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Abstract: Currently, state of the art peer-to-peer (P2P) lookup mechanisms actively 
create and manage a peer application layer overlay network to achieve 
scalability and efficiency. The proposed mechanism AGILE (Adaptive, 
Group-of-Interest-based Lookup Engine) extends this management approach, 
adapting the overlay network such as to bring requesting peers and desired 
lookup items close together, reducing the number of hops and, thus, latency as 
well as bandwidth requirements for a lookup. At the same time, AGILE 
introduces mechanisms to build a fair system.  
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1. INTRODUCTION 

Peers in a P2P system communicate on a logical overlay network among them. 
Some existing systems, e.g., Gnutella, build this overlay network at random, adding 
(or removing) links and nodes in an uncontrolled way through arbitrary ping 
requests and pong responds. Unfortunately, the orderless structure requires a non-
scalable flooding mechanism for lookup, and the path lengths and node degrees can 
become large. More sophisticated approaches, like Tapestry [16], Pastry [4], or 
Chord [1], actively manage the overlay network such as to ensure robustness and 
alleviate lookup and request routing. These systems, however, pay little attention to 
the heterogeneity of peers with respect to their interests and capabilities. 

The proposed mechanism AGILE (Adaptive, Group-of-Interest-based Lookup 
Engine) creates and maintains an overlay network according to specific topological 
requirements for P2P lookup. It additionally adapts the network over time so that 
groups can form according to common interests, improving the lookup performance, 
while at the same time ensuring fairness. 
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Essential topological requirements are derived in Section 2, while Section 3 
discusses related work and identifies major gaps to those requirements. Section 4 
introduces and evaluates the proposed approach AGILE, before Section 5 concludes.  

2. REQUIREMENTS 

It is straightforward to require that a P2P system be scalable and make efficient 
use of system and peer resources, namely memory, processing power, bandwidth, 
and time/latency. With up to 96% of local peer node resources being idle [2], 
bandwidth and user time, or latency in the technical system, are most crucial and 
will be considered in more detail in the next subsection. Furthermore, the system 
should ensure a proper load balancing in that it be fair, involving peers according to 
their use of the system and in that it pay attention to the heterogeneous capabilities 
of peers. Finally, a P2P system has to be robust to frequent node joins and leaves 
and link failures.  

In general, network topologies can be characterized through their degree of 
symmetry, the network diameter, the bisection width, the average node degree, and 
the average wire length [6]. The functional and performance requirements (see 
above) determine the desired target characteristics. 
– Symmetry: Only symmetric topologies are appropriate for true peer-to-peer 

systems as only in this case all peers are equal from a topology point of view. At 
the same time, symmetry assists load balancing. Examples of symmetric 
topologies include rings, buses, hypercubes, complete meshes, cube-connected 
circles, or k-ary n-cubes. Measurements as stated in [13], however, prove a huge 
heterogeneity among peer nodes in terms of their uptime, average session 
duration, bottleneck bandwidth, latency, and the number of services or files 
offered, so that server-like roles in a P2P network may be advantageous. 

– Network Diameter (D): The diameter of a network is defined by the number of 
hops required to connect from one peer to the most remote peer. It strongly 
influences latency and bandwidth.  

– Bisection Width (β): The number of connections from one part of the overlay 
network to the other define its bisection width. Assuming proper load balancing, 
the maximum throughput of the network is proportional to the bisection width, 
and there is a direct relation with fault tolerance: the bisection width determines 
the number of links that have to break before the system goes down or, at least, 
operates only as two partial systems. 

– Node Degree (d): The node degree is defined as the number of links that each 
peer has to maintain. The node degree can be a significant inhibitor for 
scalability. The node degree determines the size of the routing table on each peer 
with the proportional impact on memory consumption and processing power. 

– Wire Length (τ): The wire length is the average round trip delay of a 
connection, contributing to the latency in the system.  

It is particularly important to have a look in detail at latency and bandwidth 
consumption for a lookup request. The latency L for a lookup request is defined as 

L τ nh τ D 1 f– p( )⋅ ⋅=⋅=
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where nh is the number of hops for a request and the pruning factor fp denotes the 
average percentage of the maximum number of hops that a request does not need to 
travel, because it has been pruned off before. The pruning factor can be calculated 
from the pruning probability at each hop pp,i (i.e. the probability that the requested 
item is found at that hop) through 

fp 1 1
D
----– 1 pp k,–( ) i k ε ℵ,;

k 0=
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∏
i 1=
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∑=

. 
The pruning probability pp,0 at node 0, the requesting node, will usually be zero. 

Hence, three important factors determine the latency time: the network diameter, the 
average round trip delay, and the pruning probability. It is possible to increase the 
pruning probability in a topology by exploiting knowledge on the peers’ interests. 

In addition, the total bandwidth B required for a lookup request is  

)fD(1ε1)(d(dB)ε1)(d(dnBB prouteRProutehRP −−−=−−=  

where BRP denotes the bandwidth or size of one request package, nh (as above) the 
number of hops, d the node degree, and εroute the routing efficiency. The routing 
efficiency is defined to be 1 if only one node has to be contacted at each hop and 0 if 
all nodes have to be contacted. In that sense, Gnutella with its flooding approach has 
a routing efficiency of 0, whereas consistent hashing algorithms like Chord [1] have 
a routing efficiency of 1.  

As for the latency, the network diameter and the pruning probability influence 
the bandwidth requirements (and scalability) in a major way. Furthermore, the 
routing efficiency plays a significant role. The equation also suggests that the node 
degree be kept low. However, this applies only if the routing efficiency is smaller 
than 1, as a lower node degree automatically entails a larger network diameter.  

3. RELATED WORK  

Tapestry [16], Pastry [4], Chord [1], and CAN [9] determine the systems most 
closely related to AGILE. Their common theme is that they arrange lookup items or 
keys (such as content files, services, or peer node addresses) and peer nodes in the 
same identifier space. Subsequently, they hand over the responsibility for holding a 
key with a certain identifier to a peer with a numerically close identifier. This 
enables them to simply route a lookup request message at each node towards a 
neighboring node with a closer node ID, achieving a routing efficiency of 1. All of 
these lookup services propose hashing to map lookup item names and nodes (IP 
addresses) onto the identifier space. Firstly, the hash function is globally known, 
ensuring the same mapping for each request for or insert of a key. Secondly, hashing 
results with high probability in unique IDs. Thirdly, the pseudo-randomness of the 
hash function uniformly distributes keys and nodes in the identifier space. 

The main difference between these approaches is the topology they build to 
arrange peers properly so that they can route closer to the desired ID, while meeting 
major requirements to a good topology (cf. Section 2). Furthermore, they apply 
different algorithms to constructing, maintaining, or managing this topology. 
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– Tapestry: Tapestry builds a Plaxton mesh. IDs are represented as numbers with a 

sequence of digits to a base b. At each hop, a request is routed toward a node, 
whose ID matches the search key in one digit more than the previous node’s ID 
did, starting at the last digit (suffix-based routing). The management of the 
overlay network focuses on fault tolerance: soft stating, time-outs, and 
republishing to ensure accuracy of the information, triple redundancy and back-
pointers in the routing tables, use of several “root” servers, i.e. redundancy in the 
nodes responsible for a key. 

– Pastry: The basic concept and topology is the same as for Tapestry, except that 
prefix-based routing instead of suffix-based routing is applied. The fault-
tolerance focus is replaced by an apparently more light-weight scheme. 

– Chord: Chord arranges keys and nodes around an identifier circle. The node 
with the largest number preceding the search key is responsible for holding it. 
Nodes maintain overlay links to a couple of successors and fingers as chords in 
the circle in exponentially increasing distances from the respective node, 
enabling to halve the remaining ID search space at each routing step. This 
becomes very similar to Tapestry and Pastry when choosing a base of 2 in the 
latter ones.  

– CAN: CAN is based on a d-dimensional Cartesian coordinate space (or d-torus) 
separated into bins of varying size to implement a distributed hash table. Other 
than Tapestry, Pastry, and Chord, the node degree is thus fixed. 

HyperCuP [14], takes a different approach. Like in Gnutella, flooding is used for the 
lookup. However, the overlay network is actively managed as a hypercube with 
good symmetry, diameter, and bisection width properties. It seems to be possible to 
also use a hashing scheme to improve routing efficiency. Furthermore, the authors 
propose an ontology-based routing scheme for the same reason. 

Table 1 compares these systems (including AGILE) with respect to major 
requirements from Section 2 according to the developers’ information or 
information deduced from algorithm descriptions. For all systems N denotes the 
number of nodes in the system, b and d are design parameters, where b is the base 
value for a digit representation of hash keys (where used) and d is the dimensionality 
of the CAN torus. 

All mechanisms except CAN achieve logarithmic scalability with respect to the 
path length of a routing request or the network diameter. Chord does not allow to 
trade off the node degree for a lower number of hops by choosing a base higher than 
2. Particularly for PC nodes, a higher node degree can easily be accommodated 
while allowing to reduce bandwidth and latency. While the existing algorithms only 
have a statistically inherent pruning probability related to their base b, they all 
achieve a routing efficiency of 1 - HyperCuP with its flooding mechanism being the 
obvious exception. The node degree scales logarithmically except for CAN, where it 
even remains constant. However, this limits the flexibility when a network grows. 
As to the wire length, Pastry, Tapestry, and CAN introduce optimization schemes. 
The methods and simulations to obtain figures for the stretch (i.e., the relative 
latency of overlay routing compared to IP routing) are too different to base a good 
comparison on them. Several further proposals have been made to address the issue 
of wire length separately [3], [17], [18], [11], and [10].  
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Table 1 compares fault tolerance in terms of two dimensions, key redundancy 
and link redundancy. While replication can be controlled by the application, the 
lookup algorithms propose different mechanisms to conveniently place k replicas. 
For increased fault tolerance with respect to routing, Pastry and Chord keep 
redundant state information for closest neighbors or successors in the ring, 
respectively, whereas CAN and Tapestry set up (3 or r, respectively) independent 
entire routing tables. Tapestry further increases fault tolerance through soft-stating 
and heart-beat protocols. 

Maintenance complexity, which is the number of messages per node join or 
leave, scales logarithmically for all systems but CAN. More detailed quantitative 
information is not available, but it is obvious that Tapestry with its surrogate routing 
and routing table redundancy will exhibit a higher complexity than the other 
mechanisms. As all algorithms build a probabilistic but fairly symmetric topology 
heterogeneity is only partly addressed by Tapestry through the BROCADE 
extension [17], and by CAN through load-dependent bin splitting. 

Table 1. Comparison of Lookup Mechanisms 

Characteristic 
Tapes-

try Pastry Chord CAN 
Hyper-

CuP AGILE 
Network diameter O(logbN) O(logbN) ≈ log2N O(dN1/d) O(logbN) ≈ logbN 

Pruning probabilit. 1/b 1/b 1/b=1/2 n/a n/a 1/b+37%† 

Routing  efficienc. 1 1 1 1 0 1 
Node degree O(b* 

logbN) 
O[(b-1)* 
logbN] 

O(log2N) O(d) O(logbN) O[(b-1)logbN] 

Wire length/stretch (≈ 2-4) (≈1.3-1.4) n/a (≈ 2-3) n/a (≈ 2-4‡) 
Key/replica 
redundancy 

k salt 
values 

k closest 
nodes 

k succ. 
nodes 

k hash 
functions 

n/a k salt values‡ 

Link redundancy tripl. table 
entries 

r closest 
neighbors 

r succ. 
nodes 

r realities n/a triple table 
entries‡ 

Maintenance 
complexity 

O(logbN) 3b*logbN O(log2N) O(N1/d) O(logbN) O(logbN)‡ 

Fairness measures none none none none none virtual nodes 
Symmetry / 
heterogeneity 

symm. symm. symm. symm./ 
bin split 

symm. symm./ GoI 

 
AGILE creates a topology where each node can be the root of a tree. It exhibits 

similar network diameter and node degree characteristics as Tapestry. It adopts the 
advantages of Tapestry in terms of fault tolerance and wire length as well as its 
overlay maintenance scheme. However, AGILE considerably improves the pruning 
probability by applying an adaptive algorithm that brings requestors and requested 
keys stochastically closer together. Furthermore, it introduces fairness into the 
lookup mechanism by imposing the highest routing burden on those peers making 
the most frequent requests. 

 
† For large b, otherwise 37%/(1-1/b); for assumptions, cf. Section 4.5  
‡ Tapestry mechanism adopted 
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4. THE AGILE ALGORITHM 

The AGILE algorithm proposed has been derived from the requirements 
presented above and combines the advantages of a scalable, hashing-based 
algorithm and topology with the efficiency and fairness of an interest- and usage-
based group topology. The basic algorithm of the lookup inseparably combines the 
overlay topology and the lookup request routing. 

For the subsequent discussions, consider the following scenario, where a peer 
node (the requestor) tries to find a certain service or content in the P2P network. It 
has to specify what it is looking for and the P2P system should return the content or 
service or a link to the content or service, e.g., the IP address of a peer where it can 
be found. The desired and returned object is termed a lookup key (or simply key) 
and the specified request a lookup identifier (ID). Peer nodes in the network are 
characterized by their node ID, the node holding the lookup key is called provider 
node. Routing is the process of finding a path from the requestor to the provider 
node (which is usually unknown to the requestor) in a distributed way by forwarding 
lookup requests from one peer to another. The overlay network defines the structure 
on which request routing can take place. 

4.1 ID Space and Arrangement of Nodes and Keys 

A proper assignment of IDs to nodes and keys can be derived from the routing 
efficiency requirement. In order to avoid any kind of flooding and achieve a routing 
efficiency of 1, the P2P system is required to have global knowledge on the 
translation of search request or lookup key into lookup ID and on the association of 
the lookup ID with the provider ID. The use of hash functions, e.g., based on SHA-1 
[5] or MD-5 [12], to translate the search request, e.g., the file name, into the lookup 
ID solves the first problem. The second problem is solved by arranging peer nodes 
in the same identifier space as the lookup IDs, e.g., by applying the same hash 
function to nodes’ IP addresses. The node with an ID numerically closest to the 
lookup ID will be the provider peer. 

Figure 1 illustrates the identifier space in AGILE with peer nodes and lookup 
keys arranged in the same space. Note that due to the pseudo-randomness of the 
hash function distances of peers and the number of keys associated to a provider can 
vary. Stochastically, however, their distribution will be uniform. Figure 1 also 
introduces a hierarchy of types and genres in the identifier space. This hierarchy is 
derived from the requirement to achieve a good pruning factor. Assuming that 
request routing takes place along the identifier space (which, even though not 
linearly, is the case for AGILE), a good pruning factor requires that providers (or 
lookup keys, respectively) and potential requestors be located close to each other. 
AGILE achieves this through a clustering of keys and nodes into Groups of Interest 
(GoIs).  

For a detailed illustration, assume a segmentation of lookup keys (content or 
services) as described by the following meta-information: 
– Type, e.g., music files, news information, or storage services. 
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– Genre, e.g., rock, pop, classic, or house. 
– Name, e.g., RollingStones_Satisfaction or Beethoven_9. 

Note that the specifics of the segmentation are purely illustrative and not focus 
of this work. One could as well apply a two-level hierarchy only, or subdivide the 
music genre further into different styles as done at allmusic.com or iuma.com, or use 
even higher level genre hierarchies [8].  

Peer nodes have to be arranged in the same segmentation as content keys; in the 
illustration: type, genre, name, or, for nodes, IP address. The type and genre of a 
peer refer to its pre-eminent interests (its GoI). Section 4.4 below discusses how to 
determine the GoI of a peer and how to handle multiple interests. Hashing is then 
applied to each of the hierarchy levels. The lookup ID becomes 
TypeID.GenreID.NameID while the node ID will be TypeID.GenreID.AddressID. 

A B C

Peer node

Lookup key

Type A Type B

Genre A Genre B Genre C

...
... ... ... ...Identifier

Space
A B C

Peer node

Lookup key

Type A Type B

Genre A Genre B Genre C

...
... ... ... ...Identifier

Space

 
Figure 1. Identifier Space in AGILE 

A total identifier space of 128 bit will be sufficient for most P2P systems. A 
distribution of bits to type, genre, and name/address, respectively, depends on the 
expected number of different types, different genres within a type and 
names/addresses within a type and genre. It is assumed that 32 bit each for type and 
genre and 64 bit for name/address will meet most demands.  

4.2 Overlay Network Structure and Request Routing 

Within the identifier space defined above, lookup requests have to be routed 
towards a node with the corresponding ID. It would be possible to route a request 
directly from one node to an adjacent one in the ID space in the direction of the 
lookup ID, who forwards it to its neighbor and so on until it finally reaches the 
provider. As this is highly inefficient and not scalable nor robust, an overlay 
network of virtual links needs to be constructed according to the requirements in 
Section 2, enabling every peer to route a request to any other peer in the identifier 
space with as few hops as possible. 

A tree topology yields a good trade-off between node degree and network 
diameter. The tree is an efficient structure for searching or lookup, and both the node 
degree as well as the diameter scale logarithmically. For symmetry reasons and also 
to increase the bisection width of the graph, however, the simple tree structure needs 
to be extended: every peer has to be allowed to become the root of the tree or be on 
any other level, rather than maintaining links only to one level in the tree hierarchy. 

Figure 2 (left) shows an AGILE overlay lookup tree. The lookup key 
segmentation defines the high-level tree hierarchy. As a root node, each peer 
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maintains links to peers from all different types. Within its own type, each peer 
maintains links to peers from all different genres. Within its own type and genre, 
each peer maintains links to all peers. This enables an efficient hierarchical lookup 
request routing from the more generic type to the more specific genre and, 
eventually, name. 

3 b-11 ...Type Level 1

Requestor/Root

2

3 b-11 ...2Type Level 2

3 b-11 ...2

j

...

Type Level n

3 b-11 ...2 Genre Level 1

3 b-11 ...2

j

...

Genre Level n

3 b-11 ...2 Name Level 1

...

... Name Level n        

0 1 2 3 4 5 6 7 8 9 A B C D E F
Type Digit 0 x x x x x x x x x x x x x x x
Type Digit 1 x x x x x x x x x
Type Digit 2 x x x
Type Digit 3
Type Digit 4
Type Digit 5
Type Digit 6
Type Digit 7
Genre Digit 0 x x x x x x x x x x x x x x x
Genre Digit 1 x x x x x x x x x
Genre Digit 2 x x x x x
Genre Digit 3
Genre Digit 4
Genre Digit 5
Genre Digit 6
Genre Digit 7
Name Digit 0 x x x x x x x x x x x x x x x
Name Digit 1 x x x x x x x x x x
Name Digit 2 x x x x
Name Digit 3 x x x x x
Name Digit 4
Name Digit 5
Name Digit 6
Name Digit 7
Name Digit 8
Name Digit 9
Name Digit 10
Name Digit 11
Name Digit 12
Name Digit 13
Name Digit 14
Name Digit 15

Group of Interest of node
Node Address ID

x Non-empty entry in the routing table  
Figure 2. Left: An AGILE Overlay Lookup Tree; Right: Illustrative Routing Table 

As the number of nodes in a genre or type can potentially become very large, a 
subordinate hierarchy is introduced to reduce the node degree, with a maximum of b 
nodes on each tree level. It is straightforward to associate b with the base of a 
numerical representation of the node or lookup ID. The position of a node (or key) 
in the tree is then determined by the succession of digits of its ID. 

The resulting overlay network graph  is defined through the virtual links on each 
peer, i.e. the routing tables. Figure 2 (right) illustrates a peer node routing table for a 
base b=16. The first row corresponds to the node being the root in a lookup tree. It 
has each one entry for peers with a different first digit in their ID. The second row 
holds entries for a lookup tree where the peer node is on the second level pointing to 
peers with identical first but different second digits. In general, the i-th row in the 
table points to peer nodes who have (i-1) digits in common with the peer in 
consideration and span the entire value space (b values) for the i-th digit, if all such 
nodes exist in the system.  

Once the overlay topology is created, it is important to define how lookup 
requests can be routed from the requestor to the provider. This becomes very 
straightforward and efficient in the AGILE structure. Figure 3 illustrates the 
approach. At each hop, the routing peer forwards the request to a peer such as to 
match one more digit of the node ID, starting at the first digit. To simplify the 
illustration, Figure 3 only represents the first three digits. 

For example, consider a peer requesting a key with an example ID 
12345678.12345678.1234567890ABCDEF. The requesting peer looks into the first 
row of its routing table for a peer with “1” as a first digit and sends the request. The 
contacted peer looks into the second row of its routing table and forwards the 
request to a peer with “2” in the second digit, while the routing entries in the second 
row automatically ensure that the first digit of all entries is “1”. The process 
continues until the type ID is matched or the search is stopped. The same 



AGILE 
 
mechanism runs for the genre ID. Finally, for the name ID, the process stops, when 
it reaches a peer with an empty corresponding row in the routing table. This peer 
holds the key, if it exists, or returns an error message. It is obvious that a requestor 
directly starts with the search for the name ID, if it itself belongs to the 
corresponding GoI. Similarly, a request may progress several digits at a time if the 
lookup ID matches more than one further digit with the processing peer. The 
pseudo-code for AGILE routing can be found in [7]. 

D1

D2

D3

Peer C (1 2 1) – first two dimensions correct

Peer B (1 0 3)
– first dimension correct

Target (1 2 3)

Peer A (0 1 1)

D1

D2

D3

Peer C (1 2 1) – first two dimensions correct

Peer B (1 0 3)
– first dimension correct

Target (1 2 3)

Peer A (0 1 1)

 
Figure 3. Illustration of Topology and Routing in AGILE 

4.3 Insertion and Removal of Keys and Nodes 

In order for the mechanisms described in the previous paragraph to work, it is 
necessary to first insert keys into the system and onto the node with the numerically 
closest ID. Furthermore, the topology (i.e., the routing tables) have to be maintained 
as peers join and leave the network.  

The insertion of keys into the system works exactly reciprocal to the lookup of a 
key. The peer node wishing to offer new content or services initiates an insert 
request with the according lookup ID. The request is routed just in the same way as 
a lookup request until it reaches the designated provider peer node which stores the 
key. For the removal of a key, the peer that stops to offer certain content or services 
sends a removal request with the according lookup ID into the network. The 
provider peer deletes the key. 

The insertion of nodes into the system also works along the routing path. The 
new node contacts any known node. A node insert request is routed according to the 
usual routing procedure with the joining node’s ID as lookup ID. At each hop in the 
path, the existing node learns about the new node. The joining node, in turn, can 
copy a row (row i at the i-th hop) from the forwarding node’s routing table to 
initialize its own routing table. The insertion of nodes becomes more intricate once 
one wants to optimize wire length and achieve proximity in the underlying network 
for all or most nodes in the routing table. We have adopted the Tapestry [16] and 
Brocade [17] mechanisms including the algorithms for node removal, redundancy 
creation and fault management and the replication strategy.  
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4.4 Group Management and Adaptiveness 

Groups of Interest (GoI) have been introduced to achieve a good pruning 
probability or ”tunneling”, since the first hops are avoided through GoIs. The goal of 
adaptive GoI management is to establish a process for peers joining and leaving 
GoIs such as to improve pruning or tunneling while keeping the overhead for group 
management itself reasonable.  

A peer first joins a GoI by explicitly choosing categories of interest during the 
installation phase. Afterwards, requests for content will automatically make it join 
the requested GoI. That means, a peer can join more than one GoI. For each GoI, it 
carries a different node ID, derived from its GoI and IP address as discussed before. 
When joining a GoI and creating a new node ID, the peer effectively creates a new 
virtual node. It has to maintain a complete routing table for the virtual node that 
corresponds to its ID. The insertion takes place just as for a real node. 

Two mechanisms help keep the overhead incurred by introducing virtual nodes 
and catering for more than one ID on a single node minimal: thresholding and time 
filtering. Thresholding means that a node only joins a new GoI, if the number of 
requests to that GoI exceeds a certain value. Time filtering means that the 
accounting of requests towards the threshold will be attenuated over time. 
Effectively, a node will leave a GoI, if it no longer makes requests to that group over 
a period of time - the corresponding virtual node is removed. Initially, time filtering 
will be a simple windowing; subsequent improvements are possible using adaptive 
filtering to predict future request behavior. It is assumed that the observation of a 
peer’s past behavior leads to reasonable predictions as the change rate of likes and 
dislikes will be slow compared to the request rate. In addition to thresholding and 
time filtering, a third mechanism, aggregation, may be required in designs choosing 
a higher-level hierarchy than the three level type-genre-name example, where 
requests to presumably very small leaf-GoIs occur only infrequently. Requests not 
only to leaf-GoIs in the hierarchy will be counted, but all requests within a higher- 
(up to second-) level hierarchy will be aggregated. Once the threshold for the 
aggregated requests is exceeded, a virtual node will be created at the leaf-GoI most 
requests have been made to. 

Through the introduction of GoIs, their automated update, and the consequent 
introduction of virtual nodes, AGILE makes the lookup topology adaptive. Nodes 
eventually move toward the content they like and request. 

The pseudo-randomness of the hash function in AGILE ensures load balancing, 
as nodes as well as content items are spread uniformly over the key space with 
respect to their type, genre, and name. However, GoIs in AGILE allow hot spots in 
the key space to form. If many nodes share a popular common interest, the key 
space will become far more populated in the respective type/genre area than in the 
areas corresponding to less popular interests. This, however, is a natural process. As 
the GoIs of these nodes coincide with their requests, the degree of node 
agglomeration is proportional to the degree of request agglomeration. Proper load 
balancing in the system is ensured. 

Peers that have joined several GoIs, however, do have to carry a significantly 
higher routing load than others. This meets the system’s fairness requirement. Peers 
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requesting many content items from many GoIs and, thus, consuming many network 
resources also have an increased routing burden themselves. Peers making very 
infrequent requests to GoIs are not affected as the time filtering and thresholding 
makes them eventually leave the GoI in concern, releasing the additional routing 
burden. 

Peers with frequent requests to the same GoI also carry a higher routing load in 
AGILE. New virtual nodes within the same GoI are automatically created when the 
number of requests per time interval exceeds a certain threshold. The pseudo-code 
for GoI-management can be found in [7]. 

4.5 Evaluation 

A detailed evaluation of the node degree and the average number of hops for a 
lookup request is given here to show the impact of adaptive, group-of-interest-based 
overlay management on performance. 

For the node degree, the routing table is considered. The routing table is densely 
populated in the first rows for type, genre, and name/node ID, depending on the 
number of nodes. As GoIs are spread uniformly across type ID and genre ID, 
respectively, it is unlikely that one GoI will have many identical digits with another 
GoI - the table becomes very sparse in the bottom rows. The same holds true for the 
name ID. More precisely, the probability that entry j in row i of the type, genre, or 
name area is populated is,  

pi j, 1= 1 b i––( )Nt g n, , 1––  
where Nt,g,n denotes the number of different types, the number of different genres 
within a type, or the number of nodes within a GoI, respectively. Note that the 
counting of rows starts from 0 for each of the areas type, genre, and name. This 
yields for the total population of the table, the node degree d  

[ ]∑ −−−=+++=
=

−−
ng,t,

ng,t,
R
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ng,t,ngtv )b(111)(bd);dd)(dn(1d  

where nv is the number of virtual nodes and Rt,g,n is the number of rows for type ID, 
genre ID, and name ID, respectively. The node degree is plotted in Figure 4 (left) for 
a base b=16, Rt=Rg=8, Rn=16, nv=0. Two curves show the node degree for 50, and 5 
different types and different genres within a type, respectively. Except for very low 
number of nodes, both curves lie well below the logarithmic curve (b-1)logbN  as 
well as below the reference curve without grouping (Rt=Rg=0, Rn=32), which can be 
regarded as an approximation for algorithms without grouping like Tapestry and 
Pastry. 

The average number of hops for a lookup request nh is approximated as follows:  
1pnpn)p(1pn)p(1n gt,success,nh,gt,success,gh,gt,GoI,tsuccess,th,tGoI,h ⋅++−+−=  

where nh,t, nh,g, nh,n are the number of hops needed to match the type, genre, and 
name of the lookup key, respectively, if the lookup key exists, but does not fall 
within the requestor’s group of interest. pGoI,t and pGoI,t,g denote the probabilities that 
the lookup refers to the requestor’s group of interest type or genre, respectively. 
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psuccess,t and psuccess,t,g define the probabilities that the request is successful with 
respect to the type and genre.  

The additional hop is an approximation for the hops that occur when the next 
digit cannot be matched, but when nevertheless closer nodes are available in the 
routing table. As type, genre, and address IDs are uniformly distributed, it is 
unlikely that more than one such hop occurs. 
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Figure 4. Left: Node degree; Right: Number of hops 

Based on the likelihood that a node exists sharing i digits with the lookup ID, 
pexist,i=1-(1-b-i)Nt,g,n, it is:  

nh t g n, , , i pexist i, pexist i 1+,–( )TFi
i 1=

Rt g n, ,

∑=

 
where pexist,R+1 is defined to be zero. As some of the hops from one row to the next 
one happen on one and the same node and do not represent actual hops on the 
overlay network, the tunneling factor TFi is introduced. It represents the ratio of 
hops on the overlay network to advances in routing table rows up to row i and can 
be derived to be 

TFi
b i–

i
------- i

k 
  k b 1–( )k 1 b 1––( )=

k 1=

i

∑=

 
The additional pruning factor achieved through the introduction of GoIs 

becomes 

fp GoI, 1
nh

nh t, nh g, nh n, 1+ + +
----------------------------------------------------–=

 
The average number of hops is plotted in Figure 4 (right) for b=16, Rt=Rg=8, 

Rn=16 as for the node degree. As before, for comparison, logbN and a reference 
curve without grouping (Rt=Rg=0, Rn=32), which should show similar results as 
algorithms like Tapestry or Pastry are also shown. Two curves for 50 and 5 different 
types and different genres within a type, respectively, show the expected number of 
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hops, when there is no pruning due to a node requesting a lookup key within its own 
GoI or due to quick abortion of the lookup when the type or genre is not available 
(psuccess=100%, pGoI=0%). For a reasonably large number of nodes, both curves are 
close to logbN and exhibit a slight gain compared to the reference case. The last 
curve represents the average number of hops for 50 different types and genres within 
a type when there is pruning; the scenario assumes pGoI,t=70%, pGoI,t,g=30%, 
psuccess,t=95%, and psuccess,t,g=85%. In this case, the pruning factor becomes 37% 
compared to the reference case when there are 1 million nodes in the network. 

Additional pruning gains can be achieved using a higher-level hierarchy for GoI 
structuring. Effects on the node degree will be limited and beneficial as long as no 
additional virtual nodes are created; this, however, is highly dependent on the 
thresholding and aggregation parameters applied.  

The effects of an increase in amount and type of information in the system can 
be studied by comparing the graphs for Nt,g=5 and Nt,g=50 in Figure 4: the effect is 
limited and mostly visible in small networks only. 

5. CONCLUSIONS AND FUTURE WORK 

AGILE is a new lookup and routing algorithm bringing requestors and providers 
close together in Groups-of-Interest (GoI), tackling important scalability and 
performance concerns about the overlay network management for lookup and 
routing, while at the same time promoting system fairness. It can be applied to all 
peer-to-peer applications requiring such lookup services, as diverse as file sharing, 
distributed search and indexing, and, with some adaptations, distributed storage or 
file systems and distributed computing. 

In future versions of the algorithm, searches with regular search expressions will 
be investigated. As a first step, search within a GoI can be replaced by controlled 
flooding rather than hash-based routing. Subsequently, a globally known semantic 
closeness operation will be needed to replace the hashing scheme, combined with 
proper load balancing, as the pseudo-random uniform load distribution due to 
hashing will be lost. 
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