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Abstract: We present an architecture and prototype implementation of a performance 
management system for cluster-based web services. The system supports 
multiple classes of web services traffic and allocates server resources 
dynamically so to maximize the expected value of a given cluster utility 
function in the face of fluctuating loads.  The cluster utility is a function of the 
performance delivered to the various classes, and this leads to differentiated 
service. In this paper we will use the average response time as the performance 
metric.  The management system is transparent: it requires no changes in the 
client code, the server code, or the network interface between them. The 
system performs three performance management tasks: resource allocation, 
load balancing, and server overload protection.  We use two nested levels of 
management mechanism.  The inner level centers on queuing and scheduling 
of request messages.  The outer level is a feedback control loop that 
periodically adjusts the scheduling weights and server allocations of the inner 
level.  The feedback controller is based on an approximate first-principles 
model of the system, with parameters derived from continuous monitoring. We 
focus on SOAP-based web services. We report experimental results that show 
the dynamic behavior of the system. 

1. INTRODUCTION 

Today we are seeing the emergence of a powerful distributed computing 
paradigm, broadly called web services [17]. Web services feature ubiquitous 
protocols, language-independence, and standardized messaging. Due to these 
technical advances and growing industrial support, many believe that web services 
will play a key role in dynamic e-business [2]. In such an environment, a web 
service provider may provide multiple web services, each in multiple grades, and 
each of those to multiple customers.  The provider will thus have multiple classes of 
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web service traffic, each with its own characteristics and requirements. Performance 
management becomes a key problem, particularly when service level agreements 
(SLA) are in place. Such service level agreements are included in service contracts 
between providers and customers and they specify both performance targets, known 
as performance objectives, and financial consequences for meeting or failing to meet 
those targets. A service level agreement may also depend on the level of load 
presented by the customer. 

In this paper we present an architecture, and describe a prototype 
implementation, of a performance management system for web services that 
supports service level agreements. We have designed and implemented reactive 
control mechanisms to handle dynamic fluctuations in service demand while 
keeping service level agreements in mind. Our mechanisms dynamically allocate 
resources among the classes of traffic, balance the load across the servers, and 
protect the servers against overload — all in a way that maximizes a given cluster 
utility function.  This produces differentiated service. 

We introduce a cluster utility function that is a composition of two kinds of 
functions, both given by the service provider. First, for each traffic class, there is a 
class-specific utility function of performance.  Second, there is a combining function 
that combines the class utility values into one cluster utility value. This 
parameterization by two kinds of utility function gives the service provider flexible 
control over the trade-offs made in the course of service differentiation. In general, a 
service provider is interested in profit (which includes cost as well as revenue) as 
well as other considerations (e.g., reputation, customer satisfaction).  

We have organized our architecture in two levels: (i) a collection of in-line 
mechanisms that act on each connection and each request, and (ii) a feedback 
controller that tunes the parameters of the in-line mechanisms.  The in-line 
mechanisms consist of connection load balancing, request queuing, request 
scheduling, and request load balancing.  The feedback controller periodically sets 
the operating parameters of the in-line mechanisms so as to maximize the cluster 
utility function.  The feedback controller uses a performance model of the cluster to 
solve an optimization problem. The feedback controller continuously adjusts the 
model parameters using measurements of actual operations.  In this paper we report 
the results obtained using an approximate, first-principles model. 

We focus on SOAP-based web services and use statistical abstracts of SOAP 
response times as the characterization of performance. We allow ourselves no 
functional impact on the service customers or service implementation: we have a 
transparent management technique that does not require changes in the client code, 
the server code, or the network protocol between them. 

The rest of this paper is organized as follows. Section 2 discusses related work. 
Section 3 presents the system architecture and prototype implementation. 
Performance modeling and optimization analysis are described in Section 4. Section 
5 illustrates some experimental results, showing both transient responses and service 
differentiation.  Section 6 presents conclusions and discusses future work. 

2. RELATED WORK 

Several research groups have addressed the issue of QoS support for distributed 
systems [15]. In this section we summarize the current state of the art. 
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The first class of research studies deals with session-based admission control for 

overload protection of web servers. Chen et al. [9] proposed a dynamic weighted fair 
sharing scheduler to control overloads in web servers. The weights are dynamically 
adjusted, partially based on session transition probabilities from one stage to 
another, in order to avoid processing requests that belong to sessions likely to be 
aborted in the future. Similarly, Carlström et al. [7] proposed using generalized 
processor sharing for scheduling requests, which are classified into multiple session 
stages with transition probabilities, as opposed to regarding entire sessions as 
belonging to different classes of service, governed by their respective SLAs. 

Another area of research deals with performance control of web servers using 
classical feedback control theory. Abdelzaher et al. [1] used classical feedback 
control to limit utilization of a bottleneck resource in the presence of load 
unpredictability.  They relied on scheduling in the service implementation to 
leverage the utilization limitation to meet differentiated response-time goals.  They 
used simple priority-based schemes to control how service is degraded in overload 
and improved in under-load. In this paper we use a new technique that gives the 
service provider a finer grain control on how the control subsystem should tradeoff 
resources among different web services requests. Diao et al. [10] used feedback 
control based on a black-box model to maintain desired levels of memory and CPU 
utilization. In this paper we use a first-principles model and maximize a cluster 
objective function. 

Web server overload control and service differentiation using OS kernel-level 
mechanisms, such as TCP SYN policing, has been studied in [18]. A common 
tendency across these approaches is tackling the problem at lower protocol layers, 
such as HTTP or TCP, and the need to modify the web server or the OS kernel in 
order to incorporate the control mechanisms. Our solution on the other hand 
operates at the SOAP protocol layer, which does not require changes to the server, 
and allows for finer granularity of content-based request classification. 

Service differentiation in cluster-based network servers has also been studied in 
[4] and [20]. The approach taken here is to physically partition the server farm into 
clusters, each serving one of the traffic classes. This approach is limited in its ability 
to accommodate a large number of service classes, relative to the number of servers. 
Lack of responsiveness due to the nature of the server transfer operation from one 
cluster to another is typical in such systems. On the other hand, our approach uses 
statistical multiplexing, which makes fine-grained resource partitioning possible, 
and unused resource capacities can be instantaneously shared with other traffic 
classes.  

Chase et al. [8] refine the above approach. They note that there are techniques 
(e.g., cluster reserves [5], and resource containers [6]) that can effectively partition 
server resources and quickly adjust the proportions.  Like our work, Chase et al. also 
solve a cluster-wide optimization problem.  They add terms for the cost (due, e.g., to 
power consumption) of utilizing a server, and use a more fragile solution technique.  
Also, they use a black-box model rather than first-principles one. 

Zhao and Karamcheti [19] propose a distributed set of queuing intermediaries 
with non-classical feedback control that maximizes a global objective. Their 
technique does not decouple the global optimization cycle from the scheduling 
cycle. 

In this paper we use the concept of utility function to encapsulate the business 
importance of meeting or failing to meet performance targets for each class of 
service. The notion of using a utility function and maximizing a sum [13] or a 
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minimum [14] of utility functions for various classes of service has been used to 
support service level agreements in communication services. In such analyses, the 
utility function is defined in terms of bandwidth allocated (i.e. resources). In our 
work, we define the class utility function in terms of the experienced performance 
relative to the guaranteed service objective. Thus, it is possible to express the 
business value of meeting the service level objective as well as deviating from it. 
Further, the effect of the amount of allocated resources on performance level is 
separated from the business value objectives. 

3. PERFORMANCE MANAGEMENT SYSTEM 
ARCHITECTURE AND IMPLEMENTATION 

In this section we present the system architecture and prototype implementation 
of a management system for web services. This system allows service providers to 
offer and manage service level agreements for web services. The service provider 
may offer each web service in different grades of service level, with each grade 
defining a specific set of performance objective parameters. For example, the 
StockUtility service could be offered in either gold, silver, or bronze grade, with 
each grade differentiated by performance objective and base price. A prototypical 
grade will say that the service customers will pay $10 for each month in which they 
request less than 100,000 transactions and the 95th percentile of the response times 
is smaller than 5 seconds, and $5 for each month of slower service. 

Using a configuration tool, the service provider will define the number and 
parameters of each grade. Using a subscription interface users can register with the 
system and subscribe to services. At subscription time each user will select a 
specific offering and associated grade. 

The service provider uses the configuration tool to also create a set of traffic 
classes and map a <customer, service, operation, grade> tuple into a specific 
traffic class (or simply class). The service provider assigns a specific response time 
target to each traffic class. Our management system allocates resources to traffic 
classes and assumes that each traffic class has a homogenous service execution time. 

We introduce the concept of class to separate operations with widely differing 
execution time characteristics. For example the StockUtility service may support 
the operations getQuote() and buyShares(). The fastest execution time for 
getQuote() could be 10 ms while the buyShares() cannot execute faster that 1sec. 
In such a case the service provider would map these operations into different classes 
with different set of response time goals. We also use the concept of class to isolate 
specific contracts to handle the requests from those customers in a specific way. 

Figure 1 shows the system architecture. The main components are: a set of 
gateways, a global resource manager, a management console, and a set of server 
nodes on which the target web services are deployed. We use gateways to execute 
the logic that controls the request flow and we use the server nodes to execute the 
web services logic. Gateway and server nodes are software components. We usually 
have only one gateway per physical machine and in general we have server nodes 
and gateways on separate machines. The simplest configuration is one gateway and 
one server node running on the same physical machine. 

In this paper we assume that all server nodes are homogeneous and that every 
web service is deployed on each server. We can deal with heterogeneous servers by 
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partitioning them into disjoint pools, where all the servers in a given pool have the 
same subset of web services deployed. Refer to [12] for details on how to use server 
pools. 

The servers, gateways, global resource manager, and console share monitoring 
and control information via a publish/subscribe network. In coping with higher 
loads, the system scales by having multiple gateways. An L4 switch distributes the 
incoming load across the gateways. 

Client

Client

Client

Management
Console

Global Resource
Manager

Publish/Subscribe Control Network

L4
Switch

Gateways Server
Nodes

Monitoring and control path

Request path

 

Figure 1. System Overview 

3.1 Gateway  

We use gateways to control the amount of server resources allocated to each 
traffic class. By dynamically changing the amount of resources we can control the 
response time experienced by each traffic class. 

Gateways dispatch requests to servers. We denote with Ns the capacity of server 
s. Ns represents the maximum number of web services requests that server s can 
execute concurrently. We select Ns to be large enough to efficiently utilize the 
server’s physical resources, but small enough to prevent overload and performance 
degradation. In the remainder of this paper we assume that Ns is given. 

We partition Ns among all gateways and we denote with Ng,s the maximum 
number of concurrent requests that server s executes on behalf of gateway g. We 
also use wg,c to describe the minimum number of class c requests that all servers will 
execute on behalf of gateway g. Each request executes in a separate initial thread. 
Thus, we refer to wg,c as server threads. In Section 4 we will describe how we 
compute wg,c and Ng,s, while, in this section we describe how gateway g enforces the 
wg,c and Ng,s constraints. For each gateway g, we use wg and Ng to denote the 
following: 
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where C and S denote the set of all classes and servers, respectively. Figure 2 
illustrates the gateway components. We have used Axis [3] to implement all our 
gateway components and we have implemented some of the mechanisms using Axis 
handlers, which are generic interceptors in the stream of message processing. Axis 
handlers can modify the message, and can communicate out-of-band with each other 
via an Axis message context associated with each SOAP invocation (request and 
response) [3]. 
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Figure 2. Gateway components 

When a new request arrives a classification handler determines the traffic class 
of the request.  The mapping functions use the request meta-data (user id, subscriber 
id, service name, etc.). In our implementation the classification handler uses the user 
and SOAP action fields in the HTTP headers as inputs, and reads the mappings from 
configuration files. We avoid parsing the incoming SOAP request to minimize the 
overhead. 

After we classify the requests, we invoke the queue handler, which in turn 
contacts a queue manager. The queue manager implements a set of logical FIFO 
queues one for each class. When the queue handler invokes the queue manager the 
queue manager suspends the request and adds the request to the logical queue 
corresponding to the request’s class. 

The queue manager includes a scheduler that runs when a specific set of events 
occurs and selects the next request to execute. The queue manager on gateway g 
tracks the number of outstanding requests dispatched to each server and makes sure 
that there are at most Ng requests concurrently executing on all the servers. When the 
number of concurrently outstanding requests from gateway g is smaller than Ng the 
scheduler selects a new requests for execution.  

The scheduler uses a weighted round robin scheme. The total length of the round 
robin cycle is wg and the length of class c interval is wg,c. We use a dynamic 
boundary and work conserving discipline that always selects a non-empty queue if 
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there is at least one. The above discipline guarantees that during periods of resource 
contention the server nodes will concurrently execute at least wg,c requests of class c 
on behalf of gateway g. 

After the scheduler selects a request, the queue manager resumes the execution 
of the request’s corresponding queue handler. The queue manager collects statistics 
on arrival rates, execution rates, and queueing time and periodically broadcasts these 
data on the control network. 

The dispatch handler selects a server and sends the request to the server, using a 
protocol defined by configuration parameters. Our implementation supports SOAP 
over HTTP and SOAP over JMS [16]. The dispatch handler distributes the requests 
among the available servers using a simple load balancing discipline while enforcing 
the constrain that at most Ng,s requests execute on server s concurrently on behalf of 
gateway g. 

When a request completes its execution the response handler reports to the 
queue manager the completion of the request’s processing. The queue manager uses 
this information to both keep an accurate count of the number of requests currently 
executing and to measure performance data such as service time. 

The gateway functions may be run on dedicated machines, or on each server 
machine. The second approach has the advantage that it does not require a sizing 
function to determine how many gateways are needed, and the disadvantage that the 
server machines are subjected to load beyond that explicitly managed by the 
gateways. 

3.2 Global Resource Manager 

The global resource manager runs periodically and computes Ng,s and wg,c using 
the request load statistics and performance measurements from each gateway. Figure 
3 shows the global resource manager inputs and outputs.  In addition to real-time 
dynamic measurements, the global resource manager uses resource configuration 
information and the cluster utility function. The cluster utility function consists of a 
set of class utility functions and a combining function. Each class utility function 
maps the performance of a particular traffic class into a scalar value that 
encapsulates the business importance of meeting, failing to meet, or exceeding the 
class service level objective. A combining function combines the class utility 
function into one cluster utility function. In this paper we have implemented the 
combining function as a sum of the utility functions, however, our work could be 
extended to study the impact of other combining functions on the structure of the 
solution. 
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Figure 3. Global resource manager inputs and outputs 

The global resource manager uses a queuing model of the system to predict the 
performance that each class would experience for a given allocation wg,c and the 
corresponding Ng,s. The global resource manager implements a dynamic 
programming algorithm to find the wg,c and Ng,s that maximize the cluster utility 
function. After the global resource manager computes a new set of wg,c and Ng,s 
values, it broadcasts them on the control network. Upon receiving the new resource 
allocation parameters each gateway switches to the new values of wg,c and Ng,s. We 
discuss the algorithm used to predict the class performance and maximize the cluster 
utility function in Section 4. 

3.3 Management Console 

The management console offers a graphical user interface to the management 
system.  Through this interface the service provider can view and override all the 
configuration parameters. We also use the console to display the measurements and 
internal statistics published on the control network. Finally we can use the console to 
manually override the control values computed by the global resource manager. 
Figure 4 shows a subset of the views available from our management console. 

 

Figure 4. Management console: configuration and control values 
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4. MODELING AND OPTIMIZATION 

In this section we describe how the global resource manager computes the 
resource allocation. First we give an abstract definition of the problem solved.  Then 
we discuss the simplified queuing model used to predict the performance of each 
class for a given resource allocation.  Finally, we examine the class utility functions 
detail. 

4.1 The Resource Allocation Problem 

The global resource manager computes the Ng,s and wg,c values to maximize the 
cluster utility function over the next control period. We decouple the Ng,s and wg,c 
problems by solving for the wg,c first, and then deriving the Ng,s from them.  

To determine the wg,c, we use dynamic programming to find the wg,c that 
maximizes the cluster utility function Ω which we define as the sum of each class 
utility function Uc. In particular Ω  is given by: 

∑∑
∈ ∈

=Ω
Cc Gg

cgc wU )( ,  (2) 

subject to: 

NwNw
Gg

cg
Cc

cg =≤≤ ∑∑
∈∈

,, ,1 , (3) 

where ∑
∈

≡
Ss

sNN , (4) 

and where C, G and S denote the set of classes, gateways and servers, respectively. 
The utility function Uc(wg,c) defines the utility associated with allowing wg,c requests 
of class c traveling through gateway g to concurrently execute on any of the servers. 
In the following section we discuss the structure of the utility function and in 
Section 4.3 we show how we compute Uc as a function of wg,c. 

As we mentioned in the previous section, we enforce for each server s, a limit Ns 
on the maximum number of requests that may be concurrently active on that server 
[12]. Once we have computed wg,c. the value wg derived from equation 1 represents 
the portion of server resources that have been allocated to gateway g. To compute 
Ng,s for each gateway g we divide each server s available concurrency NS among the 
gateways in proportion to wg. In particular for each server s we select the point  

 [ sns G
NN ,,1 ,Κ ] 

where nG is the number of gateways) with integer-valued coordinates constrained by 

s
Gg

sg NN =∑
∈

, , (5) 
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where N is the total number of resources across all servers as defined in equation 4. 

4.2 The Structure of Class Utility Functions 

We use Uc to encapsulate the business importance of meeting or failing to meet 
class c performance. In this paper, we express each class performance objective as 
an upper bound on the average response time and therefore Uc will depend on the 
negotiated upper bound as well as the predicted response time given an allocation of 
wg,c resources. In the studies reported in this paper, we use a prototypical function to 
express the utility of class c when its requests experience a performance tc under a 
contracted performance objective τc. An example for such a function is given below. 
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The function in equation 7 and shown in Figure 5 compares average response 
time tc to target response time τc for class c as follows.  The best possible long-term 
average is 1/µc where µc is the mean service rate for class c. When tc = 1/µc 
Uc (τc, tc) is constant. Between that point and tc =τc, we simply follow a straight line. 
For tc > τc we use a negative polynomial function to map response times bigger than 
the objective into a negative value of Uc (τc, tc). For the plot in Figure 5 we have 
used µc =1, τc=6, αc=[1,2,3] and βc=[1,3,5]. By increasing αc we control the 
business importance of exceeding the target for class c, while by increasing βc we 
can control how fast the business utility degrades when class c experiences a delay 
bigger than the objective. 

By changing the size and shape of the utility function we can influence how 
resource are allocated to each class of traffic and in turn the class performance. A 
more detailed description of the concept of the utility function and its impact on the 
overall system is given in [12]. In the next section we describe how we estimate the 
expected response time tc for class c given a scheduling weight of wg,c.  
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Uc (τc, tc)

τc1/µc

tc

αc=3
αc=2
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Figure 5. Utility function 

4.3 System Modeling 

To predict the average response time tg,c given a proposed allocation wg,c we use 
the observed arrival rate, response time, and the previous allocation values, denoted 
by cg ,

~λ , cgt ,
~ , and cgw ,

~ , respectively. 
We use an M/M/1 queue [11] to model the response time behavior of requests of 

class c traveling through gateway g, i.e., we assume that cg ,
~λ is evenly divided 

among the cgw ,
~  server threads that have been concurrently executing all requests of 

class c traveling through gateway g during the previous control cycle. Using this 
assumption we compute the equivalent service rate of the M/M/1 queue that has 
been handling the fraction of requests served by one of the wg,c threads. The 
equivalent service rate is given by: 

cgcgcgcg wt ,,,,
~~~1~ λµ +=  (8) 

Figure 6 exemplifies the above assumption. We now use cg ,
~µ  to predict the 

response time of all class c requests traveling through gateway g in the next control 
cycle under an allocation of wg,c threads, as follows 

( )cgcgcgcg
cgcg wwt

wt
,,,,

,, 1~1~~1
1)(

−+
=

λ
 (9) 

In the previous calculation we have assumed that the request load in the new 
cycle is equal to the previous one. 

Using equation 9 and 7 we can express the utility Uc (τc, tc) as a function of the 
expected allocation wg,c. Using dynamic programming we can then compute the set 
of wg,c that will maximize the cluster utility function Ω  in equation 2 under the 
constraints in equation 3. 
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Figure 6. Modeling the response time behavior for class c requests handled by gateway g 

The resource allocation methodology described in this section will achieve an 
optimal resource allocation only under the assumptions mentioned above. For all 
other cases our methodology achieves a sub-optimal solution. Given the nature of 
our system an optimal allocation can be determined only by simulation and 
extensive search. More work is required to determine the difference between our 
approach and an optimal allocation of resources. In [12] we report the results of 
several experiments indented to study the effectiveness of this approach. In the next 
section we report a subset of these experiments. 

5. EXPERIMENTAL RESULTS 

In order to illustrate the fundamental behavior of the system, the following 
experiments were conducted using a combined gateway and server machine, while 
another machine was used to generate the traffic load. 

During the experiment, clients connect to the gateway and send requests to a 
synthetic service, with exponentially distributed service time. The service alternates 
between CPU-bound processing and sleeping. The sleeping intervals are intended to 
emulate periods in which a process awaits response from a back-end server or 
database.  

In order to determine the desired NS for the one server, we examined the system 
throughput for various settings of NS. In these experiments, the load consisted of 
only one traffic class, and we ensured that the request queue was always non-empty. 
As shown in Figure 7, a maximum throughput of 23.5 requests/sec is achieved at an 
NS of 10. For larger values of NS the CPU reaches saturation and the overhead begins 
to degrade the server throughput. In the experiments reported below NS was always 
set to 10. 

In the following experiment, clients are classified into two types: gold and silver. 
The gold clients’ service level agreements specify a performance objective of 1 sec 
average response time, while the silver clients’ service level agreements specify a 2 
sec average response time target.  
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Figure 7. Throughput vs requested maximum number of concurrent executions 

This experiment emulated an infinite client population, where initially the server 
was subjected to 1req/sec from gold clients and 11.5req/sec from silver clients. 
After 100sec, the gold traffic rate was increased to 11.5req/sec, which brought the 
total load close to the system capacity. We show the effect of this change in traffic 
on response time in Figures 8. Since the invoked service spends a good portion of its 
time performing CPU-bound processing, the service time increases as the degree of 
concurrency of executing requests increases. This experiment demonstrates that the 
control mechanism immediately started to react to the load changes in order to 
maximize the cluster utility. In this experiment, the control cycle for the global 
resource manager was set to 10sec. We smoothed the load and response time 
statistics used by the global resource manager over a 30sec intervals using a sliding 
window. The plot in Figures 8 shows values smoothed by that 30sec-sliding 
window. We report more details on these experiments as well as additional 
experiments, with specific settings, in [12]. 

6. CONCLUSIONS AND FUTURE WORK 

We have presented an architecture and a prototype implementation of a 
performance management system for cluster-based web services. The management 
system is transparent and allocates server resources dynamically so to maximize the 
expected value of a given cluster utility function. We use a cluster utility to 
encapsulate business value, in the face of service level agreements and fluctuating 
offered load. The architecture features gateways that implement local resource 
allocation mechanisms. A global resource manager solves an optimization problem 
and tunes the parameters of the gateway’s mechanisms.  In this study we have used a 
simple queuing model to predict the response time of request for different resource 
allocation values. Feedback controllers based on first-principles model of the system 
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converge quickly and with fewer oscillations than controllers based on a black-box 
model. 

Our work can be extended in several directions. Our platform could be enhanced 
with additional management functionality such as policing, admission control and 
fault management. We will need to develop more sophisticated models of web 
services and web services traffic loads to study and predict platform performance 
under different service and traffic conditions. The effect of control parameters, such 
as control cycle, on the performance of the feedback controller needs further study.  
We could refine our global resource manager by adding black box and hybrid 
control techniques. Finally, we will need to study the impact of using other 
scheduling algorithms on the end-to-end resource management problem, especially 
in the presence of multiple gateways. 

 

Figure 8. Response time for infinite client population experiment 
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