
6 FieldCounter Ethernet/IP/TCP 1 /scripts/..\%C0\%AF../winnt/system32/cmd.exe?
7 /c+dir+c:\ =
8 EndMessage
9

10 EndMessagesSection

Figure 4. Field identification in character-based protocols

L. Gaspary, E. Meneghetti, L. Tarouco

Representation of the FSM. Lines 23–34 in figure 3 define the textual speci-
fication of the state machine shown in figure 1. The final state is identified just after
StatesSection (line 24). The states idle and 2 are defined in lines 26–28 and 30–
32, respectively. The state specification only lists the events (messages and groups)
that may trigger transitions, indicating, for each of them, which is the next state (lines
27 and 31).

4. THE INTRUSION DETECTION SNMP AGENT
The intrusion detection agent requires as input attack signatures specified in PTSL.

The configuration of which signatures should be monitored at a given moment is made
by the network manager through the Script MIB. Once programmed, the agent starts
monitoring the occurrence of the signatures on the network traffic and stores statistics,
according to their occurrence, in an extended RMON2 MIB. These statistics may be
retrieved from any SNMP-based management application by periodically polling the
agent. In order to reduce management traffic, it is possible to use the alarm and event
RMON MIB groups instead. In this case, the network manager must configure thresh-
olds to certain RMON2 MIB variables and define notifications that will be sent to the
management station when these thresholds are reached. Figure 5a and b illustrates
the communication flow between manager and agent considering both approaches.
Expression [13] and Event [14] MIBs could also be used. The former provides the
manager with a flexible mechanism to define thresholds (based on expressions), while
the latter extends the capabilities of the RMON alarm and event groups by allowing
alarms to be generated for MIB objects that are on another network element.

��� �*��*� � � � �	�

��� � � � �
�
� �

�3�B� � �
�x� �

� � � � � � � � �
� � � � � � � � � � �
� � � � � � � � �
� � � � � � � � � � �

� � � � � � � �	� � � � � �
� �	�B� � �'� � �	� � � � � �

� � � � � � � � � � � � � � � �
� � � � � �B� � � � � � � � � �	� �	� � ¡	¢ £¤ ¥ � ¦ � � ¡	¢ � � ¥ �

§ £ £ ¤ � ¥ �

�	� �	� � ¡	¢ £
¢ £ ¨ ¥ © � ª

� � ��� � ¡	¢ £¤ ¥ � ¦ � ��¡	¢ � � ¥ �

§ £ £ ¤ � ¥ �

� � ��� � ¡	¢ £
¢ £ ¨ ¥ © � ª

��� �B��B�	� � � �	�
��� � � � �
�x� �

�3�B�	�
�
� �

� � � � � � � �

� � � � « � � � � � � �*¬ � � � � ­

� � �	� � � � � � � � � � �
� � �*� � �*� � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � �B� � � � � � � � �

®�� �	� �

(a) (b)

Figure 5. Communication flow between manager and agent

4.1 Architecture
The intrusion detection SNMP agent runs on Linux stations and was implemented

using the C language, the POSIX thread library, the NET-SNMP framework [15] and
Jasmin [16]. Figure 6 shows the agent architecture. The PTSL manager thread is
responsible for the integration between the Script MIB and the PTSL core. It updates
both the data structures used by the PTSL core and the RMON2 protocolDir table
whenever a new signature is configured to be monitored or an existing signature is

An SNMP Agent for Stateful Intrusion Inspection

requested to be removed from the agent. Three more threads – queue, PTSL engine
and RMON2 – operate in a producer/consumer fashion. The first thread captures all
the packets arriving at the network interface card using the libpcap library and inserts
them in a circular queue. The second thread processes every packet in the queue,
without removing them from it, to identify if they have the characteristics expected
to allow one or more signatures to evolve in the state machine. If so, special marks
are attached to the packets. Finally, the RMON2 thread removes every packet from
the queue and, according to the markings, updates the RMON2 tables in the mySQL
database.

¯�°3±*²
³ ´ µ ¶ ·

¯�¸ ¹ º » ·±x¼ ½

¾3±B¿B°�À
±x¼ ½

¾3±B¿I°�À
Á µ ¹ ¶ µ Â

Ã Ä Å Æ Ç È É Ê�Ä
Ë�Ì Å Ì Í Å É Ê�ÄxÎ�Ï3Ð*Ñ
Ò�Ó	Ì Ä Å

Â º Ô » ¸ ³ »

²�Õ ¯�Ö
µ ¶ ´ º ¶ µ

× Ø µ Ø µ
· Ù ¹ µ ³ Ú

Ú ³ · ³ Ô ³ Û µ

» ³ ¸ Á µ · × Ø µ Ø µ
Ñ Ü�Î�Ý
Þ�Ê�Æ Ì

¯�±Ißà ³ Û á º ¶Á µ ¹ ¶ µ Â

¾3±B¿B°�À
· Ù ¹ µ ³ Ú

²	Õ	¯�Ö
áB³ ¶ ³ ´ µ ¹

´ µ · ²	Õ	¯�Ö Û » µ ¸ º â º ¸ ³ · º ã ¶ Ø Û º ¶ ´ ä Õ	Õ�²	¯

Figure 6. Internal organization of the agent

4.2 The Management Information Base
Every time that a signature is observed between any pair of hosts, data is stored in

the mySQL database. This database is source of information for the SNMP sub-agent
that implements an extended version of the RMON2 MIB [11]. One of the differences
between our MIB and RMON2 is that the protocolDir group, which indicates the
protocol encapsulations that the agent is able to monitor, now allows protocol traces
(attack signatures) to be indexed. Therefore, monitoring granularity is considerably
increased. Besides gathering statistics about the traffic generated by hosts using cer-
tain protocols, the agent also stores information related to the occurrence of attack
signatures. Table 1 shows a set of entries that could appear in an agent protocol direc-
tory.

Table 1. RMON2 protocolDir table

ID LocalIndex Description
00-00-00-01-00-00-08-00 1 ether2.ip

00-00-00-01-00-00-08-00-00-00-00-17 2 ether2.ip.tcp
00-00-00-01-00-00-08-00-00-00-00-17-00-00-00-50 3 ether2.ip.tcp.http
00-00-00-01-00-00-08-00-00-00-00-17-00-01-00-04 4 ether2.ip.tcp.rpcinfo
00-00-00-01-00-00-08-00-00-00-00-17-00-01-00-05 5 ether2.ip.tcp.showmount
00-00-00-01-00-00-08-00-00-00-00-17-00-01-00-06 6 ether2.ip.tcp.http suspect string

As it was mentioned in the previous sub-section, the protocolDir table is auto-
matically updated when a new signature is configured to be monitored or an existing
signature is requested to be removed from the agent. The ID (protocolDirID) is

L. Gaspary, E. Meneghetti, L. Tarouco

composed of n × 4 bytes, where n is the number of protocols that comprise the encap-
sulation [17]. The number used to identify ethernet (00-00-00-01), IP (00-00-08-00)
and high-layer protocols is never longer than 16 bits (2 bytes). Hence, to avoid con-
flicts with the identification of existing protocols, IDs above 65.535 are assigned to
attack signatures (see table 1 above).

We have implemented most of the RMON2 groups, including nlHost, alHost,
nlMatrix, and alMatrix. The later stores statistical data about the signature when
it is observed between each pair of hosts at the granularity of attack signatures. Table
2 illustrates the contents of the alMatrixSD table. The semantic of the MIB has not
been changed, since it still stores packet and octet rates. To determine the number of
occurrences of a signature between two hosts it is necessary to divide the number of
packets (stored in the MIB) by the number of transitions that form the signature. From
the third line of the table, for example, one can infer that the signature TCP SYN –
TCP RST has been observed 127 times (254 packets divided by 2 transitions).

Table 2. Information from the alMatrixSD table

Source Address Destination Address Protocol Packets Octets
172.16.108.1 172.16.108.2 ether2.ip.tcp.http suspect string 4 4.350
172.16.108.32 172.16.108.2 ether2.ip.tcp.rpcinfo 8 7.300
172.16.108.1 172.16.108.254 ether2.ip.tcp syn-tcp rst 254 1.202.126

125.120.10.100 172.16.108.254 ether2.ip.tcp.showmount 20 3.204

4.3 Signature-based Intrusion Detection
The agent can be used to accomplish signature-based intrusion detection. Figures 1

and 2c and d show examples of signatures that, regardless of when they are observed,
indicate the occurrence of a scanning (figure 1) or attack (figure 2c and d). To ac-
curately detect them it is necessary to define how many occurrences of the signature
should be observed within a time interval in order to be considered an attack. Figure
7 presents a sample Tcl script that could be used to install and monitor the occurrence
of these signatures.

The programming of the Script MIB on the agent is made with the aid of a specially
developed package (line 2). In lines 10–13 the PTSL signature is installed. In line 14
the agent is asked to start observing the network for the occurrence of the signature just
installed. Then, the script polls the agent every 120 second (line 26) to get information
(line 18) and checks whether the signature has been counted or not (line 20). If the
signature has been observed three times within an interval an alarm is generated.

The examples presented in figure 2a and b, on the other hand, can be part of le-
gitimate traffic. Therefore, the identification of these network patterns as part of an
attack is not straightforward. In this case, the network manager must have a precise
characterization of the network (baseline) to be able to create rules to efficiently detect
when such traffic can be regarded an attack evidence.

5. EVALUATION OF THE AGENT
This section describes two experiments that were accomplished to assess the per-

formance of the agent and its behavior regarding false positive generation rates.

An SNMP Agent for Stateful Intrusion Inspection

1 package require Tnm 3.0
2 package require ScriptMib 1.0
3
4 set oid "protocolDist.protocolDistStatsEntry.protocolDistStatsPkts.1.10"
5 set prev 0
6

7 if { [catch {::Tnm::snmp generator -address $agent} s] } {
8 ::Tnm::log exit -code runtimeError "Error creating SNMP session: $s"
9 }

10 if { [catch {ScriptMib::InstallScript $ma $m_owner $m_name $m_lang $m_src \
11 $m_descr $m_args $m_ltime $m_etime $m_mrun $m_mcomp} e]} {
12 ::Tnm::log exit -code runtimeError "Error installing script: $e"
13 }
14 ::ScriptMib::RunScript $ma $m_owner $m_name 0
15

16 proc monitor {} {
17 global s oid prev
18 set val [$s get $oid]
19 set val [lindex [lindex $val 0] 2];
20 if {[expr $val - $prev] > 3} {
21 ::Tnm::log "Intrusion alarm: $m_name, $m_descr"
22 }
23 set prev $val
24 }
25 ::Tnm::job create \
26 -interval 120000 -error {::Tnm::log exit -code runtimeError $errorInfo} \
27 -exit {::Tnm::log exit} -command {monitor}
28 vwait forever

Figure 7. Sample script to install and monitor the occurrence of an attack

5.1 Performance Analysis
In order to identify the network load supported by the agent (without dropping

packets) some experiments have been carried out. The test environment was com-
posed of three hosts connected through a 10 Mbps IEEE 802.3 network segment. The
first host was used to generate network traffic, while the second one was supposed to
receive it. The third host, a 450 MHz K6II PC with 64 MB RAM, was used to run the
agent. The results obtained were the following:

The sustained agent capacity (without packet loss) is around 235 datagrams
per second when one signature is monitored. This rate was obtained by the
consecutive generation of UDP datagram sequences that matched exactly the
signature configured;
The increase in the number of signatures monitored causes performance degra-
dation of the agent. The agent capacity was reduced to 172 datagrams/second
when it was configured to monitor five signatures simultaneously and traffic that
matched exactly these signatures was generated;
When generating traffic at 10 Mbps (around 5000 datagrams/second), with all
datagrams being part of the signature, the agent discards packets.

We have also run the agent on a small production network, characterized as follows:
(a) IEEE 802.3 network running at 10 Mbps, (b) 10 hosts (connected to a hub) running
Windows operating system and configured to share files and printers, (c) average traffic
rate of 150 packets/second during prime hours, (d) 75% of the packets was between
65 and 256 bytes long and 21% of the packets was longer than 1024 bytes, and (e)
application protocols composed of HTTP (45%), NetBIOS (27%) and SMTP (15%).
In this scenario, packet discards have not been observed.

L. Gaspary, E. Meneghetti, L. Tarouco

5.2 Alarm Generation Analysis
To demonstrate that our approach tend to generate few false positives we have car-

ried out an experiment based on previous work done at Lincoln Laboratory [18]. The
main idea is to create background traffic that is similar to the traffic observed on the
production network. In the next step packets corresponding to attacks are merged to
the background traffic. By reproducing the resulting traffic, one or more IDSs can
be evaluated regarding false positive generation rates. In this experiment we have
assessed our agent.

We have used the packet trace file available at Lincoln Laboratory named DDos 1.0.
It is a distributed denial of service attack that explores a buffer overflow technique in
a sadmind server running on Solaris operating system. The attack has five phases:

Phase 1 (host scanning): the purpose of this phase is to identify which hosts
are up and running by sending ICMP echo request packets to all hosts of the
network. This phase was cut from the original packet trace and not considered
in the evaluation, because ICMP echos and replies appear a lot in legitimate
traffic (would generate many false positives);

Phase 2 (look for sadmind running on a target): in this phase the portmapper
of the hosts (that replied the ICMP echo request packets in the previous phase)
are queried in order to identify which port the sadmind daemon is listening.
Next, a TCP connection to this port is opened;

Phase 3 (try to compromise the target): once the TCP connection is established,
a buffer overflow technique is used to edit the password file and create a new
user account;

Phase 4 (identify which target has been compromised): in this phase one must
open a telnet connection using the user account created in the previous step;

Phase 5 (launch a distributed denial of service attack): this phase was also cut
from the original packet trace and not considered in our evaluation. We have
focused on the detection of the earlier stages of the attack, because we believe
that detecting the distributed denial of service when it is occurring is not very
useful, since very little can be done against it.

The packet trace just described was merged to background traffic, collected from
an IEEE 802.3 network segment composed of 10 personal computers. The traffic is
characterized as follows: the application protocols used were NetBios (48%), HTTP
(22%), mail (11%), FTP (8%), SSH (3%) and other (8%). The packet size distribution
was: 38% (<64 bytes), 51% (≥ 65 and <128 bytes), 1% (≥ 128 and <256 bytes), 1%
(≥ 256 and <512 bytes), 8% (≥ 512 and <1024 bytes) and 1% (≥ 1024 bytes). It is
important to highlight that the background traffic has some legitimate sadmind traffic.

The test platform consisted of three hosts connected to a hub. The first host was
used as the traffic generator. The second host ran the agent prototype. The agent was
configured to monitor several attack signatures (including the ones presented in the
paper and the signatures to detect phases 2, 3 and 4 of the attack). The third host
executed a MIB browser, which was configured to poll the agent once a second (to get
the value associated to the protocolDistStatsPkts variable).

An SNMP Agent for Stateful Intrusion Inspection

We have then used tcpreplay [19] to reproduce the traffic. As we did not want
the agent to discard packets (to be able to focus the evaluation on the accuracy of the
detection process), we have replayed the traffic at low speed.

Our agent has triggered three alarms related, respectively, to phases 2, 3 and 4 of
the attack. No false positives have been generated. We believe this has occurred due
to the mechanism adopted by the agent, which is able to analyze packet sequences
(stateful analysis). Packet correlation (intrinsic characteristic of the agent) helps on
distinguishing legitim and attack traffic.

6. CONCLUSIONS AND FUTURE WORK
This paper presented an SNMP agent for stateful intrusion inspection. We have also

presented PTSL, a language for the representation of protocol traces that, in this paper,
was used to model attack signatures. Then we have presented some experiment results
related to the agent performance and alarm generation rates. Providing the network
manager with a high-level notation for attack signature specification, reducing the
false positive rates generated, and integrating security mechanisms with the already
existing network management infrastructure were the general objectives of the work.
It is important to highlight that the absence of false alarms in our experiment is due to
the programming of the signatures, and not due to the network management portion
of our agent.

PTSL language has shown to be very adequate for the specification of attack sig-
natures because of its simplicity. The expression power of PTSL is another point to
be highlighted. The possibility of correlating packets, whether from the same flow or
not, enables the identification of attacks with a low error rate, considerably reducing
the number of false alarms. Besides, while most IDSs allow the selection of pack-
ets based on a few predetermined header fields only up to the transport layer, PTSL
goes beyond, allowing the use of filters based on any protocol, all the way up to the
application layer.

The use of an extended RMON2 MIB to store information related to the occurrence
of attack signatures is a significant step towards integration of security mechanisms
with the current existing SNMP-based management applications and platforms. Our
agent should not be used isolated from other approaches. While the work published
by Qin et al. in [6, 7, 8] tend to be more efficient to detect attacks that generate
considerable changes in the network traffic (anomaly-based detection), our agent is
able to cope with both traffic-based intrusions and slower traffic and stealth attacks
(since it is signature-based).

Regarding security, the agent supports all facilities provided by SNMPv3, includ-
ing the User-based Security Model (USM) [20] and the View-based Access Control
Model (VACM) [21]. Using these facilities it is assured that the agent cannot be “re-
programmed” by a person who is not allowed to do this.

According to the results presented in sub-section 5.1 one can observe that the pas-
sive network traffic monitoring technique is computationally onerous. To achieve bet-
ter results and not to compromise the intrusion detection process we have considered
the following alternatives: use of hosts with more than one processor, distribution of
signatures to more than one host, filtering out packets that are not useful for the sig-
natures being monitored (using BPF filters), and replacement of the mySQL database
by a more efficient alternative.

L. Gaspary, E. Meneghetti, L. Tarouco

References
[1] Snort The Open Source Network Intrusion Detection System. http://www.snort.org/.

[2] NFR Security. http://www.nfr.net/.

[3] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer Networks, 31(23–
24), Dec. 1999, p. 2435–2463.

[4] G. Vigna, S. T. Eckmann, and R. A. Kemmerer. The STAT Tool Suite. In Proceedings of DARPA
Information Survivability Conference & Exposition (DISCEX 2000), 2000.

[5] D. Alessandri. Using Rule-Based Activity Descriptions to Evaluate Intrusion-Detection Systems. In
Proceedings of International Workshop on the Recent Advances on Intrusion Detection (RAID 2000),
2000.

[6] J. B. D. Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichandran, and R. K. Mehra. Proac-
tive Detection of Distributed Denial of Service Attacks using MIB Traffic Variables – a Feasibility
Study. In Proceedings of IFIP/IEEE International Symposium on Integrated Management (IM 2001),
2001.

[7] X. Qin, W. Lee, L. Lewis, and J. B. D. Cabrera. Using MIB II Variables for Network Intrusion
Detection. Data Mining for Security Applications, Advances in Computer Security. Kluwer Academic
Press, March 2002.

[8] X. Qin, W. Lee, L. Lewis, and J. B. D. Cabrera. Integrating Intrusion Detection and Network Man-
agement. In Proceedings of IFIP/IEEE Network Operations and Management Symposium (NOMS
2002), 2002, p. 329–344.

[9] L. P. Gaspary, L. F. Balbinot, and L. R. Tarouco. Monitoring High-Layer Protocol Behavior Using
the Trace Architecture. In Proceedings of Latin American Network Operation and Management Sym-
posium (LANOMS 2001), 2001, p. 99–110.

[10] D. Levi and J. Schönwälder. Definitions of Managed Objects for the Delegation of Management
Scripts. RFC 3165, Aug. 2001.

[11] S. Waldbusser. Remote Network Monitoring Management Information Base Version 2 using SMIv2.
RFC 2021, Jan. 1997.

[12] K. Julisch. Dealing with False Positives in Intrusion Detection. In Proceedings of International Work-
shop on the Recent Advances on Intrusion Detection (RAID 2000), 2000.

[13] R. Kavasseri and B. Stewart. Distributed Management Expression MIB. RFC 2982, Oct. 2000.

[14] R. Kavasseri and B. Stewart. Event MIB. RFC 2981, Oct. 2000.

[15] NET-SNMP. http://net-snmp.sourceforge.net/.

[16] Jasmin - A Script MIB Implementation. http://www.ibr.cu.tu-bs.de/projects/jasmin.

[17] A. Bierman, C. Bucci, and R. Iddon. Remote Network Monitoring MIB Protocol Identifier Reference.
RFC 2895, Aug. 2000.

[18] R. Lippmann et al. Evaluating Intrusion Detection Systems: the 1998 DARPA Off-line Intrusion
Detection Evaluation. In Proceedings of DARPA Information Survivability Conference & Exposition
(DISCEX 2000), 2000.

[19] Tcpreplay. http://sourceforge.net/projects/tcpreplay/.

[20] U. Blumenthal and B. Wijnen. User-based Security Model (USM) for version 3 of the Simple Net-
work Management Protocol (SNMPv3). RFC 2574, Apr. 1999.

[21] B. Wijnen, R. Presuhn, and K. McCloghrie. View-based Access Control Model (VACM) for the
Simple Network Management Protocol (SNMP). RFC 2575, Apr. 1999.

