
AN SMING-CENTRIC PROXY AGENT
FOR INTEGRATED MONITORING
AND PROVISIONING

Emmanuel Nataf, Olivier Festor, Guillaume Doyen
The Madynes Research Team
LORIA - University of Nancy 2 - INRIA
615, rue du Jardin Botanique
54602 Villers-lès-Nancy, France
Surname.Name@loria.fr

Abstract:
The combined use of SNMP and policy based frameworks is growing very fast. From

both an information model and programmation interface point of view, an integrated view
is highly desirable. Several approaches have been proposed so far in the information model
sphere. In this paper we present the experience gained in using the SMIng approach for
building an integrated management environment that provides seamless integration of both
policy provisioning and MIB monitoring. The developed management environment has
been deployed for managing an active network called FLAME, dedicated to dynamic IP
monitoring.

Keywords: SMIng, management platform, active networks, integration

1. INTRODUCTION
During the last few years, many attention has been brought to novel information

modelling techniques, management services and protocols. Results from these efforts
are very different in nature mostly because they emerge from different communities
with very different requirements (e.g., backward compatibility with a legacy approach
or technology conformance). As part of the Operations and Management area of the
IETF, a working group was created back in 2000 to address the issue of the evolution
of the SNMP Structure of Management Information Version 2 (SMIv2) [11, 12, 10].
Part of this evolution is also concerned with a subset of the policy management frame-
work related to provisioning (COPS-PR [3]) and the associated policy information
specification technique (SPPI [9]).

While working on a management framework for an active network environment
called FLAME, we faced the need to deal within management applications with both
management policies in a provisioning framework and monitoring services relying on
SNMP. One of the goals we had in mind, when looking at possible solutions was to
provide an unique view of objects to the management applications. Thus, we natu-
rally looked at SMIngNext Generation Structure of Management Information which
provides a neutral object model and offers mapping facilities to both SNMP-SMI and
COPS-PR SPPI.

FLAME is an active network based architecture developed within our research
group dedicated to the hosting of IPv6 monitoring and management services. It in-

E. Nataf, O. Festor, G. Doyen

cludes a BSD native execution environment which can host active applications, a set
of servers from which active applications can be downloaded and a management en-
vironment dedicated to the configuration and monitoring of the active management
framework itself. The management interface of a node is divided into three parts: a
command line interface for configuration and activation purpose, an SNMP agent im-
plementing all objects of MIB-II together with objects dedicated to the active node
monitoring, and a policy enforcement point (PEP) through which the node configura-
tion is downloaded and activity policies enforced. This environment has been used for
various management purposes among which multicast monitoring [13].

In this paper we share the experience gained with SMIng at both management infor-
mation specification and mapping levels, as well as at a programmatic and engineering
level within a management platform. At the information modelling level, we both per-
formed reverse engineering from SPPI and SMIv2 specifications to SMIng classes
and we extended the model with specific SMIng objects that were later mapped to
SNMP and/or COPS-PR respectively. For the platform part, we describe the design
and the development of this SMIng environment and show how it was applied to the
FLAME execution environment, used here as the managed environment and not as the
management platform.

The remainder of the paper is organised as follows. Section 2 presents the needs of
management and provisioning in FLAME. From theses needs, we present an SMIng
specification in section 3. Section 4 describes the architecture of the proxy between
SMIng objects and management/provisioning information on the network. Section 5
details how we built a proxy agent from SMIng specifications and how it was inte-
grated with the Java JMX environment. The use of the proxy for FLAME is shown in
the section 6. Related work and conclusions are given in sections 7 and 8.

2. FLAME MANAGEMENT AND PROVISIONING
As already described in the introduction, FLAME is an active network dedicated

to host IPv6 monitoring services. The architecture of a FLAME node is illustrated in
Figure 1. It is close to several other active nodes like the ASP EE [2] on which it was
initially built.

Basically, a node is divided into three parts: the standard routing engine of the node
on which the environment resides, the execution environment (EE) which offers the
basic services to active applications (dynamic code loading, access to node resources,
naming,� � �). Active applications (AA) are executed on execution environments and
use in addition to standard services, dedicated APIs provided by the FLAME envi-
ronment (e.g., a packet capture API, a multicast routing table manipulation API,� � �).
These APIs are also globally named in FLAME and can be dynamically deployed
through a FLAME specific management operation within a node. Each element within
a FLAME node is under the control of a standard management entity through which
configuration and control is performed. Each node today hosts one SNMP agent as
well as a PEP for enforcing configuration choices. We use separate technologies for
management and provisioning, with SNMP and COPS-PR, because some of their spe-
cific properties match well with the FLAME environment. Monitoring information is
made of several counters modelling active node activity. The role concept of COPS-
PR is a way we use to distinguish some FLAME node (border gateway, community
of nodes,� � �). Underlying TCP connections reduce the needed complexity for the
critical operation of policy rules dowloading.

An SMIng-centric Proxy Agent

Applications

Routing Engine

PIB

flame

PEP

Agent SNMP

mib−2
MIB
flame

N
O
I
T
U
B
I
R
T
S
I
D

COPS−PR

SNMP

SMIng objects

Active Packets

AAs

Core API

loaded API

loaded API

...

Mgmt
Code
server

Code
loader

Active
packets
receiver

Mgmt

commands

FLAME NodeCOPS−PR SNMP

Network / Policy Management

Figure 1. Architecture of a FLAME node

The need of a common information model appears with the fact that several faults
can be deduced from network management data and can be reduced by policy-based
configuration. For example, some policy rules are listed below:

authorization policies, e.g., the active application���������� can be launched
on the node, if its instantiation parameters are valid (e.g., identity of the code
server for the active code, identity of the principal who wants to launch the
application);

obligation policies, e.g., an active application needs to end correctly on 99� of
its executions, an active application cannot use more than 20� bandwidth;

configuration policies, e.g., APIs that are loaded in the FLAME node,� � �

The FLAME SNMP MIB includes MIB-II objects and several FLAME specific
ones like: the number of incoming/outgoing octets per active application, the number
of active messages processed by an active application, the owner of an active applica-
tion, the number of shutdowns of an active application,� � �

Many of theses informations could be related as when an active application shows
a number of crashes, policy rules should be changed to stop any further launch of the
suspicious application. With many such relations, management applications are less
complex with an unified interface than with differents protocol APIs. SMIng appears
to be one way to seamless integrate SNMP network management and COPS-PR/SPPI
policy rules management. To unify the management information model dedicated to
FLAME, we have built an SMIng specification for the FLAME specific objects put in
the SNMP agent as well as SMIng classes for provisioning policies (upper left part of
Figure 1).

E. Nataf, O. Festor, G. Doyen

3. SMING
SMIng (Structure of Management Information next generation) is a proposal that

was submitted to the sming IETF working group [6]. This proposal is not the sole can-
didate for standardisation (SMI-DSData Structure is an example of another possible
approach) but has the advantage of being object-oriented like, and not being bound to
any underlying approach while offering compatibility with both SNMP-SMI and SPPI.

While SMIng is described in the related drafts, we shortly present its structure
through an example (Figure 2). It contains the definition of management information
which model statistical measures of active application executions and together with
policy rules used to decide if an active application could be launched.

��� ������� 	
����
�� �
��� ���� �����������
��� ��
��� ������� 	
����
�� �
��� ���� �����������
��� ��
��� ������� ������ �
��� ���� !���"�
���������
�#� ��
��$� ������ %%���� �
���� ���� !���"�
��������
���� ��
���� ������� ��&�
��
� �
���� ���� !���"�
�������
���� ��
���� !'��� ��(������ �
���� ���
�)��� 	
����
��
���
���� ���
�)��� 	
����
�� !
��*�
��#� ���
�)��� 	
����
�� ����
��$� ��
���� !'��� �����+

, �
���� ���
�)��� 	
����
�� �� !�����
���� ���
�)��� 	
����
��
�� !�����
���� ��
���� !'��� ��"���� �
���� ���
�)��� ������ �����
���� ���
�)��� ��(������
���
���� ���
�)��� �����+

, ����
��#� ��
��$� !'��� ��-*
��
'� �
���� ���
�)��� 	
����
�� !
��*�
���� ���
�)��� 	
����
��)���+��*�
���� ��

���� !'��� ��.�����!��
���� ���
�)��� ������ �����
���� ���
�)��� %%���� ��/�
���� ���
�)��� ��&�
��
� /�
�
���� ���
�)��� ��-*
��
'� �*
�
��#� ��
��$� �����
���� ��)'� �!��/����'"���� �
����
�� �'���0��)1�1��
���� ����2����
���� ���'������ ��"���� �
����
)3�!� � �����
����
)3�!� �
��1
���
����
)3�!� �
��1!
��*�
����
)3�!� �
��1����
��#�
)3�!� � ���1�� !�����
��$�
)3�!� � ���1
�� !�����
���� ��
���� ��
���� ��
���� !
���
�
���� �
! ��.�����!�4
'�!�(�'� �
����
�� �'���0��)1�1��
���� ��)����2 ����
���� ���'������ ��.�����!� �
��#�
)3�!� � �����
��$�
)3�!� � ��/�
����
)3�!� � /�
�
����
)3�!� � �*
1!
��*�
����
)3�!� � �*
1)���+��*�
���� ��
���� ��
���� ��

Figure 2. SMIng management information specification

3.1 Type and class definitions
SMIng is designed for the definition of data interfaces. Thus, there is no procedural

or functional statement support but only data oriented specifications. SMIng provides
a set of basic data types like���	�
�����, ��
���	���, etc. From these types,
new ones can be defined through the use of the���	�	� statement. Examples of such
���	�	� statements are shown in lines 1 to 15 on Figure 2 (some�����	� and���).

SMIng provides a���

 statement to define object classes that are composed of
��������	 and	�	�� statements and can use simple inheritence (not shown in this

An SMIng-centric Proxy Agent

paper). Examples of class definitions are shown in lines 16-39 (��
���
,����
����	
and contained classes���������, ���	����� and�� !�	
���).
Class��
���
models statistical counters for executions status and network use of all
active applications designed by its name in the�����	 attribute. Class����
����	
models a policy rule for an authorized AA to be instanciated with its obligations (i.e
numbers of crashes and network bandwith use).

Class attributes can be either of base types (defined through the���	�	� statement
as shown in lines 17-19, 22, 23, 26, 31, 32, 35-37) or of another class (lines 27, 28 and
38).

At this level, one can specify when a new active application, sayaa is ready to be
downloaded by the FLAME node, an instance of the����
����	 class is created in
all nodes that will useaa to enable launches. The nameaa and other property values
are given respectively to the defintion of the class (line 35). The first launch in a node
will be followed by the creation of a��
���
 with the nameaa and counters start to
be updated. Further launches ofaa will equally update the��
���
 instance.

A fault state appears when an active application shows a number of shutdowns in
the���
! attribute of��
���
 greater than the same attribute in the����
����	.
This case could be detected by a polling procedure (notification reception through an
SMIng event is possible but not used here) and the following action should be the
deletion of the����
����	 object. Therefore, already launched applications could
(maybe correctly) finish but no other launch of this application on this node can be
done. On the other hand one can choose to increase the crash number threshold.

3.2 Mapping specification
The core of SMIng is protocol independent and can be used for both network and

policy management as well as other domains. As these approaches strongly rely on
dedicated information models, albeit sometimes very similar, and specific protocols,
SMIng offers a facility to express the specification of a mapping from classes and
their attributes to protocol specific information. As an example, we show both a SNMP
(lines 40 to 53) and a COPS-PR (lines 54 to 66) mapping specifications. Each mapping
specifies which SMI table or SPPI provisioning class of the existing MIB and PIB
for FLAME implements some SMIng object class. The��� part (lines 42 and 55)
gives the global object identifier (other SMIng constructs allow a full definition of the
object identifiers for����	"��� and����	"���). Following is the index column(s)
specification of the table or PRC and the implemented SMIng class (lines 44 and 58).
The ��#	�� statement maps a column identifier to an SMIng class attribute. If an
attribute is itself a class, a dotted notation is used to go until a simple value attribute is
found (lines 46-50 and 62, 63).

4. A SMING-BASED PROXY AGENT
ARCHITECTURE

Remember that our goal is to build a set of tools that enable SMIng specifications
to be used in the core of management platforms as a unique data model. We there-
fore need to instantiate SMIng objects in order to use them as programmatic object
instances.
We expect management applications to become less complex by hiding specific pro-

E. Nataf, O. Festor, G. Doyen

tocol dependent operations and as a consequence, to be more homogeneous when
processing both policy and network management information.

The architecture that was designed can be seen as an SMIng distributed middleware
hosting SMIng object instances. Groups of objects are hosted by several integration
agents which are SMIng proxies. This is illustrated in Figure 3.

manager
SNMP

SNMP
a
s

c
o

a

c

so

SMIng proxy agents

COPS−PR

PDP

SMIng−based

applications
management

COPS−PR

SNMP

agent

PEP

agent

PEP

Figure 3. General architecture

An SMIng proxy agent contains an object view (interfaceo) that can be used by
object-oriented management applications to access, modify, create or delete managed
object instances. These managed objects can then be mapped to underlying resources
through two main interfaces:

interfaces can be seen as an SNMP manager that has direct access to local or
remote SNMP agents. Through this interface, mapping between SMIng and
SNMP SMI is automated according to the rules defined in
��� statement im-
plementation specifications;

interfacec can be seen as a policy decision point ($%$) that pushes policy infor-
mation to policy enforcement points ($&$) using the COPS-PR protocol. Here
we stick to the mappings defined in���
�� statement implementation specifi-
cations.

A third interface (nameda) represents access to internal SMIng objects.

5. IMPLEMENTATION
5.1 Generation of object instances

To implement the proxy architecture for SMIng objects, we chose the Java Man-
agement eXtension (JMX) framework1. Figure 4 contains an illustration of an SMIng
proxy agent that includes managed objects taken from the example given in Figure 2.

Only Java objects corresponding to���	�	� values are protocol dependent (�����	

or �����	���). Other SMIng objects are created after the instanciation of contained

1http://java.sun.com/products/JavaManagement/

An SMIng-centric Proxy Agent

objects (��
���
 is created after���������) and linked to each other from the im-
plementation specification. In doing so, the process of object instanciation never leads
to “null pointer” troubles.

Html

JMX

 AAName

adaptor

 AAName

COPS−PR
HTTP

SNMP

Counter32AARunning

run

crash

run

name

AAStats

name

AAInstance

Figure 4. SMIng object instances in a JMX container

Figure 5 shows how the instance creation process is automatically generated from
the implementation specification. On the left part of the figure there is a schematic
representation of the implementation. It is always a tree structure that is given by our
SMIng parser and followed by our proxy agent generator. The root is the name of
the class. Intermediate nodes are always attributes that reference a class, while leaf
objects are simple types. The right part shows a subset of the generated Java code
for this tree. The code of the lines 1 to 6 is for the creation of SMIng���	�	� ob-
jects. Parameters of these objects are generated following the object-identifier naming
of the implementation (here the�����	����
���
 as in Figure 2 line 41) and the
remote SNMP agent from which the MIB is translated. Once these leaf objects are
created, the generated code creates SMIng object instances (lines 7-9) and sets their
attributes through its constructor method invocation The same code is generated for
the����
����	 class with its attributes.

end

(1)
(5)

AAStats

name run

run crash

net

inOctets outOctets

(8)

(9)

(2) (3) (4) (6) (7)

��� ���� 5 ��+ �������111��
���
��
�� 5 ��+ 	
����
���111��
���
��!
��* 5 ��+ 	
����
���111��
���
����� 5 ��+ 	
����
���111��
��� ����� !���� 5

��+ 	
����
���111��
��� ���
�� !���� 5

��+ 	
����
���111��
���
�� 5 ��+ ��(�������
��
��6

��!
��*6
�������
��� ��� 5

��+ �����+

,������ !����6
���
�� !������

�#� ������ 5 ��+ ��"���������6

��6 �����

Figure 5. Implementation scheme generation

This code is generated for each SMIng class implemented directly by an SNMP
table. When the processed group is a table, there will be exactly as many object in-
stances created as the number of lines in the table for each SNMP managed object. In

E. Nataf, O. Festor, G. Doyen

order to do this, we use the�	�"�	'� SNMP request, starting with the table SNMP
object identifier and walk through the table in order to get the values we need to create
the leaf objects first, and end with containing objects. When SMIng classes are imple-
mented by a scalar group there should be only one object created by the SNMP agent
proxy to SMIng and we use one�	� request for all needed values.

When the underlying mapping is COPS-PR, the approach is similar. Mapping to
SPPI can even be seen as a subset of the mapping from SMIng to SMIv2 since only
tables can be defined using SPPI (no scalar) and these tables all hold an unique and
known index. A major difference is that SPPI values in PIB should not be read from
the PEP, as it is the case for SMI values from agents MIBs. Instead the creation of
such one SMIng instance should be mapped to a provisioning COPS-PR request for
the corresponding rule in the PEP (or in a PDP that will forward rules as in Figure 3).

5.2 Naming scheme
Within a JMX container, object instances are named according to a standard naming

scheme, very close to the OSI Distinguished Name pattern. The general form of an
instance name is:

%�����((����) * ����	+����� * ����	 ,,,

where%�����, each����i (attribute) and����	 are character strings. Within our
SMIng mapping entity, we use this naming convention to uniquely identify SMIng
instances as follows:

the domain identifier is the SMIng module name where the class is defined;

attributes and values are defined as:

– l = SNMP agent or COPS-PR PEP DNS name or IP address

– c = SMIng class name

– p = position of the class in the containing class

– i = instance number

Every instance has a name which contains these attributes. Since JMX does not put any
constraint on the order of attribute occurrences in a name (the lexicographic ordering
is defined as the normal form), they can appear in any order. Figure 6 illustrates
the naming with our FLAME example. The position of an instance in a containing
instance is built from the containing SMIng class definition and from the instance
number of the latter object according to its class identifier. For example the��
���

class (Figure 2 lines 25-29) has three attributes and their relative positions are 1, 2
and 3. We chose to give the value “1”to each SMIng object that is not contained
in any other SMIng object. So objects referenced by���	, ��� and�	� attributes
have respectively “1.1”, “1.2” and “1.3” for their p naming attribute value. Contained
SMIng objects have the same prefix than the containing SMIng one. We chose to
keep an SMI object identifier like notation to reduce the length of object name. If the
class is not contained by any other class, its name is the class name followed by same
value for the position and the instance number. We keep this redundant information to
always have the same number of naming attributes. The instance number attribute is
given by the proxy agent for each object creation. If an SMIng object is contained by
more than one other object, this former should have as many names. In any case, one
name provides a way to access to exactly one object instance.

An SMIng-centric Proxy Agent

net

c=Counter32, p=1.3.2, i=4

c=Counter32, p=1.3,1, i=3

c=AANetwork, p=1.3, i=1

c=Counter32, p=1.2.2, i=2

c=Counter32, p=1.2.1, i=1

c=AARunning, p=1.2, i=1

c=AAName, p=1.1, i=1

outOctets
inOctets

run
crash

c=AAStats, p=1, i=1

name
run

Figure 6. Naming of instances

5.3 Notification support
SMIng allows event definitions in object classes. Such a feature of object instances

is only implemented by SNMP notification in the SNMP framework (COPS-PR does
not support notifications). Figure 7 illustrates the use of events whithin SMIng objects.

�
�	� and�� are object classes that represent the system and the interface group of
MIB-II. Events are defined in classes (lines 3 and 8), after attributes. The
��� state-
ment (lines 10-21) contains the implementation of these events. Standard notifications
(lines 11, 12 and 15, 16) are related to object events by a
�����
 statement (lines 13
and 17) with a dotted notation (ClassName . eventName). If the trap carries SNMP ob-
ject values that are also SMIng attribute values, a mapping can be specified (line 18).
In this case, a�������� notification received will update the�����
���	SMIng ob-
ject attribute (line 6). Figure 8 shows how SNMP traps are catched by a dedicated ob-

��� !'��� "����� �
��� 111
��� �/��� +�
�"��
��
��� ��
��� !'��� .� �
��� ���
�)��� �����"���� �����"�����
��� 111
��� �/��� '��,7
+��
�#� �
��$� �����
���� �
����!���
� +�
�"��
� �

����
�� ����-
���1��
���� �����'� "�����1+�
�"��
����
���� ��
���� �
����!���
� '��,7
+� �
����
�� ����-
���1��
���� �����'� .�1'��,7
+� �
����
)3�!� .�1�����"�����
��#� ��
��$� ��
���� ��

Figure 7. SMIng events definition and implementation

ject playing the role of an SNMP trap catcher. Its role is also to map incoming SNMP
notifications to java object that are forwarded to registered SMIng object instances.
In the context of JMX, the trap catcher and SMIng objects (that are all JMX MBean
objects) must implements specific interfaces. The������������-�
�	�	� interface
allows SMIng object to receive notification signal by registering itself with the stan-
dard notification��� to a������������.������
�	� interface implemented by the
 �������!	�.

Generated SMIng events follow a similar operation, i.e., they are distributed using
the JMX notification model.

E. Nataf, O. Festor, G. Doyen

Agent
SNMP

X

M

J

SNMP TRAP

TrapCatcherSMIng objects
NotificationListener��

��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

x : 1.3.6.1.6.3.1.1.5.3 (linkDown NOTIFICATION−TYPE)

"x"

y : 1.3.6.1.6.3.1.1.5.2 (warmStart NOTIFICATION−TYPE)

"y"

��
��
��

��
��
��

NotificationBroadcaster

Figure 8. SMIng events support

Some standard notifications are related with SNMP table entries because they con-
tain an index value that specifies which line of the table is the root of the generated
SNMP trap.

When an SMIng class containing event definition is implemented by an SNMP
table and when there is a standard notification that carries an index value then each
SMIng object (one object per line) should be able to capture the corresponding event.
This index value is used by the �������!	� to identify the SMIng object.

In addition, some notifications carry values that should be updated in the object
instance, or be interpreted as the need to refresh some object attribute. We exploit this
in conjunction whith a regular polling service in charge of maintaining the consistency
between SNMP MIBs and the proxy.

5.4 Code generation tools
For generating the Java classes, we use an SMIng extension of the MODERES

framework. MODERES is basically a set of Open Source Java tools maintained by
our research group dedicated to the parsing and processing of multi-approaches man-
agement information models (GDMO/ASN.1 SMIv1, SMIv2, CIM-MOF,� � �). The
toolkit is available on the group’s web page2.

Figure 9 shows the use of these compiler tools for the SMIng proxy generation.
First a syntax and semantics check is performed on incoming SMIng specifications
(both core definition and protocol mappings) by the parser. The specifications are
then stored in a repository in the form of a decorated syntax tree. This repository is
the source for the SMIng agent toolkit (
�������) that generates Java classes and
interface mappings to SMIng classes. Note that SMIng���	�	� as well as events, are
also mapped to Java classes and interfaces (dashed arrows). Additionally some Java
classes are generated in order to realize the necessary operation to get/set values in a
specific protocol (SNMP, COPS-PR).

2http://www.madynes.org

An SMIng-centric Proxy Agent

repository

SMIng Atk

parser
classes

impl.

SMIng

classes

classes &
Java

classes
Java

interfaces

Figure 9. SMIng tools

6. APPLICATION TO FLAME
Having all components defined as SMIng objects was of great use especially for

those applications which access objects mapped to the two worlds. For example, one
policy application automatically updates the policy repository of all nodes, if it finds
out that an application uses too many resources on a node (e.g., number of crashes).
The updated policy forbids instantiation of the application with the parameters that
cause the trouble in one node. Building such an application with our framework is
straight-forward since one only needs to know the SMIng class that corresponds to
this policy family and set up a monitoring service for the attribute that represents
the number of crashes of an active application. To push a configuration policy that
forbids the execution and further instantiation of an application, only the policy object
����
����	defined in Figure 2 lines 34-39 need to be instantiated. Once instantiated,
the decision is mapped onto a COPS-PR service invocation and pushed towards the
concerned PEP. A java.rmi adaptor to the SMIng proxy agent was designed to allow
processing in our network management java application.

7. RELATED WORK
The object oriented network modelling is well described in [1]. The concept of

Meta Managed Objects [14] contains the same base elements as those proposed by
SMIng with a separate definition of data and their different representations. Other
mappings exists from objects to TMN or SNMP management information [16, 4] or
the opposite way e.g., from WBEM to OSI based management [5].

Thelibsmi project of the Technical University of Braunschweig3 provides a library
to access SMI information. A component of this library is an SMIng parser that allows
a syntax and semantical analysis of modules. An HTML version can be tested on line
at the Simple Web site4. An API provides access to MIB and PIB modules informa-
tion to ease the development of management applications. Our project has a structure
similar to thelibsmi parser. The main differences are the programming language envi-

3http://www.ibr.cs.tu-bs.de/projects/libsmi
4http://www.simpleweb.org

E. Nataf, O. Festor, G. Doyen

ronment (C forlibsmi and Java in our case) and the application domains (information
model core tools forlibsmi and agent toolkit in our case).

As mentioned in different parts of the paper, the FLAME environment configura-
tion is done through policy-based management. The use of policy-based approaches
for the management of active networks is investigated in several other places and is
not explained in this paper. The reader will find studies on this topic in [15] and [8]
for policies dedicated to resource management in active networks.

8. CONCLUSION AND FUTURE WORK
In this paper, we described a software architecture based on the SMIng approach

and its application to the management of an active network infrastructure called FLA-
ME (with is itself an environment dedicated to the management of IP networks).

Several lessons can be learned from this experience. First, the situation where both
policy-based approaches and the standard SNMP framework need to be combined ex-
ists and the number of occurrences will probably grow in the next few years (e.g.,
the COPS model is proposed for provisioning and outsourcing in several 3G archi-
tectures). The second lesson is that SMIng appears to be a reasonable evolution in
the standard framework, in the sense that it provides enough support for our needs
namely object-orientation and automated integration of monitoring and provisioning.
As it was demonstrated in this paper, the approach can be implemented to build an
operational management framework. The third lesson, which is obvious, is that the
design and development of applications that combine policy manipulation and MIB
object access is much more convenient within a common framework. This has been
demonstrated while we developed the applications for the active environment.

The first evolution of the presented work is to let the designed management frame-
work follow the evolution of the outcome from future evolutions of IETF groups work-
ing on this topic. Work is still in progress on this subject and extended proposals will
emerge. In parallel to this work, we are looking at how the mapping principles de-
fined in SMIng can be reused in other approaches like WBEM since the same need
for dynamic mapping will appear for these approaches as well. Finally, we will con-
tinue the refinement of policy definitions for managing the FLAME environment. The
final goal is to end-up with a complete automated monitoring environment driven by
pushing configuration policies into the active nodes.

References
[1] S. Bapat.Object-Oriented Networks : Models for architecture, operations and management. Prentice

Hall, 1994.

[2] B. Braden, A. Cerpa, T. Faber, B. Lindell, G. Phillips, and J. Kann. ASP EE: An Active Execution
Environment for Network Control Protocols. Technical report, USC/ISI, December 1999.

[3] K. Chan, J. Seligon, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer, R. Yavatkar, and
A. Smith. COPS Usage for Policy Provisionning (COPS-PR), RFC3084, March 2001.

[4] T.R. Chatt. TMN/C++: An object-oriented API for GDMO, CMIS, and ASN.1. In[7], pages 177–
191, 1997.

[5] O. Festor, P. Festor, L. Andrey, and N. Ben Youssef. Integration of WBEM-based Management
Agents in the OSI Framework. 1999. in Integrated Network Management, VI, Sloman, M. and
Mazumdar, S. and Lupu, E. editors,IEEE Press, Proceedings of the IFIP/IEEE 6th International Sym-
posium on Integrated Management, Boston, MA, 24-29 Mai, 1999.

[6] F. Strauss J. Schoenwaelder. Next generation structure of management information for the internet. In
R. Stadler & B. Stiller, editor,Active Technologies for Network and Service Management, DSOM’99

An SMIng-centric Proxy Agent

Zurich, Switzerland, pages 93 – 106. Lecture Note in Computer Science, IFIP/IEEE, Springer, Octo-
ber 1999.

[7] A. Lazar, R. Saracco, and R. Stadler, editors.Integrated Management V. IFIP, Chapman & Hall, May
1997.

[8] I. Liabotis, O. Prnjat, and L. Sacks. Policy-Based Resource Management for Application Level
Active NEtworks. August 2001. Proc. Second IEEE Latin America Network Operations and Man-
agement Symposium, LANOMS’2001, Belo Horizonte, Brazil.

[9] K. McCloghrie, M. Fine, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, and F. Reichmeyer.
Structure of Policy Provisionning Information (SPPI), RFC3159, August 2001.

[10] K. McCloghrie, D. Perkins, and J. Schoenwaelder. Conformance Statements for SMIv2., April 1999.
IETF, STD58, RFC 2580.

[11] K. McCloghrie, D. Perkins, and J. Schoenwaelder. Structure of Management Information Version 2
(SMIv2), April 1999. IETF, STD58, RFC 2578.

[12] K. McCloghrie, D. Perkins, and J. Schoenwaelder. Textual Conventions for SMIv2., April 1999.
IETF, STD58, RFC 2579.

[13] H. Sallay, O. Festor, and R. State. A distributed Management Platform for Integrated Multicast Mon-
itoring. pages 483–496, 2002. Proc. IEEE/IFIP Network Operations and Management Symposium
NOMS’2002, R. Stadler and M. Ulema, editors, IEEE ISBN 0-7803-7382-0, Florence, Italy, April
2002.

[14] J. Seitz. Meta managed objects. In[7], pages 650 – 660.

[15] M. Sloman and E. Lupu. Policy Specification for Programmable Networks. In S. Covaci, edi-
tor, Active Networks: Proc. First International Working Conference, IWAN’99, pages 73–84, Berlin,
Germany, June 1999. Springer Verlag, LNCS 1653.

[16] N. Soukouti and U. Hollberg. Joint Inter Domain Management: CORBA, CMIP and SNMP. In[7],
pages 153–164, 1997.

