

PEER-TO-PEER OVERLAY NETWORK
MANAGEMENT THROUGH AGILE

Jan Mischke1 and Burkhard Stiller1,2
1ETH Zurich, Switzerland; 2University of Federal Armed Forces, Munich, Germany

Abstract: Currently, state of the art peer-to-peer (P2P) lookup mechanisms actively
create and manage a peer application layer overlay network to achieve
scalability and efficiency. The proposed mechanism AGILE (Adaptive,
Group-of-Interest-based Lookup Engine) extends this management approach,
adapting the overlay network such as to bring requesting peers and desired
lookup items close together, reducing the number of hops and, thus, latency as
well as bandwidth requirements for a lookup. At the same time, AGILE
introduces mechanisms to build a fair system.

Key words: Peer-to-peer (P2P) Lookup Services, Overlay Network Management,
Scalability

1. INTRODUCTION

Peers in a P2P system communicate on a logical overlay network among them.
Some existing systems, e.g., Gnutella, build this overlay network at random, adding
(or removing) links and nodes in an uncontrolled way through arbitrary ping
requests and pong responds. Unfortunately, the orderless structure requires a non-
scalable flooding mechanism for lookup, and the path lengths and node degrees can
become large. More sophisticated approaches, like Tapestry [16], Pastry [4], or
Chord [1], actively manage the overlay network such as to ensure robustness and
alleviate lookup and request routing. These systems, however, pay little attention to
the heterogeneity of peers with respect to their interests and capabilities.

The proposed mechanism AGILE (Adaptive, Group-of-Interest-based Lookup
Engine) creates and maintains an overlay network according to specific topological
requirements for P2P lookup. It additionally adapts the network over time so that
groups can form according to common interests, improving the lookup performance,
while at the same time ensuring fairness.

 Jan Mischke and Burkhard Stiller

Essential topological requirements are derived in Section 2, while Section 3
discusses related work and identifies major gaps to those requirements. Section 4
introduces and evaluates the proposed approach AGILE, before Section 5 concludes.

2. REQUIREMENTS

It is straightforward to require that a P2P system be scalable and make efficient
use of system and peer resources, namely memory, processing power, bandwidth,
and time/latency. With up to 96% of local peer node resources being idle [2],
bandwidth and user time, or latency in the technical system, are most crucial and
will be considered in more detail in the next subsection. Furthermore, the system
should ensure a proper load balancing in that it be fair, involving peers according to
their use of the system and in that it pay attention to the heterogeneous capabilities
of peers. Finally, a P2P system has to be robust to frequent node joins and leaves
and link failures.

In general, network topologies can be characterized through their degree of
symmetry, the network diameter, the bisection width, the average node degree, and
the average wire length [6]. The functional and performance requirements (see
above) determine the desired target characteristics.
– Symmetry: Only symmetric topologies are appropriate for true peer-to-peer

systems as only in this case all peers are equal from a topology point of view. At
the same time, symmetry assists load balancing. Examples of symmetric
topologies include rings, buses, hypercubes, complete meshes, cube-connected
circles, or k-ary n-cubes. Measurements as stated in [13], however, prove a huge
heterogeneity among peer nodes in terms of their uptime, average session
duration, bottleneck bandwidth, latency, and the number of services or files
offered, so that server-like roles in a P2P network may be advantageous.

– Network Diameter (D): The diameter of a network is defined by the number of
hops required to connect from one peer to the most remote peer. It strongly
influences latency and bandwidth.

– Bisection Width (β): The number of connections from one part of the overlay
network to the other define its bisection width. Assuming proper load balancing,
the maximum throughput of the network is proportional to the bisection width,
and there is a direct relation with fault tolerance: the bisection width determines
the number of links that have to break before the system goes down or, at least,
operates only as two partial systems.

– Node Degree (d): The node degree is defined as the number of links that each
peer has to maintain. The node degree can be a significant inhibitor for
scalability. The node degree determines the size of the routing table on each peer
with the proportional impact on memory consumption and processing power.

– Wire Length (τ): The wire length is the average round trip delay of a
connection, contributing to the latency in the system.

It is particularly important to have a look in detail at latency and bandwidth
consumption for a lookup request. The latency L for a lookup request is defined as

L τ nh τ D 1 f– p()⋅ ⋅=⋅=

AGILE

where nh is the number of hops for a request and the pruning factor fp denotes the
average percentage of the maximum number of hops that a request does not need to
travel, because it has been pruned off before. The pruning factor can be calculated
from the pruning probability at each hop pp,i (i.e. the probability that the requested
item is found at that hop) through

fp 1 1
D
----– 1 pp k,–() i k ε ℵ,;

k 0=

i 1–

∏
i 1=

D

∑=

.
The pruning probability pp,0 at node 0, the requesting node, will usually be zero.

Hence, three important factors determine the latency time: the network diameter, the
average round trip delay, and the pruning probability. It is possible to increase the
pruning probability in a topology by exploiting knowledge on the peers’ interests.

In addition, the total bandwidth B required for a lookup request is

)fD(1ε1)(d(dB)ε1)(d(dnBB prouteRProutehRP −−−=−−=

where BRP denotes the bandwidth or size of one request package, nh (as above) the
number of hops, d the node degree, and εroute the routing efficiency. The routing
efficiency is defined to be 1 if only one node has to be contacted at each hop and 0 if
all nodes have to be contacted. In that sense, Gnutella with its flooding approach has
a routing efficiency of 0, whereas consistent hashing algorithms like Chord [1] have
a routing efficiency of 1.

As for the latency, the network diameter and the pruning probability influence
the bandwidth requirements (and scalability) in a major way. Furthermore, the
routing efficiency plays a significant role. The equation also suggests that the node
degree be kept low. However, this applies only if the routing efficiency is smaller
than 1, as a lower node degree automatically entails a larger network diameter.

3. RELATED WORK

Tapestry [16], Pastry [4], Chord [1], and CAN [9] determine the systems most
closely related to AGILE. Their common theme is that they arrange lookup items or
keys (such as content files, services, or peer node addresses) and peer nodes in the
same identifier space. Subsequently, they hand over the responsibility for holding a
key with a certain identifier to a peer with a numerically close identifier. This
enables them to simply route a lookup request message at each node towards a
neighboring node with a closer node ID, achieving a routing efficiency of 1. All of
these lookup services propose hashing to map lookup item names and nodes (IP
addresses) onto the identifier space. Firstly, the hash function is globally known,
ensuring the same mapping for each request for or insert of a key. Secondly, hashing
results with high probability in unique IDs. Thirdly, the pseudo-randomness of the
hash function uniformly distributes keys and nodes in the identifier space.

The main difference between these approaches is the topology they build to
arrange peers properly so that they can route closer to the desired ID, while meeting
major requirements to a good topology (cf. Section 2). Furthermore, they apply
different algorithms to constructing, maintaining, or managing this topology.

 Jan Mischke and Burkhard Stiller

– Tapestry: Tapestry builds a Plaxton mesh. IDs are represented as numbers with a

sequence of digits to a base b. At each hop, a request is routed toward a node,
whose ID matches the search key in one digit more than the previous node’s ID
did, starting at the last digit (suffix-based routing). The management of the
overlay network focuses on fault tolerance: soft stating, time-outs, and
republishing to ensure accuracy of the information, triple redundancy and back-
pointers in the routing tables, use of several “root” servers, i.e. redundancy in the
nodes responsible for a key.

– Pastry: The basic concept and topology is the same as for Tapestry, except that
prefix-based routing instead of suffix-based routing is applied. The fault-
tolerance focus is replaced by an apparently more light-weight scheme.

– Chord: Chord arranges keys and nodes around an identifier circle. The node
with the largest number preceding the search key is responsible for holding it.
Nodes maintain overlay links to a couple of successors and fingers as chords in
the circle in exponentially increasing distances from the respective node,
enabling to halve the remaining ID search space at each routing step. This
becomes very similar to Tapestry and Pastry when choosing a base of 2 in the
latter ones.

– CAN: CAN is based on a d-dimensional Cartesian coordinate space (or d-torus)
separated into bins of varying size to implement a distributed hash table. Other
than Tapestry, Pastry, and Chord, the node degree is thus fixed.

HyperCuP [14], takes a different approach. Like in Gnutella, flooding is used for the
lookup. However, the overlay network is actively managed as a hypercube with
good symmetry, diameter, and bisection width properties. It seems to be possible to
also use a hashing scheme to improve routing efficiency. Furthermore, the authors
propose an ontology-based routing scheme for the same reason.

Table 1 compares these systems (including AGILE) with respect to major
requirements from Section 2 according to the developers’ information or
information deduced from algorithm descriptions. For all systems N denotes the
number of nodes in the system, b and d are design parameters, where b is the base
value for a digit representation of hash keys (where used) and d is the dimensionality
of the CAN torus.

All mechanisms except CAN achieve logarithmic scalability with respect to the
path length of a routing request or the network diameter. Chord does not allow to
trade off the node degree for a lower number of hops by choosing a base higher than
2. Particularly for PC nodes, a higher node degree can easily be accommodated
while allowing to reduce bandwidth and latency. While the existing algorithms only
have a statistically inherent pruning probability related to their base b, they all
achieve a routing efficiency of 1 - HyperCuP with its flooding mechanism being the
obvious exception. The node degree scales logarithmically except for CAN, where it
even remains constant. However, this limits the flexibility when a network grows.
As to the wire length, Pastry, Tapestry, and CAN introduce optimization schemes.
The methods and simulations to obtain figures for the stretch (i.e., the relative
latency of overlay routing compared to IP routing) are too different to base a good
comparison on them. Several further proposals have been made to address the issue
of wire length separately [3], [17], [18], [11], and [10].

AGILE

Table 1 compares fault tolerance in terms of two dimensions, key redundancy
and link redundancy. While replication can be controlled by the application, the
lookup algorithms propose different mechanisms to conveniently place k replicas.
For increased fault tolerance with respect to routing, Pastry and Chord keep
redundant state information for closest neighbors or successors in the ring,
respectively, whereas CAN and Tapestry set up (3 or r, respectively) independent
entire routing tables. Tapestry further increases fault tolerance through soft-stating
and heart-beat protocols.

Maintenance complexity, which is the number of messages per node join or
leave, scales logarithmically for all systems but CAN. More detailed quantitative
information is not available, but it is obvious that Tapestry with its surrogate routing
and routing table redundancy will exhibit a higher complexity than the other
mechanisms. As all algorithms build a probabilistic but fairly symmetric topology
heterogeneity is only partly addressed by Tapestry through the BROCADE
extension [17], and by CAN through load-dependent bin splitting.

Table 1. Comparison of Lookup Mechanisms

Characteristic
Tapes-

try Pastry Chord CAN
Hyper-

CuP AGILE
Network diameter O(logbN) O(logbN) ≈ log2N O(dN1/d) O(logbN) ≈ logbN

Pruning probabilit. 1/b 1/b 1/b=1/2 n/a n/a 1/b+37%†

Routing efficienc. 1 1 1 1 0 1
Node degree O(b*

logbN)
O[(b-1)*
logbN]

O(log2N) O(d) O(logbN) O[(b-1)logbN]

Wire length/stretch (≈ 2-4) (≈1.3-1.4) n/a (≈ 2-3) n/a (≈ 2-4‡)
Key/replica
redundancy

k salt
values

k closest
nodes

k succ.
nodes

k hash
functions

n/a k salt values‡

Link redundancy tripl. table
entries

r closest
neighbors

r succ.
nodes

r realities n/a triple table
entries‡

Maintenance
complexity

O(logbN) 3b*logbN O(log2N) O(N1/d) O(logbN) O(logbN)‡

Fairness measures none none none none none virtual nodes
Symmetry /
heterogeneity

symm. symm. symm. symm./
bin split

symm. symm./ GoI

AGILE creates a topology where each node can be the root of a tree. It exhibits

similar network diameter and node degree characteristics as Tapestry. It adopts the
advantages of Tapestry in terms of fault tolerance and wire length as well as its
overlay maintenance scheme. However, AGILE considerably improves the pruning
probability by applying an adaptive algorithm that brings requestors and requested
keys stochastically closer together. Furthermore, it introduces fairness into the
lookup mechanism by imposing the highest routing burden on those peers making
the most frequent requests.

† For large b, otherwise 37%/(1-1/b); for assumptions, cf. Section 4.5
‡ Tapestry mechanism adopted

 Jan Mischke and Burkhard Stiller

4. THE AGILE ALGORITHM

The AGILE algorithm proposed has been derived from the requirements
presented above and combines the advantages of a scalable, hashing-based
algorithm and topology with the efficiency and fairness of an interest- and usage-
based group topology. The basic algorithm of the lookup inseparably combines the
overlay topology and the lookup request routing.

For the subsequent discussions, consider the following scenario, where a peer
node (the requestor) tries to find a certain service or content in the P2P network. It
has to specify what it is looking for and the P2P system should return the content or
service or a link to the content or service, e.g., the IP address of a peer where it can
be found. The desired and returned object is termed a lookup key (or simply key)
and the specified request a lookup identifier (ID). Peer nodes in the network are
characterized by their node ID, the node holding the lookup key is called provider
node. Routing is the process of finding a path from the requestor to the provider
node (which is usually unknown to the requestor) in a distributed way by forwarding
lookup requests from one peer to another. The overlay network defines the structure
on which request routing can take place.

4.1 ID Space and Arrangement of Nodes and Keys

A proper assignment of IDs to nodes and keys can be derived from the routing
efficiency requirement. In order to avoid any kind of flooding and achieve a routing
efficiency of 1, the P2P system is required to have global knowledge on the
translation of search request or lookup key into lookup ID and on the association of
the lookup ID with the provider ID. The use of hash functions, e.g., based on SHA-1
[5] or MD-5 [12], to translate the search request, e.g., the file name, into the lookup
ID solves the first problem. The second problem is solved by arranging peer nodes
in the same identifier space as the lookup IDs, e.g., by applying the same hash
function to nodes’ IP addresses. The node with an ID numerically closest to the
lookup ID will be the provider peer.

Figure 1 illustrates the identifier space in AGILE with peer nodes and lookup
keys arranged in the same space. Note that due to the pseudo-randomness of the
hash function distances of peers and the number of keys associated to a provider can
vary. Stochastically, however, their distribution will be uniform. Figure 1 also
introduces a hierarchy of types and genres in the identifier space. This hierarchy is
derived from the requirement to achieve a good pruning factor. Assuming that
request routing takes place along the identifier space (which, even though not
linearly, is the case for AGILE), a good pruning factor requires that providers (or
lookup keys, respectively) and potential requestors be located close to each other.
AGILE achieves this through a clustering of keys and nodes into Groups of Interest
(GoIs).

For a detailed illustration, assume a segmentation of lookup keys (content or
services) as described by the following meta-information:
– Type, e.g., music files, news information, or storage services.

AGILE

– Genre, e.g., rock, pop, classic, or house.
– Name, e.g., RollingStones_Satisfaction or Beethoven_9.

Note that the specifics of the segmentation are purely illustrative and not focus
of this work. One could as well apply a two-level hierarchy only, or subdivide the
music genre further into different styles as done at allmusic.com or iuma.com, or use
even higher level genre hierarchies [8].

Peer nodes have to be arranged in the same segmentation as content keys; in the
illustration: type, genre, name, or, for nodes, IP address. The type and genre of a
peer refer to its pre-eminent interests (its GoI). Section 4.4 below discusses how to
determine the GoI of a peer and how to handle multiple interests. Hashing is then
applied to each of the hierarchy levels. The lookup ID becomes
TypeID.GenreID.NameID while the node ID will be TypeID.GenreID.AddressID.

A B C

Peer node

Lookup key

Type A Type B

Genre A Genre B Genre C

...
...Identifier

Space
A B C

Peer node

Lookup key

Type A Type B

Genre A Genre B Genre C

...
...Identifier

Space

Figure 1. Identifier Space in AGILE

A total identifier space of 128 bit will be sufficient for most P2P systems. A
distribution of bits to type, genre, and name/address, respectively, depends on the
expected number of different types, different genres within a type and
names/addresses within a type and genre. It is assumed that 32 bit each for type and
genre and 64 bit for name/address will meet most demands.

4.2 Overlay Network Structure and Request Routing

Within the identifier space defined above, lookup requests have to be routed
towards a node with the corresponding ID. It would be possible to route a request
directly from one node to an adjacent one in the ID space in the direction of the
lookup ID, who forwards it to its neighbor and so on until it finally reaches the
provider. As this is highly inefficient and not scalable nor robust, an overlay
network of virtual links needs to be constructed according to the requirements in
Section 2, enabling every peer to route a request to any other peer in the identifier
space with as few hops as possible.

A tree topology yields a good trade-off between node degree and network
diameter. The tree is an efficient structure for searching or lookup, and both the node
degree as well as the diameter scale logarithmically. For symmetry reasons and also
to increase the bisection width of the graph, however, the simple tree structure needs
to be extended: every peer has to be allowed to become the root of the tree or be on
any other level, rather than maintaining links only to one level in the tree hierarchy.

Figure 2 (left) shows an AGILE overlay lookup tree. The lookup key
segmentation defines the high-level tree hierarchy. As a root node, each peer

 Jan Mischke and Burkhard Stiller

maintains links to peers from all different types. Within its own type, each peer
maintains links to peers from all different genres. Within its own type and genre,
each peer maintains links to all peers. This enables an efficient hierarchical lookup
request routing from the more generic type to the more specific genre and,
eventually, name.

3 b-11 ...Type Level 1

Requestor/Root

2

3 b-11 ...2Type Level 2

3 b-11 ...2

j

...

Type Level n

3 b-11 ...2 Genre Level 1

3 b-11 ...2

j

...

Genre Level n

3 b-11 ...2 Name Level 1

...

... Name Level n

0 1 2 3 4 5 6 7 8 9 A B C D E F
Type Digit 0 x x x x x x x x x x x x x x x
Type Digit 1 x x x x x x x x x
Type Digit 2 x x x
Type Digit 3
Type Digit 4
Type Digit 5
Type Digit 6
Type Digit 7
Genre Digit 0 x x x x x x x x x x x x x x x
Genre Digit 1 x x x x x x x x x
Genre Digit 2 x x x x x
Genre Digit 3
Genre Digit 4
Genre Digit 5
Genre Digit 6
Genre Digit 7
Name Digit 0 x x x x x x x x x x x x x x x
Name Digit 1 x x x x x x x x x x
Name Digit 2 x x x x
Name Digit 3 x x x x x
Name Digit 4
Name Digit 5
Name Digit 6
Name Digit 7
Name Digit 8
Name Digit 9
Name Digit 10
Name Digit 11
Name Digit 12
Name Digit 13
Name Digit 14
Name Digit 15

Group of Interest of node
Node Address ID

x Non-empty entry in the routing table
Figure 2. Left: An AGILE Overlay Lookup Tree; Right: Illustrative Routing Table

As the number of nodes in a genre or type can potentially become very large, a
subordinate hierarchy is introduced to reduce the node degree, with a maximum of b
nodes on each tree level. It is straightforward to associate b with the base of a
numerical representation of the node or lookup ID. The position of a node (or key)
in the tree is then determined by the succession of digits of its ID.

The resulting overlay network graph is defined through the virtual links on each
peer, i.e. the routing tables. Figure 2 (right) illustrates a peer node routing table for a
base b=16. The first row corresponds to the node being the root in a lookup tree. It
has each one entry for peers with a different first digit in their ID. The second row
holds entries for a lookup tree where the peer node is on the second level pointing to
peers with identical first but different second digits. In general, the i-th row in the
table points to peer nodes who have (i-1) digits in common with the peer in
consideration and span the entire value space (b values) for the i-th digit, if all such
nodes exist in the system.

Once the overlay topology is created, it is important to define how lookup
requests can be routed from the requestor to the provider. This becomes very
straightforward and efficient in the AGILE structure. Figure 3 illustrates the
approach. At each hop, the routing peer forwards the request to a peer such as to
match one more digit of the node ID, starting at the first digit. To simplify the
illustration, Figure 3 only represents the first three digits.

For example, consider a peer requesting a key with an example ID
12345678.12345678.1234567890ABCDEF. The requesting peer looks into the first
row of its routing table for a peer with “1” as a first digit and sends the request. The
contacted peer looks into the second row of its routing table and forwards the
request to a peer with “2” in the second digit, while the routing entries in the second
row automatically ensure that the first digit of all entries is “1”. The process
continues until the type ID is matched or the search is stopped. The same

AGILE

mechanism runs for the genre ID. Finally, for the name ID, the process stops, when
it reaches a peer with an empty corresponding row in the routing table. This peer
holds the key, if it exists, or returns an error message. It is obvious that a requestor
directly starts with the search for the name ID, if it itself belongs to the
corresponding GoI. Similarly, a request may progress several digits at a time if the
lookup ID matches more than one further digit with the processing peer. The
pseudo-code for AGILE routing can be found in [7].

D1

D2

D3

Peer C (1 2 1) – first two dimensions correct

Peer B (1 0 3)
– first dimension correct

Target (1 2 3)

Peer A (0 1 1)

D1

D2

D3

Peer C (1 2 1) – first two dimensions correct

Peer B (1 0 3)
– first dimension correct

Target (1 2 3)

Peer A (0 1 1)

Figure 3. Illustration of Topology and Routing in AGILE

4.3 Insertion and Removal of Keys and Nodes

In order for the mechanisms described in the previous paragraph to work, it is
necessary to first insert keys into the system and onto the node with the numerically
closest ID. Furthermore, the topology (i.e., the routing tables) have to be maintained
as peers join and leave the network.

The insertion of keys into the system works exactly reciprocal to the lookup of a
key. The peer node wishing to offer new content or services initiates an insert
request with the according lookup ID. The request is routed just in the same way as
a lookup request until it reaches the designated provider peer node which stores the
key. For the removal of a key, the peer that stops to offer certain content or services
sends a removal request with the according lookup ID into the network. The
provider peer deletes the key.

The insertion of nodes into the system also works along the routing path. The
new node contacts any known node. A node insert request is routed according to the
usual routing procedure with the joining node’s ID as lookup ID. At each hop in the
path, the existing node learns about the new node. The joining node, in turn, can
copy a row (row i at the i-th hop) from the forwarding node’s routing table to
initialize its own routing table. The insertion of nodes becomes more intricate once
one wants to optimize wire length and achieve proximity in the underlying network
for all or most nodes in the routing table. We have adopted the Tapestry [16] and
Brocade [17] mechanisms including the algorithms for node removal, redundancy
creation and fault management and the replication strategy.

 Jan Mischke and Burkhard Stiller

4.4 Group Management and Adaptiveness

Groups of Interest (GoI) have been introduced to achieve a good pruning
probability or ”tunneling”, since the first hops are avoided through GoIs. The goal of
adaptive GoI management is to establish a process for peers joining and leaving
GoIs such as to improve pruning or tunneling while keeping the overhead for group
management itself reasonable.

A peer first joins a GoI by explicitly choosing categories of interest during the
installation phase. Afterwards, requests for content will automatically make it join
the requested GoI. That means, a peer can join more than one GoI. For each GoI, it
carries a different node ID, derived from its GoI and IP address as discussed before.
When joining a GoI and creating a new node ID, the peer effectively creates a new
virtual node. It has to maintain a complete routing table for the virtual node that
corresponds to its ID. The insertion takes place just as for a real node.

Two mechanisms help keep the overhead incurred by introducing virtual nodes
and catering for more than one ID on a single node minimal: thresholding and time
filtering. Thresholding means that a node only joins a new GoI, if the number of
requests to that GoI exceeds a certain value. Time filtering means that the
accounting of requests towards the threshold will be attenuated over time.
Effectively, a node will leave a GoI, if it no longer makes requests to that group over
a period of time - the corresponding virtual node is removed. Initially, time filtering
will be a simple windowing; subsequent improvements are possible using adaptive
filtering to predict future request behavior. It is assumed that the observation of a
peer’s past behavior leads to reasonable predictions as the change rate of likes and
dislikes will be slow compared to the request rate. In addition to thresholding and
time filtering, a third mechanism, aggregation, may be required in designs choosing
a higher-level hierarchy than the three level type-genre-name example, where
requests to presumably very small leaf-GoIs occur only infrequently. Requests not
only to leaf-GoIs in the hierarchy will be counted, but all requests within a higher-
(up to second-) level hierarchy will be aggregated. Once the threshold for the
aggregated requests is exceeded, a virtual node will be created at the leaf-GoI most
requests have been made to.

Through the introduction of GoIs, their automated update, and the consequent
introduction of virtual nodes, AGILE makes the lookup topology adaptive. Nodes
eventually move toward the content they like and request.

The pseudo-randomness of the hash function in AGILE ensures load balancing,
as nodes as well as content items are spread uniformly over the key space with
respect to their type, genre, and name. However, GoIs in AGILE allow hot spots in
the key space to form. If many nodes share a popular common interest, the key
space will become far more populated in the respective type/genre area than in the
areas corresponding to less popular interests. This, however, is a natural process. As
the GoIs of these nodes coincide with their requests, the degree of node
agglomeration is proportional to the degree of request agglomeration. Proper load
balancing in the system is ensured.

Peers that have joined several GoIs, however, do have to carry a significantly
higher routing load than others. This meets the system’s fairness requirement. Peers

AGILE

requesting many content items from many GoIs and, thus, consuming many network
resources also have an increased routing burden themselves. Peers making very
infrequent requests to GoIs are not affected as the time filtering and thresholding
makes them eventually leave the GoI in concern, releasing the additional routing
burden.

Peers with frequent requests to the same GoI also carry a higher routing load in
AGILE. New virtual nodes within the same GoI are automatically created when the
number of requests per time interval exceeds a certain threshold. The pseudo-code
for GoI-management can be found in [7].

4.5 Evaluation

A detailed evaluation of the node degree and the average number of hops for a
lookup request is given here to show the impact of adaptive, group-of-interest-based
overlay management on performance.

For the node degree, the routing table is considered. The routing table is densely
populated in the first rows for type, genre, and name/node ID, depending on the
number of nodes. As GoIs are spread uniformly across type ID and genre ID,
respectively, it is unlikely that one GoI will have many identical digits with another
GoI - the table becomes very sparse in the bottom rows. The same holds true for the
name ID. More precisely, the probability that entry j in row i of the type, genre, or
name area is populated is,

pi j, 1= 1 b i––()Nt g n, , 1––
where Nt,g,n denotes the number of different types, the number of different genres
within a type, or the number of nodes within a GoI, respectively. Note that the
counting of rows starts from 0 for each of the areas type, genre, and name. This
yields for the total population of the table, the node degree d

[]∑ −−−=+++=
=

−−
ng,t,

ng,t,
R

1i

1Ni
ng,t,ngtv)b(111)(bd);dd)(dn(1d

where nv is the number of virtual nodes and Rt,g,n is the number of rows for type ID,
genre ID, and name ID, respectively. The node degree is plotted in Figure 4 (left) for
a base b=16, Rt=Rg=8, Rn=16, nv=0. Two curves show the node degree for 50, and 5
different types and different genres within a type, respectively. Except for very low
number of nodes, both curves lie well below the logarithmic curve (b-1)logbN as
well as below the reference curve without grouping (Rt=Rg=0, Rn=32), which can be
regarded as an approximation for algorithms without grouping like Tapestry and
Pastry.

The average number of hops for a lookup request nh is approximated as follows:
1pnpn)p(1pn)p(1n gt,success,nh,gt,success,gh,gt,GoI,tsuccess,th,tGoI,h ⋅++−+−=

where nh,t, nh,g, nh,n are the number of hops needed to match the type, genre, and
name of the lookup key, respectively, if the lookup key exists, but does not fall
within the requestor’s group of interest. pGoI,t and pGoI,t,g denote the probabilities that
the lookup refers to the requestor’s group of interest type or genre, respectively.

 Jan Mischke and Burkhard Stiller

psuccess,t and psuccess,t,g define the probabilities that the request is successful with
respect to the type and genre.

The additional hop is an approximation for the hops that occur when the next
digit cannot be matched, but when nevertheless closer nodes are available in the
routing table. As type, genre, and address IDs are uniformly distributed, it is
unlikely that more than one such hop occurs.

10
0

10
2

10
4

10
6

10
8

0

20

40

60

80

100

120

N

A
ve

ra
ge

 N
od

e
D

eg
re

e

Nt,g = 50
Nt,g = 5
Reference: no groups
(b-1)*Log

b
(N)

10

0
10

2
10

4
10

6
10

8
0

1

2

3

4

5

6

7

N

A
ve

ra
ge

 N
um

be
r

of
 O

ve
rla

y
H

op
s

Log
b
 (N)

Reference: no groups

N
t
=N

g
=5, no pruning

N
t
=N

g
=50, no pruning

N
t
=N

g
=5, success and GoI pruning

Figure 4. Left: Node degree; Right: Number of hops

Based on the likelihood that a node exists sharing i digits with the lookup ID,
pexist,i=1-(1-b-i)Nt,g,n, it is:

nh t g n, , , i pexist i, pexist i 1+,–()TFi
i 1=

Rt g n, ,

∑=

where pexist,R+1 is defined to be zero. As some of the hops from one row to the next
one happen on one and the same node and do not represent actual hops on the
overlay network, the tunneling factor TFi is introduced. It represents the ratio of
hops on the overlay network to advances in routing table rows up to row i and can
be derived to be

TFi
b i–

i
------- i

k 
  k b 1–()k 1 b 1––()=

k 1=

i

∑=

The additional pruning factor achieved through the introduction of GoIs

becomes

fp GoI, 1
nh

nh t, nh g, nh n, 1+ + +
--–=

The average number of hops is plotted in Figure 4 (right) for b=16, Rt=Rg=8,

Rn=16 as for the node degree. As before, for comparison, logbN and a reference
curve without grouping (Rt=Rg=0, Rn=32), which should show similar results as
algorithms like Tapestry or Pastry are also shown. Two curves for 50 and 5 different
types and different genres within a type, respectively, show the expected number of

AGILE

hops, when there is no pruning due to a node requesting a lookup key within its own
GoI or due to quick abortion of the lookup when the type or genre is not available
(psuccess=100%, pGoI=0%). For a reasonably large number of nodes, both curves are
close to logbN and exhibit a slight gain compared to the reference case. The last
curve represents the average number of hops for 50 different types and genres within
a type when there is pruning; the scenario assumes pGoI,t=70%, pGoI,t,g=30%,
psuccess,t=95%, and psuccess,t,g=85%. In this case, the pruning factor becomes 37%
compared to the reference case when there are 1 million nodes in the network.

Additional pruning gains can be achieved using a higher-level hierarchy for GoI
structuring. Effects on the node degree will be limited and beneficial as long as no
additional virtual nodes are created; this, however, is highly dependent on the
thresholding and aggregation parameters applied.

The effects of an increase in amount and type of information in the system can
be studied by comparing the graphs for Nt,g=5 and Nt,g=50 in Figure 4: the effect is
limited and mostly visible in small networks only.

5. CONCLUSIONS AND FUTURE WORK

AGILE is a new lookup and routing algorithm bringing requestors and providers
close together in Groups-of-Interest (GoI), tackling important scalability and
performance concerns about the overlay network management for lookup and
routing, while at the same time promoting system fairness. It can be applied to all
peer-to-peer applications requiring such lookup services, as diverse as file sharing,
distributed search and indexing, and, with some adaptations, distributed storage or
file systems and distributed computing.

In future versions of the algorithm, searches with regular search expressions will
be investigated. As a first step, search within a GoI can be replaced by controlled
flooding rather than hash-based routing. Subsequently, a globally known semantic
closeness operation will be needed to replace the hashing scheme, combined with
proper load balancing, as the pseudo-random uniform load distribution due to
hashing will be lost.

ACKNOWLEDGEMENTS

This work has been performed partially in the framework of the EU IST project
MMAPPS ‘Market Management of Peer-to-Peer Services’ (IST-2001-34201), where
the ETH Zürich has been funded by the Swiss Bundesministerium für Bildung und
Wissenschaft BBW, Bern under Grant No. 00.0275.

REFERENCES

[1] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica: Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications; ACM SIGCOMM, San
Diego, August 27-31, 2001.

 Jan Mischke and Burkhard Stiller

[2] E.A. Brewer: Lessons from Giant-Scale Services; IEEE Internet Computing Vol. 5
Nr. 4, pp. 46-55, July/August 2001.

[3] M. Castro, P. Druschel, Y. C. Hu and A. Rowstron: Exploiting network proximity in
peer-to-peer overlay networks; International Workshop on Future Directions in
Distributed Computing (FuDiCo), Bertinoro, Italy, June 2002.

[4] Druschel, Rowstron: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems; IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany, 2001.

[5] FIPS 180-1, Secure Hash Standard; U.S. Department of Commerce/NIST, National
Technical Information Service, Springfield, VA, April 1995.

[6] K. Hwang: Advanced Computer Architecture; McGraw-Hill Series in Computer
Science, p.77, 1993.

[7] J. Mischke, B. Stiller: Peer-to-peer Overlay Network Management Through AGILE:
Adaptive, Group-of-Interest Based Lookup Engine; Extended Version, ETH Zürich,
Switzerland, TIK-Report No. 149, August 2002.

[8] F. Pachet, D. Cazaly: A Classification of Musical Genre; Proceedings of Content-
Based Multimedia Information Access (RIAO) Conference, Paris, France, 2000.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker: A Scalable Content-
Addressable Network; ACM SIGCOMM '01, San Diego, 2001.

[10] S. Ratnasamy, M. Handley, R. Karp, S. Shenker: Topologically-Aware Overlay
Construction and Server Selection; IEEE INFOCOM, New York, June 2002.

[11] S. Rhea, J. Kubiatowicz: Probabilistic Location and Routing; IEEE INFOCOM,
New York, June 2002.

[12] R. Rivest: The MD-5 Message Digest Algorithm; RFC 1321, 1992,
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1321.html in August 2002.

[13] S. Saroiu, P. Gummadi, S. Gribble: A Measurement Study of Peer-to-peer File
Sharing Systems; Technical Report # UW-CSE-01-06-02, Department of Computer
Science & Engineering, University of Washington, Seattle, 2002.

[14] M. Schlosser, M. Sintek, S. Decker, W. Nejdl: HyperCuP - Hypercubes, Ontologies
and Efficient Search on P2P Networks; International Workshop on Agents and
Peer-to-Peer Computing (AP2PC), Bologna, Italy, July 2002.

[15] K. Sripanidkulchai, B. Maggs, H. Zhang: Enabling Efficient Content Location and
Retrieval in Peer-to-Peer Systems by Exploiting Locality in Interests; ACM
SIGCOMM, Computer Communication Review Vol. 30 Nr. 1, January 2002, p. 80.

[16] B. Zhao, J. Kubiatowicz, A. Joseph: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing; Technical Report UCB/CSD-01-1141, Computer
Science Division, U.C. Berkeley, April 2001.

[17] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz: Brocade: Landmark
Routing on Overlay Networks; First International Workshop on Peer-to-Peer
Systems (IPTPS), Cambridge, MA, March 2002.

[18] B. Zhao, A. Joseph, J. Kubiatowicz: Locality Aware Mechanisms for Large-scale
Networks; International Workshop on Future Directions in Distributed Computing
(FuDiCo), Bertinoro, Italy, June 2002.

