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Abstract: Mobile networks produce a huge amount of spatio-temportd. d&@he data consists of
parameters of base stations and quality information obcallhe Self-Organizing Map
(SOM) is an efficient tool for visualization and clusterinfroultidimensional data. It
transforms the input vectors on two-dimensional grid of@iype vectors and orders them.
The ordered prototype vectors are easier to visualize aplbrexthan the original data.
There are two possible ways to start the analysis. We cad kitiher a model of the
network using state vectors with parameters from all mobéls or a general one cell
model trained using one cell state vectors from all cellsbdth methods further analysis
is needed. In the first method the distributions of parareetéone cell can be compared
with the others and in the second it can be compared how veefjeheral model represents

each cell.
Keywords: Neural networks, self-organizing map, cellular networgfprmance optimisation.
1. Introduction

As the launch of third generation technology approachesraiprs are forming
strategies for the deployment of their networks. Thesdegias must be supported
by realistic business plans both in terms of future serviemahd estimates and the
requirement for investment in network infrastructure.

When provisioning 3G services the control for the accessqaar be divided into
three levels. Two lowest layers are radio resource managgiRBM) functionalities
and the highest hierarchy level is control performed by #i@vork management sys-
tem (NMS). More about this control hierarchy can be foundlid][ The scope of this
paper is the NMS level. The role of NMS is essential owing ®ftict that major en-
hancements or new service roll-outs are planned by utjifie measured long term
performance data from existing network.

The multidimensional performance space in future cello&works force the tra-
ditional operator processes to go through some major clsaghditional challenges
arise from the fact that in the case of 3G there will be mudtgrvices, customer dif-
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ferentiation (customers with different priorities) and Itmle radio access technolo-
gies to be managed simultaneously, optimally, as one resqaool. Furthermore, the
high competitive situation forces operators to fast chatiigservice provisioning. All
this will move the focus of operators daily tasks from offlpianning to rapid network
performance evaluation, trend analysis and optimisatasel on network measure-
ments. Therefore new analysis schemes for 3G networks asemted in this paper.
The strength of the proposed method is its ability to combinétiple measurements
and thus provide the result in a simple format despite thetfat the input space
is very complex. The method also aids the operator in vizinglithe service per-
formance and in classifying the cells. The cell classifaraficlustering) will aid the
operator in setting the configuration parameters contiglihe service provisioning.
Furthermore, similarly behaving cells can be identified #tnds problem solving in
the network is more effective.

In this paper, the use of the Self-Organizing Map (SOM) inroj#tation process
is proposed. The SOM is a widely used neural network algoritfi. It has several
beneficial features that make it a useful tool in data minimdjexploration. The SOM
follows the probability density function of the underlyidgta and functions, thus, as
an efficient clustering and data reduction algorithm. Thé/S®readily explainable,
simple and - perhaps most importantly - highly visual. SOMdzhmethods have
been applied in the analysis of processes data, e.g., inestédorest industry [8]. In
addition, the SOM has been used in analysis and monitoriigle€ommunications
systems. Applications include novel equalizer structfmesliscrete-signal detection
and adaptive resource allocation in telecommunicatiohgaré&s. In this paper, wide-
band code division multiple access (WCDMA) mobile netwodsbeen analyzed
using the SOM. The goal is to develop efficient adaptive madtor monitoring the
network behavior and performance. Special interest is atirfinclusters of mobile
cells, which can be configured using similar parameters.

In [3], [5] and [13] examples of 3G optimization cases araespnted. In general
the availability of references related to 3G analysis artdrdpation is limited. This is
owing to the fact that there are very few commercial netwaldgsioyed at the time of
writing. In abovementioned references the approach has f@@meter centric: how
to measure and tune configuration parameters to obtain d@etéormance. In the
case of this paper the network status visualization is thie foaus. This information
can be further used in order to obtain optimization of cdrpacameter/parameter set
of selected cells.

In the next section, the application domain which is molaldio access network
is described. Then the SOM algorithm is presented in Se@iand two methods to
classify mobile cells are described in Sections 4 and 5.

2. Mobile network and the data

The scope of this section is to describe the used networlasiceand the param-
eters used in the simulations. The data used in this work bas benerated using
WCDMA radio network simulator [6]. The WCDMA radio networledicted in Fig. 1
has been planned to provide 64-kbps service with 95% outclna@rage probability.
The average site distance is around 910 m.

The network configuration used to produce the data consi$tg® base stations in
Helsinki city area. The users of the network were circuittshed with 64-kbps and
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Figure 1.  Helsinki city area with base stations.

the admission control was parameterized so that uplinkference had no impact on
the admission process. The most important radio networklsition parameters are
listed in Table 1.

Table 1. Important radio network parameters
Terminal maximum power 126 mW
Base station maximum power 20W
Base station maximum power per link 450 mW
Target of UL/DL FER 5%
Uplink system noise -102.9 dBm
Downlink system noise -99.9 dBm
Terminal speed 3 km/h

Used propagation model was Okumura-Hata with average ameaction factor
of -1.5 dB (excluding water areas). The multipath channetiehavas Vehicular A:
five-taps with gains of -2.9, -5.2, -9.5, -13 and -15 dB retipely.

Slow fading deviation was 8 dB and the correlation distanas 80 m. Minimum
coupling loss was 50 dB. Pilot power was 1 W. Softhandover limaised by saving

maximum 3 links per terminal.

Power control is done once in a frame only to speed up the atioal The power
control step size is 0 to 15 dB depending on the differencedst the averagsg, /I,
over 10 previous frames and the tard&l/ I, [9]. Number of subscribers was 2112,
which generate five 120 second calls on the average in an Tiotal. simulation time

was 1800 seconds.

The state of the network is characterized by 17 parameteeadi base station
which are saved every 100ms. The parametersinclude upisk naise in dBs, down-



Raivio, Simula, Laiho and Lehtiméaki

link average total transmission power in watts, number @rsignd average frame
error rate (FER) of both uplink and downlink.

In this study, only uplink noise raise and uplink FER of eaelt is used. A loga-
rithmic scale with10~2 as minimum FER is used.

3. Self-Organizing Map

The Self-Organizing Map forms a nonlinear topology presgrmapping from the
input space to the output space. This means that patterngaeaother in the input
space are mapped to neurons which are close to each other iretial net. In the
original algorithm, the SOM is trained by the following uipguvised algorithm.

Each input vectog(¢) is compared with node vectors; to find the best-matching
unit (BMU) c.

(|l = me|| = ming{{[a —ml} 1)

The best-matching node and the neighboring nodes are nibliftee direction of
the input data.

m;(t+ 1) = my(t) + a(®)hei (€)[z(t) — my(t)] (2)

The neighborhood functioh,; is usually a Gaussian function, which is centered
around node and multiplied by decreasing learning ratg).

One step of the training algorithm of the SOM is illustratadFig. 2. The size
of the SOM is 16 units, which have been arranged into a twoedsional grid of 4
by 4 units. A data sample is marked with a cross; the blackesrare the values of
the prototype vectors before, and the gray circles afteatipd them towards the data
sample. This kind of an update step is repeated iterativaling the training process.

Figure 2.  Anillustration of the SOM training.

In this work, a batch version of the original algorithm is dsbecause it is com-
putationally more effective. The samples collected fronxaditime interval are first
averaged over the topological neighborhoods of the resgeginner cells in the map.
After that the node vectors are updated in one step using thesaged values, as in
the classical K-means algorithm [11].
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The SOM algorithm is able to perform both data clustering@ndalization. The
benefit of using SOM is in visualization of interesting pasfdata. The algorithm
moves the nodes of the map towards the areas of higher desfsibapped input
vectors. As a result, the SOM efficiently visualizes the Ets

4, Classification of mobile cells using correlations of SOM
component planes

Here a method for clustering mobile cells on the basis of dakae matrixes of
SOM component planes is presented. The method utilizes@ &gorithm twice.
At first SOMs of one variable are built (see Sec. 4.1). Thencthariance matrixes
of the SOM component planes are computed. Covariances obrom®re variables
are used as data to a second SOM. The outputs of the second &Qiv &lusters of
mobile cells (see Sec. 4.2). In Sec. 4.3 the classificatiarsify several variables is
demonstrated.

4.1 SOM of one variable

Data of each cell is masked so that one variable of each moddils analyzed with
the corresponding ones of the other cells. The data to bgzethhas been normalized
to zero mean and unit variance as one data vector over alkttee Elere uplink noise
raise and logarithm of uplink FER have been analyzed usia@®M. Hexagonal 2D
neighborhood grid of 10 x 15 nodes is used. Fig. 3 shows the 8@#Wponent planes
when the FER is studied. There is one component plane perreabhe cell. The
parameter values of the mobile network state at one momertieaead from similar
locations on component planes. For example, upper leftecagives one possible
combination of network error rates.

.n
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Figure 3. SOM component planes of the FERs. Minimum FER is fixedl(to2.

The component planes are visualized using a common coler &tiis makes it
possible to see the real error rates, but it also hides thélesrwariations inside the
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cells. In the figure only some of the cells seem to differ fréma tommon behavior.
Cell 26 has a lot higher FER than all the others.

4.2 Reorganized SOM component planes

If we are interested in, for example, to find out which mobil< have similar
FER distribution, the task of human analyzer can be maderagsiurther processing
the component planes of SOM. This kind of postprocessingarerimportant if the
number of component planes is higher.

The component planes are considered as separate figuregiadboe matrix of the
figures is computed by first converting the figure dot or nodees7; to vectorsa”,
wherei andj are the coordinates on the map ands the mobile cell number. The
length of each vectat™ is the product of component plane dimensions.

The covariance matrix’ of the planes:™ is the new data, which will be used in
Sec. 4.3. This data has one row for each mobile cell. A newrsktzvel SOM is
trained using the covariance matrix. The topology of the 8&WM is 2D rectangular
grid. Because 32 component planes are analyzed grid of siz8 8odes is used.
The covariance matrix row of each cell is mapped on the setmmd SOM and the
best-matching unit (BMU) for each mobile cell is found. Thapmodes are labeled
using the results of BMU search.

The second level SOM can be visualized using the labels ardtresponding first
level SOM component planes. In the latter case the SOM copmiqulanes have been
reorganized so that the similar ones locate near each dthisrmakes it easier to find
correlations between SOM components.

The SOM planes reorganization method has been discusdied ig[14] and [15].
In the latter paper several modifications of the algorithmehbeen represented. In
Fig. 4 the SOM component planes of Fig. 3 have been reordesiad the method
above.

From the Fig. 4 we can see that cell 26 has higher error ratetbigeothers and that
also the FER distributions of cells 12, 14, 17, 21, 25, 29, if@rdquite much from
the others. The rest of the cells have similar FER distrdsutiThe different behavior
of cells can be partly explained with the help of the radionwek plan: cells 26 and
21 suffer from bad interference situation (due to the faat the water areas allow
easy propagation for interfering signals), in case of cEllsand 29 the difference can
be explained with the position of the cell. These cells acated at the edge of the
network, and thus only little data is available. Number daghboring interfering cells
is also lower compared to the other cells.

4.3 Classification using several variables

Several SOMs for different variables can be built and reoigd using the meth-
ods of previous sections. The covariance matrixgof all first level SOMs can be
combined so that we get a new data matix= [CC;...], k # [. Matrix C has a
row C" for each celln. The row is a concatenated vector of cell correlations ofluse
variables.

When the SOM is trained using this new data, we are able to getveordering of
the cells. The result (Fig. 5) is about the same as in Fig. 4y &alls 14, 21, 25 and 26
differ from the others. It is obvious that in this case cati@ns of uplink noise raises
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Figure 4. SOM planes representing error rates of the mobile cells eseganized. Planes are also
labeled using cell numbers. Color scaling is as in Fig. 3.

do not have a meaningful effect on clustering. The same déflsr from common
behavior as before.

Clusters of mobile cells can be found using U-matrix pressot [12] or hierarchi-
cal clustering of SOM node vectors [16]. Hierarchical ohustg can be either divisive
or agglomerative [2]. In divisive hierarchical clusteridgta vectors are separated in
finer groupings. Agglomerative hierarchical clusteringmogels add similar groups to-
gether starting from some initial base clusters. The basgars can be either all SOM
node vectors or some set of them like local minimas. Heraympaverage hierarchical
clustering is used with SOM node vectors as base clusters.

The number of clusters can be fixed manually on basis of theat¥ixnor more
sophisticated methods like Davies-Bouldin index can bd {5 Here, the number of
clusters is fixed manually to four. The clusters of the orgjatata are shown in Fig. 6.
The classification result combined with locations of thésdehs been shown in Fig. 7.
As it can be seen, cells can be characterized and dividedlifiegent clusters. In a
radio network optimization process it is reasonable to mssthat the configuration
parameters for cells within a cluster are at least partlystn@e. The BMUs of the
original data have been printed (in Fig. 6) using subscrigmd the BMUs of the new
data set with subscript 21; means cell 1 with original data). In the new data set, the
pilot power of cells 21 and 26 have been decreased from th@atilW to 0.5W. The
reason for this change was to reduce the physical size of thescells to improve the
overall quality of service. It can be seen in the followinguls that the change was
not yet adequate.
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Figure 5.  SOM planes representing error rates are ordered usingatisres of both uplink noise raise
and FER component planes.

Figure 6.  Four clusters of mobile cells. Cell clusters are found usiogelations of both uplink noise
raise and FER component planes.
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Figure 7. Locations and classes of mobile cells.

When new data is analyzed, SOM component plane represantdtthe data has
to be constructed. The easiest way to do this is training @& &gain. When the
SOM is trained, the new data can be used in the BMU search anitoe masked
out. If the new data is masked out in the BMU search, but useshwtie neurons are
updated we can obtain similar SOM as before, but in additierget the component
planes for the new data. From the component planes new eoearimatrices can be
computed, new clusters can be found and the BMUs of the nevittenald data can
be found.

The method described above classifies mobile cells on basrielations of se-
lected variables. A model of mobile network which descritresrelations between
mobile cells has been built. This method analyses the @iivek between cells i.e.
does a bad performing cell have degrading influence alsoenelghboring cells.

5. Classification of mobile cells using cluster histograms

In Section 4 method to form data clusters was presented.nfp data was used to
build a model of the network. In this section another mettaydfassification of mo-
bile cells is presented. Also this method uses two levelSaNIS. In order to analyze
sequence of data samples instead of a single data pointgtast map is computed.
Histogram consists of proportions of data samples fallingach of the data clusters.
These histograms describe the long-term behavior of dgteesees and they are used
in the cell classification. A new SOM is generated using tistdgiram information
as the training set. By using a clustering algorithm exabiali®ral clusters can be
generated. These behavioral clusters are found by hiecatdtustering method, here
the Ward clustering [2] with local minimas of SOM node vestas base clusters. His-
tograms for each mobile cell are computed using the cluateksns. The histograms
are the data, which are used to train the second SOM and tohéEnBMUs for each
cell.
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Figure 8. SOM trained by uplink noise raises and error rates of all #is of the network.

51 General mobile cell model

In Fig. 8 the component planes of the general mobile cell madeshown. The
optimal number of clusters minimizes Davies-Bouldin indtEx

C

Z Qk +S(Ql)}

ce Qk7 Ql) (3)

whereC is the number of clusters,. within-cluster distance and.. between clusters
distance ), andQ, are the clusters. When Ward clustering is used, four clsister
states for mobile cells minimize the Davies-Bouldin indexFig. 9 state 4 represents
the higher load state and the others normal state.

4

Figure 9. Four clusters of SOM node vectors given by Ward clusteringyavies-Bouldin index.

The BMUs of data vectors give the state or the class of thelesim a sequence of
states we can compute the class frequencies of mobile ¢#disg these histograms
as data to a second level SOM we get a SOM of histograms. Tleéompof the new
SOM is 2D rectangular grid. Grid of size 8 x 8 nodes has beed asén 4.2. The
BMU search of the map is based on Kullback-Leibler distaride The Kullback-
Leibler distance or relative entropy between two probsabidistributionspx (z) and
gx () is defined by
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Dyjo= > px()log(Z

reX

where the sum is over all states of the system (i.e., the bt of the discrete
random variableX).

The group-average hierarchical clustering with local mias of SOM node vectors
as base clusters gives new clusters of mobile cells. Thesgtecs with mobile cell
BMUs are shown in Fig. 10. The result is about the same as iprh@ous section.
The shifts of states of cells when the pilot power of cells 8dl 26 is decreased are
visualized using old clusters to label the new data and coenpew histograms. As
before the BMUs of the original data have been printed usirgssript 1 and the
BMUs of the new data set with subscript 2. The clusteringrimi@tion with spatial
data is also shown in Fig. 11.

) (4)

ax (58)

Figure 10. Three clusters of mobile cells. Cell clusters are found gigiluster histograms of SOM
trained by uplink noise raise and FER of each cell.

The method described above classifies mobile cells usiisg &laquencies as mod-
els of mobile cell behavior. The distributions describe howuch a particular mobile
cell differs from a general cell model, which has been bisihg as much data as pos-
sible. General cell model is an absolute reference for @flopmance. The position
of the cell on the reference map reflects its actual perfooman

6. Conclusion

In this paper two new methods to monitor mobile network stetee been pre-
sented. In the first method, lower level SOMs of one variabdefiast build. Covari-
ance matrices of the component planes of these SOMs are $leentaitrain another



Raivio, Simula, Laiho and Lehtiméaki

c13

S R S

cl4

e
A A

5? i
7 @_i c32®—€
8 31

Figure 11. Locations and classes of base stations.

map, which reorders the mobile cells. In the second methlosyer level SOM, which
represents general mobile cell model is built. Histografth@states of the base sta-
tions are built using clusters of lower level SOM. The sanusters can be used later
to find out histograms of new data. Thus, the operational nodamch cell and the
whole network can be monitored. The first method is powertuwtmthe correlation
between the cells is of interest. The second method is used wfiormation of the
absolute performance of cells is required.

The data which is used to build the lower level SOM in the métbased on class
histograms should be selected carefully so that it reptesesll all the possible states
of the cells. If it does not, the lower level SOM should berteal again using new set
of data.

In this paper it has been demonstrated that SOM can be usealliolustering.
The possibility of finding similarly behaving cells will makhe operators’ optimiza-
tion task more cost effective. Similar configuration partansets for cells within a
cluster can be utilized. Furthermore, owing to the highlsual nature of SOM, the
multidimensional performance space can be visualized reffeetive than with tra-
ditional tools. Thus the operators have means to get arpirition of the service
performance.
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