

PERFORMANCE MANAGEMENT FOR
CLUSTER BASED WEB SERVICES

R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract: We present an architecture and prototype implementation of a performance
management system for cluster-based web services. The system supports
multiple classes of web services traffic and allocates server resources
dynamically so to maximize the expected value of a given cluster utility
function in the face of fluctuating loads. The cluster utility is a function of the
performance delivered to the various classes, and this leads to differentiated
service. In this paper we will use the average response time as the performance
metric. The management system is transparent: it requires no changes in the
client code, the server code, or the network interface between them. The
system performs three performance management tasks: resource allocation,
load balancing, and server overload protection. We use two nested levels of
management mechanism. The inner level centers on queuing and scheduling
of request messages. The outer level is a feedback control loop that
periodically adjusts the scheduling weights and server allocations of the inner
level. The feedback controller is based on an approximate first-principles
model of the system, with parameters derived from continuous monitoring. We
focus on SOAP-based web services. We report experimental results that show
the dynamic behavior of the system.

1. INTRODUCTION

Today we are seeing the emergence of a powerful distributed computing
paradigm, broadly called web services [17]. Web services feature ubiquitous
protocols, language-independence, and standardized messaging. Due to these
technical advances and growing industrial support, many believe that web services
will play a key role in dynamic e-business [2]. In such an environment, a web
service provider may provide multiple web services, each in multiple grades, and
each of those to multiple customers. The provider will thus have multiple classes of

 R. Levy et al.

web service traffic, each with its own characteristics and requirements. Performance
management becomes a key problem, particularly when service level agreements
(SLA) are in place. Such service level agreements are included in service contracts
between providers and customers and they specify both performance targets, known
as performance objectives, and financial consequences for meeting or failing to meet
those targets. A service level agreement may also depend on the level of load
presented by the customer.

In this paper we present an architecture, and describe a prototype
implementation, of a performance management system for web services that
supports service level agreements. We have designed and implemented reactive
control mechanisms to handle dynamic fluctuations in service demand while
keeping service level agreements in mind. Our mechanisms dynamically allocate
resources among the classes of traffic, balance the load across the servers, and
protect the servers against overload — all in a way that maximizes a given cluster
utility function. This produces differentiated service.

We introduce a cluster utility function that is a composition of two kinds of
functions, both given by the service provider. First, for each traffic class, there is a
class-specific utility function of performance. Second, there is a combining function
that combines the class utility values into one cluster utility value. This
parameterization by two kinds of utility function gives the service provider flexible
control over the trade-offs made in the course of service differentiation. In general, a
service provider is interested in profit (which includes cost as well as revenue) as
well as other considerations (e.g., reputation, customer satisfaction).

We have organized our architecture in two levels: (i) a collection of in-line
mechanisms that act on each connection and each request, and (ii) a feedback
controller that tunes the parameters of the in-line mechanisms. The in-line
mechanisms consist of connection load balancing, request queuing, request
scheduling, and request load balancing. The feedback controller periodically sets
the operating parameters of the in-line mechanisms so as to maximize the cluster
utility function. The feedback controller uses a performance model of the cluster to
solve an optimization problem. The feedback controller continuously adjusts the
model parameters using measurements of actual operations. In this paper we report
the results obtained using an approximate, first-principles model.

We focus on SOAP-based web services and use statistical abstracts of SOAP
response times as the characterization of performance. We allow ourselves no
functional impact on the service customers or service implementation: we have a
transparent management technique that does not require changes in the client code,
the server code, or the network protocol between them.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents the system architecture and prototype implementation.
Performance modeling and optimization analysis are described in Section 4. Section
5 illustrates some experimental results, showing both transient responses and service
differentiation. Section 6 presents conclusions and discusses future work.

2. RELATED WORK

Several research groups have addressed the issue of QoS support for distributed
systems [15]. In this section we summarize the current state of the art.

Performance Management For Cluster Based Web Services

The first class of research studies deals with session-based admission control for

overload protection of web servers. Chen et al. [9] proposed a dynamic weighted fair
sharing scheduler to control overloads in web servers. The weights are dynamically
adjusted, partially based on session transition probabilities from one stage to
another, in order to avoid processing requests that belong to sessions likely to be
aborted in the future. Similarly, Carlström et al. [7] proposed using generalized
processor sharing for scheduling requests, which are classified into multiple session
stages with transition probabilities, as opposed to regarding entire sessions as
belonging to different classes of service, governed by their respective SLAs.

Another area of research deals with performance control of web servers using
classical feedback control theory. Abdelzaher et al. [1] used classical feedback
control to limit utilization of a bottleneck resource in the presence of load
unpredictability. They relied on scheduling in the service implementation to
leverage the utilization limitation to meet differentiated response-time goals. They
used simple priority-based schemes to control how service is degraded in overload
and improved in under-load. In this paper we use a new technique that gives the
service provider a finer grain control on how the control subsystem should tradeoff
resources among different web services requests. Diao et al. [10] used feedback
control based on a black-box model to maintain desired levels of memory and CPU
utilization. In this paper we use a first-principles model and maximize a cluster
objective function.

Web server overload control and service differentiation using OS kernel-level
mechanisms, such as TCP SYN policing, has been studied in [18]. A common
tendency across these approaches is tackling the problem at lower protocol layers,
such as HTTP or TCP, and the need to modify the web server or the OS kernel in
order to incorporate the control mechanisms. Our solution on the other hand
operates at the SOAP protocol layer, which does not require changes to the server,
and allows for finer granularity of content-based request classification.

Service differentiation in cluster-based network servers has also been studied in
[4] and [20]. The approach taken here is to physically partition the server farm into
clusters, each serving one of the traffic classes. This approach is limited in its ability
to accommodate a large number of service classes, relative to the number of servers.
Lack of responsiveness due to the nature of the server transfer operation from one
cluster to another is typical in such systems. On the other hand, our approach uses
statistical multiplexing, which makes fine-grained resource partitioning possible,
and unused resource capacities can be instantaneously shared with other traffic
classes.

Chase et al. [8] refine the above approach. They note that there are techniques
(e.g., cluster reserves [5], and resource containers [6]) that can effectively partition
server resources and quickly adjust the proportions. Like our work, Chase et al. also
solve a cluster-wide optimization problem. They add terms for the cost (due, e.g., to
power consumption) of utilizing a server, and use a more fragile solution technique.
Also, they use a black-box model rather than first-principles one.

Zhao and Karamcheti [19] propose a distributed set of queuing intermediaries
with non-classical feedback control that maximizes a global objective. Their
technique does not decouple the global optimization cycle from the scheduling
cycle.

In this paper we use the concept of utility function to encapsulate the business
importance of meeting or failing to meet performance targets for each class of
service. The notion of using a utility function and maximizing a sum [13] or a

 R. Levy et al.

minimum [14] of utility functions for various classes of service has been used to
support service level agreements in communication services. In such analyses, the
utility function is defined in terms of bandwidth allocated (i.e. resources). In our
work, we define the class utility function in terms of the experienced performance
relative to the guaranteed service objective. Thus, it is possible to express the
business value of meeting the service level objective as well as deviating from it.
Further, the effect of the amount of allocated resources on performance level is
separated from the business value objectives.

3. PERFORMANCE MANAGEMENT SYSTEM
ARCHITECTURE AND IMPLEMENTATION

In this section we present the system architecture and prototype implementation
of a management system for web services. This system allows service providers to
offer and manage service level agreements for web services. The service provider
may offer each web service in different grades of service level, with each grade
defining a specific set of performance objective parameters. For example, the
StockUtility service could be offered in either gold, silver, or bronze grade, with
each grade differentiated by performance objective and base price. A prototypical
grade will say that the service customers will pay $10 for each month in which they
request less than 100,000 transactions and the 95th percentile of the response times
is smaller than 5 seconds, and $5 for each month of slower service.

Using a configuration tool, the service provider will define the number and
parameters of each grade. Using a subscription interface users can register with the
system and subscribe to services. At subscription time each user will select a
specific offering and associated grade.

The service provider uses the configuration tool to also create a set of traffic
classes and map a <customer, service, operation, grade> tuple into a specific
traffic class (or simply class). The service provider assigns a specific response time
target to each traffic class. Our management system allocates resources to traffic
classes and assumes that each traffic class has a homogenous service execution time.

We introduce the concept of class to separate operations with widely differing
execution time characteristics. For example the StockUtility service may support
the operations getQuote() and buyShares(). The fastest execution time for
getQuote() could be 10 ms while the buyShares() cannot execute faster that 1sec.
In such a case the service provider would map these operations into different classes
with different set of response time goals. We also use the concept of class to isolate
specific contracts to handle the requests from those customers in a specific way.

Figure 1 shows the system architecture. The main components are: a set of
gateways, a global resource manager, a management console, and a set of server
nodes on which the target web services are deployed. We use gateways to execute
the logic that controls the request flow and we use the server nodes to execute the
web services logic. Gateway and server nodes are software components. We usually
have only one gateway per physical machine and in general we have server nodes
and gateways on separate machines. The simplest configuration is one gateway and
one server node running on the same physical machine.

In this paper we assume that all server nodes are homogeneous and that every
web service is deployed on each server. We can deal with heterogeneous servers by

Performance Management For Cluster Based Web Services

partitioning them into disjoint pools, where all the servers in a given pool have the
same subset of web services deployed. Refer to [12] for details on how to use server
pools.

The servers, gateways, global resource manager, and console share monitoring
and control information via a publish/subscribe network. In coping with higher
loads, the system scales by having multiple gateways. An L4 switch distributes the
incoming load across the gateways.

Client

Client

Client

Management
Console

Global Resource
Manager

Publish/Subscribe Control Network

L4
Switch

Gateways Server
Nodes

Monitoring and control path

Request path

Figure 1. System Overview

3.1 Gateway

We use gateways to control the amount of server resources allocated to each
traffic class. By dynamically changing the amount of resources we can control the
response time experienced by each traffic class.

Gateways dispatch requests to servers. We denote with Ns the capacity of server
s. Ns represents the maximum number of web services requests that server s can
execute concurrently. We select Ns to be large enough to efficiently utilize the
server’s physical resources, but small enough to prevent overload and performance
degradation. In the remainder of this paper we assume that Ns is given.

We partition Ns among all gateways and we denote with Ng,s the maximum
number of concurrent requests that server s executes on behalf of gateway g. We
also use wg,c to describe the minimum number of class c requests that all servers will
execute on behalf of gateway g. Each request executes in a separate initial thread.
Thus, we refer to wg,c as server threads. In Section 4 we will describe how we
compute wg,c and Ng,s, while, in this section we describe how gateway g enforces the
wg,c and Ng,s constraints. For each gateway g, we use wg and Ng to denote the
following:

 R. Levy et al.

∑∑
∈∈

==
Ss

sgg
Cc

cgg NNww ,, , , (1)

where C and S denote the set of all classes and servers, respectively. Figure 2
illustrates the gateway components. We have used Axis [3] to implement all our
gateway components and we have implemented some of the mechanisms using Axis
handlers, which are generic interceptors in the stream of message processing. Axis
handlers can modify the message, and can communicate out-of-band with each other
via an Axis message context associated with each SOAP invocation (request and
response) [3].

Request Response

Queue up Go ahead

Request

Classification
Handler

Response

Management
Mechanisms

Resource
Release

Queue
Handler

Dispatcher
Handler

Auth
Handler

Other
Handlers

Response
Handler

Other
Handlers

Server
Nodes

Request
Queue

Figure 2. Gateway components

When a new request arrives a classification handler determines the traffic class
of the request. The mapping functions use the request meta-data (user id, subscriber
id, service name, etc.). In our implementation the classification handler uses the user
and SOAP action fields in the HTTP headers as inputs, and reads the mappings from
configuration files. We avoid parsing the incoming SOAP request to minimize the
overhead.

After we classify the requests, we invoke the queue handler, which in turn
contacts a queue manager. The queue manager implements a set of logical FIFO
queues one for each class. When the queue handler invokes the queue manager the
queue manager suspends the request and adds the request to the logical queue
corresponding to the request’s class.

The queue manager includes a scheduler that runs when a specific set of events
occurs and selects the next request to execute. The queue manager on gateway g
tracks the number of outstanding requests dispatched to each server and makes sure
that there are at most Ng requests concurrently executing on all the servers. When the
number of concurrently outstanding requests from gateway g is smaller than Ng the
scheduler selects a new requests for execution.

The scheduler uses a weighted round robin scheme. The total length of the round
robin cycle is wg and the length of class c interval is wg,c. We use a dynamic
boundary and work conserving discipline that always selects a non-empty queue if

Performance Management For Cluster Based Web Services

there is at least one. The above discipline guarantees that during periods of resource
contention the server nodes will concurrently execute at least wg,c requests of class c
on behalf of gateway g.

After the scheduler selects a request, the queue manager resumes the execution
of the request’s corresponding queue handler. The queue manager collects statistics
on arrival rates, execution rates, and queueing time and periodically broadcasts these
data on the control network.

The dispatch handler selects a server and sends the request to the server, using a
protocol defined by configuration parameters. Our implementation supports SOAP
over HTTP and SOAP over JMS [16]. The dispatch handler distributes the requests
among the available servers using a simple load balancing discipline while enforcing
the constrain that at most Ng,s requests execute on server s concurrently on behalf of
gateway g.

When a request completes its execution the response handler reports to the
queue manager the completion of the request’s processing. The queue manager uses
this information to both keep an accurate count of the number of requests currently
executing and to measure performance data such as service time.

The gateway functions may be run on dedicated machines, or on each server
machine. The second approach has the advantage that it does not require a sizing
function to determine how many gateways are needed, and the disadvantage that the
server machines are subjected to load beyond that explicitly managed by the
gateways.

3.2 Global Resource Manager

The global resource manager runs periodically and computes Ng,s and wg,c using
the request load statistics and performance measurements from each gateway. Figure
3 shows the global resource manager inputs and outputs. In addition to real-time
dynamic measurements, the global resource manager uses resource configuration
information and the cluster utility function. The cluster utility function consists of a
set of class utility functions and a combining function. Each class utility function
maps the performance of a particular traffic class into a scalar value that
encapsulates the business importance of meeting, failing to meet, or exceeding the
class service level objective. A combining function combines the class utility
function into one cluster utility function. In this paper we have implemented the
combining function as a sum of the utility functions, however, our work could be
extended to study the impact of other combining functions on the structure of the
solution.

 R. Levy et al.

Resource
ConfigurationGlobal Resource Manager

wg,sNg,s

Offered Load
Measurements

Service Time
Measurements Ns

Performance
Objectives

Figure 3. Global resource manager inputs and outputs

The global resource manager uses a queuing model of the system to predict the
performance that each class would experience for a given allocation wg,c and the
corresponding Ng,s. The global resource manager implements a dynamic
programming algorithm to find the wg,c and Ng,s that maximize the cluster utility
function. After the global resource manager computes a new set of wg,c and Ng,s
values, it broadcasts them on the control network. Upon receiving the new resource
allocation parameters each gateway switches to the new values of wg,c and Ng,s. We
discuss the algorithm used to predict the class performance and maximize the cluster
utility function in Section 4.

3.3 Management Console

The management console offers a graphical user interface to the management
system. Through this interface the service provider can view and override all the
configuration parameters. We also use the console to display the measurements and
internal statistics published on the control network. Finally we can use the console to
manually override the control values computed by the global resource manager.
Figure 4 shows a subset of the views available from our management console.

Figure 4. Management console: configuration and control values

Performance Management For Cluster Based Web Services

4. MODELING AND OPTIMIZATION

In this section we describe how the global resource manager computes the
resource allocation. First we give an abstract definition of the problem solved. Then
we discuss the simplified queuing model used to predict the performance of each
class for a given resource allocation. Finally, we examine the class utility functions
detail.

4.1 The Resource Allocation Problem

The global resource manager computes the Ng,s and wg,c values to maximize the
cluster utility function over the next control period. We decouple the Ng,s and wg,c
problems by solving for the wg,c first, and then deriving the Ng,s from them.

To determine the wg,c, we use dynamic programming to find the wg,c that
maximizes the cluster utility function Ω which we define as the sum of each class
utility function Uc. In particular Ω is given by:

∑∑
∈ ∈

=Ω
Cc Gg

cgc wU)(, (2)

subject to:

NwNw
Gg

cg
Cc

cg =≤≤ ∑∑
∈∈

,, ,1 , (3)

where ∑
∈

≡
Ss

sNN , (4)

and where C, G and S denote the set of classes, gateways and servers, respectively.
The utility function Uc(wg,c) defines the utility associated with allowing wg,c requests
of class c traveling through gateway g to concurrently execute on any of the servers.
In the following section we discuss the structure of the utility function and in
Section 4.3 we show how we compute Uc as a function of wg,c.

As we mentioned in the previous section, we enforce for each server s, a limit Ns
on the maximum number of requests that may be concurrently active on that server
[12]. Once we have computed wg,c. the value wg derived from equation 1 represents
the portion of server resources that have been allocated to gateway g. To compute
Ng,s for each gateway g we divide each server s available concurrency NS among the
gateways in proportion to wg. In particular for each server s we select the point

 [sns G
NN ,,1 ,Κ]

where nG is the number of gateways) with integer-valued coordinates constrained by

s
Gg

sg NN =∑
∈

, , (5)

 R. Levy et al.

and near the point [sns G
NN ,,1
ˆ,ˆ Κ] defined by

s
g

sg N
N
w

N =,
ˆ (6)

where N is the total number of resources across all servers as defined in equation 4.

4.2 The Structure of Class Utility Functions

We use Uc to encapsulate the business importance of meeting or failing to meet
class c performance. In this paper, we express each class performance objective as
an upper bound on the average response time and therefore Uc will depend on the
negotiated upper bound as well as the predicted response time given an allocation of
wg,c resources. In the studies reported in this paper, we use a prototypical function to
express the utility of class c when its requests experience a performance tc under a
contracted performance objective τc. An example for such a function is given below.

()
()
















≥
−
−−

<≤








−
−

<≤

=

cc
ccc

ccc

ccc
cc

cc
c

ccc

ccc

tt

tta

tif

tU

c

τ
µτβ

τα

τµ
µτ

τ

µα

τ

β

/1

/1
/1

/10

),((7)

The function in equation 7 and shown in Figure 5 compares average response
time tc to target response time τc for class c as follows. The best possible long-term
average is 1/µc where µc is the mean service rate for class c. When tc = 1/µc
Uc (τc, tc) is constant. Between that point and tc =τc, we simply follow a straight line.
For tc > τc we use a negative polynomial function to map response times bigger than
the objective into a negative value of Uc (τc, tc). For the plot in Figure 5 we have
used µc =1, τc=6, αc=[1,2,3] and βc=[1,3,5]. By increasing αc we control the
business importance of exceeding the target for class c, while by increasing βc we
can control how fast the business utility degrades when class c experiences a delay
bigger than the objective.

By changing the size and shape of the utility function we can influence how
resource are allocated to each class of traffic and in turn the class performance. A
more detailed description of the concept of the utility function and its impact on the
overall system is given in [12]. In the next section we describe how we estimate the
expected response time tc for class c given a scheduling weight of wg,c.

Performance Management For Cluster Based Web Services

Uc (τc, tc)

τc1/µc

tc

αc=3
αc=2

αc=1

βc=1

βc=3

βc=5

Figure 5. Utility function

4.3 System Modeling

To predict the average response time tg,c given a proposed allocation wg,c we use
the observed arrival rate, response time, and the previous allocation values, denoted
by cg ,

~λ , cgt ,
~ , and cgw ,

~ , respectively.
We use an M/M/1 queue [11] to model the response time behavior of requests of

class c traveling through gateway g, i.e., we assume that cg ,
~λ is evenly divided

among the cgw ,
~ server threads that have been concurrently executing all requests of

class c traveling through gateway g during the previous control cycle. Using this
assumption we compute the equivalent service rate of the M/M/1 queue that has
been handling the fraction of requests served by one of the wg,c threads. The
equivalent service rate is given by:

cgcgcgcg wt ,,,,
~~~1~ λµ +=  (8) 

Figure 6 exemplifies the above assumption. We now use cg ,
~µ  to predict the 

response time of all class c requests traveling through gateway g in the next control 
cycle under an allocation of wg,c threads, as follows 

( )cgcgcgcg
cgcg wwt

wt
,,,,

,, 1~1~~1
1)(

−+
=

λ
 (9) 

In the previous calculation we have assumed that the request load in the new 
cycle is equal to the previous one. 

Using equation 9 and 7 we can express the utility Uc (τc, tc) as a function of the 
expected allocation wg,c. Using dynamic programming we can then compute the set 
of wg,c that will maximize the cluster utility function Ω  in equation 2 under the 
constraints in equation 3. 



 R. Levy et al.
 

λg,c
~

tg,c 
~

1 /  µg,c 
~

λg,c  / wg,c
~ ~

...
...

thread 1

thread 2

thread wg,c
~

...
λg,c  / wg,c
~ ~

λg,c  / wg,c
~ ~

...
µg,c 
~

µg,c 
~

µg,c 
~

 

Figure 6. Modeling the response time behavior for class c requests handled by gateway g 

The resource allocation methodology described in this section will achieve an 
optimal resource allocation only under the assumptions mentioned above. For all 
other cases our methodology achieves a sub-optimal solution. Given the nature of 
our system an optimal allocation can be determined only by simulation and 
extensive search. More work is required to determine the difference between our 
approach and an optimal allocation of resources. In [12] we report the results of 
several experiments indented to study the effectiveness of this approach. In the next 
section we report a subset of these experiments. 

5. EXPERIMENTAL RESULTS 

In order to illustrate the fundamental behavior of the system, the following 
experiments were conducted using a combined gateway and server machine, while 
another machine was used to generate the traffic load. 

During the experiment, clients connect to the gateway and send requests to a 
synthetic service, with exponentially distributed service time. The service alternates 
between CPU-bound processing and sleeping. The sleeping intervals are intended to 
emulate periods in which a process awaits response from a back-end server or 
database.  

In order to determine the desired NS for the one server, we examined the system 
throughput for various settings of NS. In these experiments, the load consisted of 
only one traffic class, and we ensured that the request queue was always non-empty. 
As shown in Figure 7, a maximum throughput of 23.5 requests/sec is achieved at an 
NS of 10. For larger values of NS the CPU reaches saturation and the overhead begins 
to degrade the server throughput. In the experiments reported below NS was always 
set to 10. 

In the following experiment, clients are classified into two types: gold and silver. 
The gold clients’ service level agreements specify a performance objective of 1 sec 
average response time, while the silver clients’ service level agreements specify a 2 
sec average response time target.  



Performance Management For Cluster Based Web Services 
 

 

Figure 7. Throughput vs requested maximum number of concurrent executions 

This experiment emulated an infinite client population, where initially the server 
was subjected to 1req/sec from gold clients and 11.5req/sec from silver clients. 
After 100sec, the gold traffic rate was increased to 11.5req/sec, which brought the 
total load close to the system capacity. We show the effect of this change in traffic 
on response time in Figures 8. Since the invoked service spends a good portion of its 
time performing CPU-bound processing, the service time increases as the degree of 
concurrency of executing requests increases. This experiment demonstrates that the 
control mechanism immediately started to react to the load changes in order to 
maximize the cluster utility. In this experiment, the control cycle for the global 
resource manager was set to 10sec. We smoothed the load and response time 
statistics used by the global resource manager over a 30sec intervals using a sliding 
window. The plot in Figures 8 shows values smoothed by that 30sec-sliding 
window. We report more details on these experiments as well as additional 
experiments, with specific settings, in [12]. 

6. CONCLUSIONS AND FUTURE WORK 

We have presented an architecture and a prototype implementation of a 
performance management system for cluster-based web services. The management 
system is transparent and allocates server resources dynamically so to maximize the 
expected value of a given cluster utility function. We use a cluster utility to 
encapsulate business value, in the face of service level agreements and fluctuating 
offered load. The architecture features gateways that implement local resource 
allocation mechanisms. A global resource manager solves an optimization problem 
and tunes the parameters of the gateway’s mechanisms.  In this study we have used a 
simple queuing model to predict the response time of request for different resource 
allocation values. Feedback controllers based on first-principles model of the system 



 R. Levy et al.
 

converge quickly and with fewer oscillations than controllers based on a black-box 
model. 

Our work can be extended in several directions. Our platform could be enhanced 
with additional management functionality such as policing, admission control and 
fault management. We will need to develop more sophisticated models of web 
services and web services traffic loads to study and predict platform performance 
under different service and traffic conditions. The effect of control parameters, such 
as control cycle, on the performance of the feedback controller needs further study.  
We could refine our global resource manager by adding black box and hybrid 
control techniques. Finally, we will need to study the impact of using other 
scheduling algorithms on the end-to-end resource management problem, especially 
in the presence of multiple gateways. 

 

Figure 8. Response time for infinite client population experiment 

REFERENCES 

[1] T. Abdelzaher, K. Shin, and N. Bhatti, “Performance Guarantees for Web Server End-
Systems: A Control-Theoretical Approach”, IEEE Transactions on Parallel and 
Distributed Systems , Vol. 13, No. 1, Jan 2002. 

[2] S. Aissi, P. Malu, and K. Srinivasan, “E-Business Process Modeling: The Next Big 
Step”, IEEE Computer 35(5), pp 55-62, May 2002. 

[3] Apache XML Project, http://xml.apache.org/axis/ 
[4] K. Appleby, S. Fakhouri, L. Fong,  G. Goldszmidt, M. Kalantar, S. Krishnakumar,  DP. 

Pazel, J. Pershing, and B. Rochwerger, “Oceano SLA based management of a computing 
utility”, Proceedings of 2001 International Symposium on Integrated Network 
Management,  Page 14-18.  May 2001. 



Performance Management For Cluster Based Web Services 
 

[5] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves: A Mechanism for 
Resource Management in Cluster-based Network Servers”, ACM Sigmetrics 2000, Santa 
Clara, CA, Jun 2000. 

[6] G. Banga, J. Mogul, and P. Druschel, “Resource containers: A new facility for resource 
management in server systems”, Proceedings of the Third Symposium on Operating 
Systems Design and Implementation (OSDI'99), New Orleans, LA, Feb 1999. 

[7] J. Carlström, and R. Rom, "Application-aware Admission Control and Scheduling in 
Web Servers", IEEE INFOCOM 2002, New York, NY, Jun 2002. 

[8] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, “Managing Energy and 
Server Resources in Hosting Centers”, Proceedings of 18th ACM Symposium on 
Operating System Principles, pages 103-116, Oct 2001. 

[9] H. Chen and P. Mohapatra, "Session-Based Overload Control in QoS-Aware Web 
Servers", IEEE INFOCOM 2002, New York, NY, Jun 2002. 

[10] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury, "Using MIMO 
Feedback Control to Enforce Policies for Interrelated Metrics With Application to the 
ApacheWeb Server", Proc. NOMS 2002, 219-234, Apr 15-19, 2002, Florence, Italy. 

[11] L. Kleinrock, Queueing Systems – Volume 1: Theory, John Wiley, 1975. 
[12] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef, 

“Performance Management For Cluster Based Web Services”, IBM Research Technical 
Report, RC22676, Dec 2002. 

[13] S. H. Low and D. E. Lapsley, “Optimization Flow Control I: basic Algorithm and 
Convergence”, IEEE/ACM Transactions on Networking , Vol. 7, No. 6, Dec 1999. 

[14] P. Marbach, “Priority Service and Max-Min Fairness", IEEE INFOCOM 2002, New 
York, NY, Jun 2002. 

[15] D. Schmidt, “Middleware for Real-Time and Embedded Systems”, Communications of 
the ACM, Vol. 45, No. 6, Jun 2002. 

[16] Sun Microsystems, Java Messaging Service API, http://java.sun.com/products/jms/ 
[17] S.J. Vaughan-Nichols, “Web Services: Beyond the Hype”, IEEE Computer, Feb 2002. 
[18] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra, “Kernel Mechanisms for Service 

Differentiation in Overloaded Web Servers”, In Proceedings of the 2001 USENIX 
Annual Technical Conference, Boston, MA, Jun 2001. 

[19] T. Zhao and V. Karamcheti, “Enforcing Resource Sharing Agreements among 
Distributed Server Clusters”, Proceedings International Parallel and Distributed 
Processing Symposium, IPDPS 2002, Ft. Lauderdale, FL, Apr 2002, pp. 501-510. 

[20] H. Zhu, H. Tang, and T. Yang, “Demand-driven Service Differentiation in Cluster-based 
Network Servers”, IEEE INFOCOM 2001, Anchorage, Alaska, Apr 2001. 


