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Abstract: In a QoS-Enabled network environment, there are two major concerns from both user’s
and provider’s points of views: are there enough resources available for a particular traffic
flow and what’s the price for this flow? These two questions are exactly what admission
control and pricing try to answer. An architecture that integrates pricing and admission
control seems very promising. In this paper, we propose a tariff-based pricing architecture
that integrates pricing and admission control for the DiffServ networks. We also study
some pricing setting strategies for our architecture and evaluate our strategies through
simulations.
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1. Introduction
With the Internet evolving into a multi-service network, QoS-pricing in the Internet

has been one of the hottest research areas in the recent years. Two QoS architectures:
Integrated Services (IntServ)[1] and Differentiated Services (DiffServ)[2] have been
standardized by the IETF to support QoS in the future Internet. Due to the inherent
scalability problem of the IntServ approach, it is generally believed that DiffServ is
more likely to be implemented in the Internet core. Unlike IntServ, which can charge
users based on the allocated resources, pricing for DiffServ networks is more com-
plicated and has drawn a lot of attention in the networking community. Before the
wide deployment of DiffServ, an effective and efficient pricing scheme has to be de-
veloped. Meanwhile, since price is such an important economic incentive for the end
users, pricing is often considered as an effective mechanism for congestion control
and admission control, which in turn can improve the level of QoS guarantees. In-
deed, QoS pricing schemes proposed so far often entail either congestion control or
admission control or even both. In this paper, we first have a close look at the relation-
ship between the pricing and these two traffic management functions and propose a
tariff-based pricing architecture that integrates pricing and admission control for Diff-
Serv networks. The proposed architecture maintains domain and global price tables
for core networks only. In this way, we decouple the pricing for the core network from
the end-to-end pricing, which fits well into the DiffServ paradigm.

The remainder of this paper is organized as follows: Section 2 will review some
background and related work in this area. Section 3 discusses the motivation and
some design choices and presents our pricing architecture and the construction and
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maintenance of pricing tables. Section 4 and 5 discuss our price setting strategy and
admission control scheme in details. Section 6 presents our simulation results and
their analysis and finally section 7 concludes the paper.

2. Background and Related Work
Pricing for the Internet in general has long been an active research area. Example

approaches such as proposed in [6–10] study the pricing for networks from various
angles. More detailed review of pricing schemes can be found in [3, 4]. Most of
approaches either assume a well-known user utility function or try to create a market
environment for auctioning. In the first case, existence of a prior known utility function
is assumed and price setting can be based on the optimization that maximizes either
the social welfare globally or the user benefit locally. However, in [10], Shenker et
al. argued that utility functions could not be well defined in short term and sometimes
even very difficult in a long-term time scale. The effectiveness of such schemes is still
questionable. Based on this observation, they proposed the Edge Pricing scheme that
charges users for the estimated path and estimated cost so that pricing is pushed to the
edge. In the second case, although auctioning does not require a prior knowledge of
user traffic characteristics and has been generally considered as the one that achieves
economic efficiency, it has significant implementation overhead. Up until now, there
has not been a well-accepted solution yet.

Many of approaches mentioned above assume that users are rational to the price
signals and have been using the pricing as a main mechanism for congestion control.
When congestion occurs, extra congestion cost will be charged in order to address
the externality issue. Since users are expected to react to the price signals, congestion-
sensitive pricing schemes often emphasize user adaptation where users will adjust their
sending rate in case of congestion. Some approaches that fall into this category can
also be found in [12, 14].

However, in a strict sense, congestion-sensitive pricing does not address the QoS
guarantee in particular. When congestion occurs, QoS is no longer guaranteed. To
provide a better QoS guarantee, what we want is to avoid the congestion, not to act
after the congestion occurs. Furthermore, QoS guarantee is a commitment that service
providers made to the end users. Asking users to adapt to the price change or even
terminate the service is undesirable. We believe that a proper interpretation for the
user adaptation in a DiffServ environment is the choice of different service classes at
the beginning of a service session rather than adjusting their sending rate in the middle
of a service session. In other words, an elastic request would likely choose a lower
level service class while an inelastic request may choose a higher level service class if
the budget is sufficient. If the budget is not sufficient, then a request can either lower
the service class requirement (if it is tolerable) or decide not to enter the network at
all.

Another traffic management function that is closely related to the pricing is Admis-
sion control (AC). AC is often used to control the network load by restricting the access
to the network and hence improve the level of QoS guarantee. Example approaches
can be found in [13–16]. Studies also show that simple admission control algorithms
based on estimated or measured network status are generally robust [15]. As being
done in IntServ/RSVP architecture, admission control traditionally is performed at a
hop-by-hop basis [1]. However, in a DiffServ environment, adding admission con-
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trol functionality to all the core elements violate the DiffServ principle of keeping
the core simple. End-point/edge admission control that pushes the admission control
functionality into the edge of the network seems more suitable in this case. Most of
the end-point AC approaches use probing [13, 16] or explicit congestion notification
(ECN) [15, 16] to convey the network status back to the end points. A comprehensive
study on endpoint admission control can be found in [16].

However, so far, most of the studies consider the pricing and admission control
as two separate management functions. In other words, admission decisions are made
solely on the load measurement or estimation and have no direct relation with the pric-
ing. Using price as a primary admission criterion has not been studied sufficiently. In
[15], authors suggest that admission decision could be made based on the user’s will-
ingness to pay for the ECN mark. However, it is not clear how users should pay for the
mark (i.e. what is the price for the mark). In [12], Wang and Schulzrinne presented a
complete pricing framework that integrates the admission control, congestion control,
and pricing for DiffServ networks. However, they focus mainly on the congestion-
sensitive pricing and do not study the admission control in details. Admission control
in their framework is performed hop-by-hop and independently from pricing. Our ar-
chitecture is similar to what they proposed but differs in a number of ways. This will
be discussed in the subsequent sections in details.

3. Pricing Architecture
3.1 Motivation and Design Choices

From the discussion so far and the implication of our view of user adaptation, it
is more desirable to tie the pricing with admission control in a DiffServ environment.
Indeed, in a QoS-Enabled network environment, there are two major concerns from
both user’s and provider’s points of views: are there enough resources available for a
particular traffic flow and what’s the price for this flow? These two questions are ex-
actly what admission control and pricing try to answer. An architecture that integrates
pricing and admission control is therefore very promising.

The design of our architecture is based on the following considerations.

Decouple the pricing for core networks from the access networks and end users:
Due to the scale and complexity of the Internet, a practical QoS implementation
in the Internet is to deploy DiffServ in the core networks and give the access net-
works the freedom of implementing IntServ, DiffServ, or other QoS techniques
[11]. This implies that a tightly integrated end-to-end pricing scheme is unlikely
to be accepted. Furthermore, a large number of service providers are involved
in the pricing of the Internet and each of them should have the choice of their
own pricing scheme. A single pricing model that suits all is very impractical.
Therefore, we emphasize a separate pricing scheme for the core networks that
implements DiffServ technology. This decoupling enables us to focus on the
network core only.

Price should reflect the availability of the network resources in the core:As
mentioned above, the ultimate goal of QoS is to avoid congestion. Therefore,
it is more meaningful to charge users based on the remaining resources rather
than the congestion cost. Since we are more interested in the implementation
side of the problem, we do not assume a well known utility function for setting
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the optimal price. In other words, each network element sets the price merely
based on its own load. The rarer the resource, the higher the price. We also
follow a simple and intuitive rule about price setting: price changes very slowly
when there are plenty of available resource and increases drastically when the
resource is scarce.

Per-flow messaging is not acceptable in a large network such as the Internet:In
order to aggregate and convey the price information to the access networks or
even the end-users, we need a flexible and efficient architecture to accumulate
the price along the path. In [12] a signaling protocol called resource negotiation
and pricing protocol (RNAP) is proposed to accumulate the price along the path
and negotiate the price and resource with the end-users. It is easy to see that the
major drawback of such an approach is the per-flow messaging. Although the
possibility of aggregating the messages has been investigated, the control mes-
sage overhead is still significant. Our architecture tries to avoid this problem by
maintaining the global price tables for the core networks at the access networks.
This aggregates the pricing messages significantly.

Edge/end-point admission control fits well in a DiffServ environment:Since the
price reflects the availability of the resources in the core, admission decisions
can mainly or even purely be based on the price (in this case, the price is the only
admission criterion). Thanks to the decoupling of pricing for core networks, we
are able to maintain the global price table at the access networks via domain
abstraction. This enable us to push the admission control to the access networks.
In our architecture, it is the end-users or access networks that decide whether
a flow should enter the network or not. Inter-domain admission control is also
possible using a global price table.

3.2 Price Table Construction

There are two types of price tables in our architecture: domain price table and
global price table. A price entry in the domain price table represents the price for a
service class from one edge node to another edge node within a domain, where a price
entry in the global price table represents the price for a service class from one domain
to another domain. Maintaining price information at such a scale may sound very
impractical at a first glance. However, by abstracting an entire domain into a single
node in a multi-domain network, constructing a global price table becomes feasible.
Figure 1 depicts the concept of domain abstraction.

Semret et al. [9] also use a similar type of abstraction in their pricing scheme. A
global market is created for all the domains to bid for the capacity in order to provide
a QoS guaranteed service in their own domain. In their abstraction, overall capacity
requirements in a domain is abstracted into a single bottleneck capacity. Although this
is certainly a valid assumption, some inaccuracy is still introduced into the abstrac-
tion. In our abstraction, we do not make any simplification or assumption but rather
accumulate the price for each actual ingress-egress path.

3.2.1 Domain price tables. Once each network element calculated the price
locally, the price information has to be exchanged and aggregated over the entire do-
main. The ultimate goal here is to accumulate the price for each ingress-egress pair.
Therefore, we need to know the route from the ingresses to the egresses. This requires



Tariff-Based Pricing and Admission Control for DiffServ Networks

D

B

Core network
C

A

B

D

C

Access Nework
A

Core network

Acces Network

Abstraction

Figure 1. Domain Abstraction

a1
a2

a3

a4

a5

a6

20

5

10

25
15

...

a5

a3
...

Domain Price Table
Route

Price
Ingress Egress Intermediate

a1

a1

class 2
class 1

...

...
... ...

a2 

... ...
a2 , a4 

45

PS

Figure 2. A Domain Price Table

some knowledge of the domain topology and routing table information within the do-
main. The choice of using a centralized or a decentralized approach largely depends
on the routing strategy used in the domain.

If a link state routing approach such as OSPF or IS-IS is used, a centralized ap-
proach is preferred since all the information required to construct the domain price
table is available immediately. Centralized approach uses a pricing station for each
domain or autonomous system. The pricing station will communicate with all network
elements within the domain and collect the price information. As a result, the pricing
station will eventually maintain a price table for each ingress-egress pair. When an
ingress-egress pair has multiple possible routes, the domain routing table is consulted
and the route from the routing table will be used. Figure 2 depicts a sample domain
price table maintained in a centralized pricing station (PS).

It is relatively complicated if the distance-vector routing approach such as RIP is
used within the domain. A distributed approach can be considered in this case. One
alternative is to add price as an extra set of metrics into the routing table, However,
the major drawback of this approach is to bind the price update with the route update.
A route update implies a price update but not the other way around. Furthermore, to
propagate the price information among domains and construct the global price table,
it’s relatively easier when a centralized and complete view of the entire domain (e.g. a
whole set of ingress-egress pairs) is available. One naive centralized approach in this
case is to ask each element to send its routing table to the pricing station whenever the
route update happens. Pricing station is then able to collect all the route information
and generate the routes for each ingress-egress pair. A centralized pricing station
is also well compatible with the Bandwidth Broker (BB)[5] approach. In fact, the
pricing station can be part of the BB functionality. In the rest of the paper, we assume
that a centralized pricing station is used. We also assume a pricing interval in our
pricing architecture for both domain and global price tables. However, the update of
the domain price table is not done periodically but is rather change driven to reduce
the control-message overhead.

3.2.2 The Global price table. Because of the abstraction mentioned earlier,
we are now able to construct the global price table without introducing too much over-
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head.The price for an ingress-egress pair inside a domain becomes the price for passing
through the node in the abstracted global network. Different routes that take different
ingress-egress pairs through one domain will most likely have different prices. In this
way, we can view the whole core networks as a single network that contains a limited
number of nodes and links. Of course, further hierarchical decomposition can be ap-
plied if the size of global price table is still too large. In this paper, to give a simple
and clear view of the idea, we assume only one level of abstraction and one level of
global price table is constructed.

Unlike the domain price table, a global price table has to be constructed and main-
tained in a distributed manner. The update of the global price tables is also different.
Periodical advertisement is used to propagate the price information as done in the Bor-
der Gateway Protocol (BGP). Each pricing station will advertise the price of a ingress-
egress pair to its interested neighboring pricing station. Upon receiving such update
information, each pricing station will update the global price table accordingly and
propagate the update information to its interested neighbors at next pricing interval.

To deal with the issue of multiple routes through different domains, inter-domain
routing tables are consulted during the price propagation. However, this time, we do
not require a complete view of the route because the only information we want is
the next domain or autonomous system which can be easily obtained from the BGP
routing table (assuming that BGP is used for inter-domain routing). Figure 3 depicts
the construction of global price table.
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Figure 3. Global Price Table in Access networks

The possibility that paths in the routing table may change after the advertisement
has a potential impact on the pricing. An admission decision based on the price of a
route may become invalid if the path in the routing table changes (packets will even-
tually take a different route than the route they are expected to take and on which the
admission decision was based). In this case, service quality may not be guaranteed
especially if the new path does not have enough resources. Another concern is that
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the price agreed by user and service provider is no longer valid. In this case, if there
are enough resources in the new route, then we believe that service providers should
absorb this price difference and simply continue the service. If the new route does not
have enough resources, one possible solution is that service providers will notify the
end-users to terminate the session without any charge. Since the price for the new path
will be available "immediately", it is also possible to start a service renegotiation.

4. Price Setting Strategy
Now, the question left is how to set the price to reflect the availability of the network

resources. Each network element will incorporate a load monitor so that price can be
based on its current load level. Since network monitoring is out of the scope of this
paper, we assume an existing method to monitor the traffic load for each service class.

We assume a basic unit price per unit timePunit that can be computed offline
for each service class. This basic unit price reflects the equipment costs, mainte-
nance/administrative costs and business revenue consideration for a network element.
The idea of differentiated service is to have a small number of classes where a higher
price service class attracts less traffic and consequently have a better QoS guarantee.
Hence, we consider a simple and practical approach where service providers set up a
targeted capacity fill factorfi for each class to enable the service differentiation be-
tween the classes(i.e.fi = Ti/C i

max, whereTi is the targeted capacity for class i and
C i

max is the maximum capacity for class i). Therefore, it is straightforward to see that
the base price for a service classP i

base is inversely proportional to this factor.

P i
base = Punit/fi (1)

To compute the dynamic price for a service class, Wang and Schulzrinne adopt an
iterative tatonnement process in [12]:

Pi(t) = Pi(t− 1) + ai ∗ (Di − Ti)/Ti

WherePi(t) denotes the price for class i at time t, andDi is the demand or current
load for class i andai is the convergence rate factor. However in their case, the price
changes gradually and can not successfully reflect the real traffic condition inside the
network. We believe that when the network is severely stressed the price should in-
crease much faster. As mentioned above, we follow an intuitive way for the price
setting. Figure 4 illustrates our pricing strategy in general. When the load for a partic-
ular service class is lower than its targeted capacity, the price is simply the base price
P i

base for a particular service class. When the load exceeds its target capacity the price
will be increased rapidly and even dramatically when the load is close to the maximum
capacity. we adopt the exponential growth in this case to reflect our strategy of price
setting:

Pi(t) =

{
P i

base if Di(t) ≤ Ti

P i
base e

αi[
Di(t)

Ti
−1] otherwise

(2)

Note that when demand exceedsCmax, we can simply set the price to∞ to indicate
that there is no longer available resource for new requests. Admission control can be
enforced in this situation. Alternatively, there can be no price limit even if the demand
exceeds the maximum capacity.P i

max then is not the price upper bound but rather the
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Figure 4. General price setting strategy

price when the demand reaches the maximum capacity of that particular service class.
Since the price increases exponentially and becomes so high that we expect no user
would actually accept the price.

There are several ways to decide theαi factor. Here, we consider a simple case
whereP i

max is known. One can use the base price for classi+1 as theP i
max for class

i, or alternatively decide theP i
max based on some business considerations, which is

more likely the case in the real world. In the later case,P i
max is allowed to be greater

than theP i+1
base , which enables the switching between service classes when the price

for a lower level service class is higher than the price for upper level service class and
hence balances the load among service classes.

Now, assuming that a maximum priceP i
max is available for each service class,

Sincefi = Ti/C i
max, we can obtain theαi factor by solving the following equation.

P i
max = P i

base e
αi[

C i
max
Ti

−1] =⇒ αi = log(
P i

max

P i
base

) ∗ (
fi

1− fi
) (3)

5. End-to-End Pricing and Admission Control
5.1 End-to-End Pricing

One of the main advantages of our pricing framework is that it enables us to focus
on the pricing in the core networks only. Depending on the particular technology
implemented in the access networks, various pricing schemes can be applied to achieve
the end-to-end pricing. For example, access networks can implement flat rate pricing
or time of day pricing for their simplicity and predictability. In this case, the cost
of accessing core networks could be absorbed by the access networks and it is the
access networks that choose an appropriate service class for the user traffic based on
some policy defined by the access networks. Alternatively, access networks can charge
user for the reserved resource if IntServ is implemented or even use the same pricing
scheme as in the core if DiffServ is used.

Since the pricing is strictly for the network core and global price tables are available
at the access networks, end-to-end pricing can be implemented without involving the
core nodes at all. This eliminates possible scalability problems caused by pricing
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and admission control signaling. it also gives the access networks the flexibility of
implementing an end-to-end pricing scheme in different protocol layers. For example,
if users or access networks are really keen on the exact end-to-end pricing, a light
weight signaling protocol can be used between the sender and receiver access networks
without any involvement of the core nodes. This protocol can be implemented in the
network layer as the pricing for core networks does or even in the upper layers such
as the transport layer or the application layer.

5.2 Admission Control

Another desirable property of our pricing framework is that the admission control
decision can be made based on this price information since it effectively reflects the
availability of the path. Our admission control algorithm then consists of the following
two parts when a flow request is generated:

1 Lookup the price for a service class in the global price table. End-users or
access networks decide whether the price is acceptable or not based on their
budget constraints and other service level agreement (SLA) parameters. If the
price can not be accepted then check the possibility of switching among service
classes (with possibly different service requirements).

2 If the advertised price is accepted, then final admission control decision is made
by the service providers based on the estimated bottleneck traffic loadlmax

against the targeted threshold for the service class. This deals with the situa-
tion that when users are willing to pay for the service but there is no resource
available.

Ideally, we want to know the relationship between the total price and the available
resource at the bottleneck link. In other words, we are most interested in the relation-
ship between the total priceP i

total(t) and the load of bottleneck link. From section 4
we know that the accumulated price at timet for classi observed at the edge is:

P i
total(t) =

∑
P ij

base +
∑

P ik
base e

αik [
Dik(t)

Tik
−1] , (Dij(t) ≤ Tij , Dik(t) > Tik)

whereDij(t) is the demand for classi at link j at timet (4)

Given only the value ofP i
total(t), it is almost impossible to obtain the exact value

of themax [Dij(t)/ Tij ]. However, in our pricing scheme,Pi(t) at the bottleneck link
becomes the dominant term in theP i

total(t) when it reaches a fairly high level. This
is mainly because of the exponential growth ofPi(t) and it enables us to estimate the
value of themax [Dij(t)/Tij ] with much less error.

For the sake of understanding, in the rest of this section, all notations are for service
classi unless otherwise specified. Letlj(t) denotes the traffic load at linkj at timet
(i.e. lj(t) = Dj(t)/Ti), andlmax(t) denotes the load for the link that has the highest
load along the entire path). From equation 4, we have

Ptotal (t) =
∑

P j
base +

∑
P k

base eαk (lk(t)−1) + P h
base eαh (lmax(t)−1) (5)
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whereh is the link that has the highest loadlmax(t) at time t along the path and the
last term in the equation is the price for the bottleneck link h. The fist term is the sum
of the price for all the links that have the base prices and the second term is the sum
of the price for the rest of the links respectively. Then a bound is given by,

Ptotal (t) ≥
∑

all

Pbase − P h
base + P h

base eαh(lmax(t)−1) (6)

where
∑

all Pbase is the sum of thePbase for all the links along the path, which is
denoted asP total

base . By rearranging the terms in the equation and plugging in the value
of αh from equation 3, we can see thatlmax(t) must satisfy the following relation.

lmax(t) ≤ 1 +
log (Ptotal (t)−P total

base

P h
base

+ 1)

log( P h
max/P h

base) ∗ ( fh

1−fh
)

(7)

We will use themin{fh}, max{P h
base}, andmin{P h

max} respectively and usef ,
Pbase andPmax to denote them. Since they are constant for the path, they can be
collected and computed offline.

For the purpose of admission control, using upper bound often provides quite con-
servative results. To examine the relationship betweenPtotal(t) andlmax(t), we first
consider the case where there is a single bottleneck link along the path. Clearly, the
upper bound value obtained above will be very close to the exactlmax(t) because the
rest of the terms in equation 5 are indeed ignorable. However, it is more complicated
when there are multiple bottleneck links along the path. Some estimations are re-
quired to handle this situation. Since we expect thatfh, P h

max, andP h
min vary within

a relatively small range, without loss of generality, we can rewrite equation 6 into

Ptotal(t) ' P total
base − r ∗ Pbase + r ∗ Pbase eα (lmax(t)−1) (8)

where r is the number of the bottleneck links along the path that all should be
taken into consideration. Note that we are using thef , Pbase, andPmax. However, in
this case, they are not necessarily the maximum or minimum values since a number of
links are involved. Further refining such as average or weighted average can be applied
depending on the specific network condition. Solving the above equation gives us

lmax(t) ' 1 +
log (Ptotal (t)−P total

base

r∗Pbase
+ 1)

log( Pmax/Pbase) ∗ ( f
1−f )

(9)

It is then clear thatlmax most likely lies between the upper bound and the above
estimated value. It is difficult to estimate the value of r without any knowledge of
network topology or explicit messaging. However, for a long time scale, it is possible
that each domain is able to identify the approximate number of bottleneck links and
the probability of multiple bottlenecks existing inside the domain. In this way, one can
compute a weighted averager value for each ingress-egress pair and exchange them
offline. Of course, one can always set r to 1, which is the case of upper bound admis-
sion control. In this case, the difference of these two values also indicates the error
range of our estimation. We should also notice that the error caused by the incorrect
value r is reduced significantly because of the logarithmic nature of our estimation.
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6. Simulation and Results
6.1 Simulation Model

In order to study the behavior of our pricing strategy, we setup a DiffServ network
environment using thens 2simulator. We modified the DiffServ implementation in
ns developed by Nortel Networks to incorporate our pricing and admission control
mechanisms. Since the goal of the simulation is to evaluate our price setting strategy
and admission control scheme, we only simulate a single DiffServ domain and do not
focus on the construction and maintenance of the domain and global price tables.
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Figure 5. Simulation Network Topology

Figure 5 illustrates the network topology used in our simulation which consists of
three core routers and eight edge routers. Three core routers implement the dsRED
core queue which has no policing and marking functionality but only PHB forward-
ing. All edge routers implement the dsRED edge queue which supports the DiffServ
packet classifying, marking, and policing. Edge router E1 acts as the pricing station
and handles user requests generated at sources. Additionally, six extra edge routers
are configured inside the DiffServ domain to create the cross traffic and simulate bot-
tlenecks at link C1C2, C2C3, and C3E2.

The total capacity of each link from source nodes to the edge of DiffServ domain
is set to 20Mbps, and 50 Mbps for all links within the DiffServ domain. Propagation
delay for all the links are set to 5ms. All links are full duplex outside the DiffServ
domain and DropTail queue management is used in this case. Inside the DiffServ do-
main, only the links that connect core routers are full duplex and the rest of the links
are simplex links because different type of dsRED queuing techniques are used in dif-
ferent directions. Weighted Round Robin (WRR) scheduling is used in each link. In
our simulation we consider three service classes and the weights for the three classes
are distributed as 3, 3, and 4, and the expected load for each class is set to 50%, 70%,
and 90% respectively. The base priceP i

base and full load priceP i
max for each class are

set as0.16/0.7($), 0.09/0.35 ($), and0.04/0.16($) per time unit respectively. A pric-
ing agent is attached to each link to set the price locally and communicate with each
other to propagate the price information back to the edge. The admission threshold is
set to 0.75, 0.9, and 1.1 respectively.

For each class, there are two types of traffic sources in our simulation. CBR and
Pareto on/off traffic are generated independently to the edge E1 and flow requests
are modelled by a Poisson arrival distribution. The holding time for each flow is
exponentially distributed with a mean value of150s. The average rate for CBR is
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Figure 6. (single bottleneck a→c from left to right) (a)aggregated Price at E1 vs. Load at C1C2 (b)load
at C1C2 without/with CAC (c)request blocking ratio vs. Traffic(Mb) at C1C2

128k. For the Pareto traffics, the shape parameter is set to 1.5, where the on and off
time are both set to 500ms, and the peak rate is set to 128K. The rest of the parameters
are set to the default values inns. The total time for each run is 1500s.

6.2 Result Analysis

6.2.1 Single Bottleneck. We first consider the case of single bottleneck to
examine the basics of our approach. The rate of cross traffic at C1C2 is set to be
approximately 40% of the class 1 capacity at C1C2. The rate of the other two cross
traffics are set to be less than 10% of the class 1 capacity accordingly at C2C3 and
C3E3. Therefore, C1C2 will be the only bottleneck along the path.

Figure 6a gives the aggregate price observed at E1 vs. the load at C1C2 when ad-
mission control is not used. As we expected, it is a well shaped exponential curve
because there is only one bottleneck and its price dominates the total price observed
at E1. To test the effectiveness of our admission control algorithm, we first run the
experiment without admission control and then repeat the experiment with admission
control under the same traffic condition. Figure 6b shows that our estimation of net-
work load based on the price is indeed accurate in the case of single bottleneck. The
load at the bottleneck link is well controlled at about0.75, which is the admission
threshold preselected for class 1.

We repeat the simulation with different sending rates of cross traffic at C1C2. As
expected, the load at C1C2 are all well controlled but with different request blocking
ratios. Figure 6c shows the request blocking ratio for all the sources vs. the sending
rate of cross traffic at C1C2.

Throughout the experiment, we experience very few packet losses except when
the total sending rate of flows for all service classes exceeds the total capacity of
the bottleneck. This is mainly due to the use of WRR scheduling and no individual
dropping enforced for each class. When a class load exceeds its class capacity, it tends
to steal the bandwidth from other service classes. Since we are mostly concerned about
controlling the traffic load and keeping it lower than a threshold, we do not present the
packet loss and delay results here. Ideally, by carefully setting the admission control
threshold for each service class, we should not see any packet loss.

6.2.2 Multiple Bottlenecks. To simulate a multiple bottlenecks situation,
we increase the sending rates of cross traffics at C2C3 and C3E2 to about 35% so that
they are close to but still lower than the sending rate of cross traffic at C1C2. There-
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Figure 7. (three bottlenecks, a→c from left to right)(a) aggregated Price at E1 vs load at C1C2 (b) Load
at bottleneck C1C2 without/with CAC (c) Load at bottleneck C1C2 with different r values

fore, three bottlenecks are simulated in our network. As in the singe bottleneck case,
we first run the simulation without admission control and then repeat the simulation
with admission control.

Figure 7a shows the aggregated price observed at E1 vs. the load at bottleneck
C1C2 when admission control is not enforced. Because no single bottleneck can dom-
inate the price for the entire path, the aggregated price is a little harder to predict when
the links are heavily loaded. Fortunately, the fluctuation of the price does not affect the
effectiveness or stability of our admission control algorithm. Figure 7b shows that the
traffic load at bottleneck link C1C2 is also well controlled consistently. We do observe
that the estimated load is not as accurate as in the single bottleneck. This is mainly
because we are using the upper bound admission control and the result is expected
to be conservative. The simulation result shows a fairly close traffic load estimation
(0.7 vs. 0.75). Throughout the experiment, we can see that our approach has a very
consistent performance. This indicates that our admission control approach is robust
and the fluctuation of price would not affect the stability of our approach.

Based on the discussion in section 5.2, we also vary the factor r to see how it will
affect our simulation results. Figure 7c shows three sets of load at bottleneck C1C2
throughout the experiment with r set to 1, 1.5, and 2. As we can see, r has a small but
positive impact on the load estimation. In other words, choosing a close enough r value
could indeed improve the efficiency of our admission control approach. However, the
improvement is quite small. This is because the error of our estimation is reduced
significantly by the logarithmic nature of our load estimation algorithm.

7. Conclusion
The main objective of having the global price table at the level of access networks is

to enable an accurate and fast decision-making process. In this paper, we presented our
approach to the pricing in DiffServ networks and proposed a pricing architecture that
separates the pricing for core networks from the end-to-end pricing through domain
abstraction and maintaining domain and global price tables. We also described our
pricing strategy and suggested an associated admission control mechanism. Since the
price in our scheme effectively reflects the resource availability inside the network, it is
used not only as an economic incentive but also as a mean of estimating the bottleneck
traffic load.

Our architecture is flexible in the sense that end-to-end pricing is decoupled from
the network core and scalable thanks to the domain abstraction. Admission control is
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pushed to the edge and no per-flow based messaging for either pricing or admission
control is needed. This way, our architecture follows the philosophy of the edge-
pricing scheme but with better network utilization and QoS guarantee. Maintaining
the price tables for core networks also enables the split of revenue among the service
providers.

We believe that the benefit gained from maintaining the price tables can certainly
overweight the overhead it introduces. Our future work includes developing a user-
behavior model that models the user reaction to price change and studying the impact
it may have on the performance of our admission control mechanism. We are also
investigating the applicability of our architecture in other contexts. For example, QoS
routing using price as a constraint may be an interesting application of our pricing
architecture since the price is available immediately and reflects the availability of
resources inside the network.
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