
TOWARDS XML ORIENTED
INTERNET MANAGEMENT

Frank Strauß
Technical University Braunschweig, Germany
strauss@ibr.cs.tu-bs.de

Torsten Klie
Technical University Braunschweig, Germany
tklie@ibr.cs.tu-bs.de

Abstract: Internet Management is based on IETF specifications that have been developed and used
during the past 14 years: There are multiple versions and options of the management
protocol (SNMP), two versions of the language for specifying the structure of management
information (SMI), and more than 160 Standard MIB modules. This altogether represents
the most widely deployed management technology these days.

However, the SNMP centered management framework has some drawbacks especially
related to efficient configuration management and efficient application development pro-
cesses. Today to many people the whole family of XML technologies seems to promise a
fancy way out of this trouble.

This paper presents an approach to automatically convert SMI MIB definitions and
according SNMP agent data into XML Schema definitions and appropriate valid XML
documents. Instead of a plain mapping of MIB trees to nested XML elements, we tried to
adapt the XML philosophy of a rather flat element containment hierarchy and appropriate
XML Schema type definitions. We also present an approach towards an SNMP/XML
gateway and our thoughts on management applications based on XML technologies.

Keywords: Internet Management, Configuration Management, Information Model, Data Model,
SNMP, SMI, MIB, XML, XML Schema, XSLT, SNMP/XML Gateway.

1. Introduction
Since 1988, when the first specifications of SNMP and the SMI and the first def-

initions of managed objects have been published by the IETF [1, 2, 3], the SNMP
framework evolved dramatically in a way that problems have been identified and fixed,
many details in specifications have been clarified and — probably the hardest part of
the work — more than 160 MIB modules have been designed, refined and standard-
ized by various IETF working groups. See the latest issue of the Simple Times [4] for
an overview of all related IETF Standards documents.

The result of this solid standardization work is a fundamental technology upon
which many hardware vendors, software manufacturers, network operators, and ad-
ministrators have built software systems to manage a wide range of computer net-
works. These implementations also represent huge investments.

However, the SNMP framework has some drawbacks that cannot be solved without
massive modifications or completely new technologies [5, 6]. Some people expect that
at least two of the major problems can be solved by applying XML based technologies

Frank Strauß, Torsten Klie

to network management tasks: (a) efficient and atomic transfer of configuration data
is problematic with SNMP, and (b) usual development processes of SNMP agents and
other applications are quite slow and expensive, since the abstraction layer of MIB
definitions and the SNMP protocol is much lower than the typical tasks that have to
be fulfilled, so that well experienced staff is essential.

Section 2 explains how some of the core XML technologies are related and how
they could be applied to typical network management tasks. In Section 3 we present
some related work on XML based techniques for network management. In Section
4 we present and discuss our work on a MIB compiler that generates XML Schema
definitions out of SMIv2 MIBs. Subsequently, in Section 5 we present some thoughts
on potential XML based network management tasks. We also describe our approach to
retrieve real-world SNMP data as XML documents through a simple SNMP-to-XML
gateway that complies with our automatically generated XML Schema definitions.
The last Section concludes with some experience statements and a rough outlook on
future directions.

2. XML Technologies in Network Management
Clearly defined and standardized data structures, encoding schemes and access in-

terfaces are a key issue for any kind of open communication systems. During the
past in several areas different base technologies have been applied in a quite success-
ful manner, e.g. management data definitions in the worlds of SNMP and CMIP as
well as many protocol definitions are based on ASN.1, business data is exchanged by
EDI-compliant messages, databases are often accessible through well defined ODBC
or JDBC APIs, remote procedure calls and remote object access can be defined and
realized through RPC and CORBA technologies, etc.

While these and many other technologies evolved over time and work quite well
today, they have been developed independently. They do not build upon each other
and they hardly use basic concepts in a common fashion, although many of them have
to solve similar questions like byte ordering, data framing, data encryption, etc.

In contrast, XML [7] is a core building block upon which other related technolo-
gies are being developed. This “toolkit concept” allows for more efficient development
processes of according applications. For example, existing XML parsers can be used
to develop XSLT [8] processors and XML Schema [9, 10, 11] based validators, since
XSL and XML Schema themselves are XML compliant. XML Schemas can be de-
fined and used by validating XML parsers to ensure XML data integrity. Specific XML
compilers can be built as XSL stylesheets using any already existing XSLT processor.

These advantages of existing XML-based specifications and their already existing
implementations are applicable as building blocks to a wide range of network man-
agement aspects as well:

Management data can be represented as XML documents. While the SNMP
framework focuses on a simplistic management protocol and small items of
management data which are appropriate for monitoring, it has severe disadvan-
tages when larger chunks of configuration data has to be retrieved from an agent
or stored to an agent: The performance of large chunks of GetNext or Set oper-
ations is quite poor [12]. Even more critical is the lack of a transaction model
to ensure data integrity across a sequence of protocol operations. When a com-
plete set of management data is represented as an XML document without any

Towards XML oriented Internet Management

formal length restrictions it could be moved efficiently and handled atomically.
Of course, this requires an appropriate transport protocol.
Comparing XML to plain ASCII information that can be retrieved from many
devices through a command line interface, parsing tagged XML data is much
easier than the error-prone processing of hardly structured ASCII information
that is intended for human reading.

Widely deployed protocols can be used to ship the data. E.g. TCP and HTTP
are implemented in almost any network device these days. These protocols
can easily be used to transfer XML documents. URLs [13, 14] can be used to
address the requested data [5].

The DOM and SAX APIs can be used to access management data from
applications. Most XML parsers implement these standard APIs to access the
contents of XML documents ([15], et al). They can be used by individual man-
agement applications [6, 16, 5].

Items within management data documents can be addressed through
XPath expressions [17] [6]. This could be useful e.g. when only parts of very
large data are being transfered between entities or when management data is
processed by XML based applications, e.g. through XSLT:

XSLT can be used to process management data. Although a little cryptic,
XSL [8] is a quite powerful stylesheet language. E.g., it can be used to filter
XML data, to correlate data from several documents, to generate statistics, or to
create concise HTML pages or reports in other text-based formats.

The structure of management data can be expressed as XML Schemas
[9, 10, 11]. This would allow, e.g., to ensure the integrity of configuration data
documents through the use of a usual XML parser that checks whether the doc-
ument is well-formed and valid according to the XML Schema definition.

High-level management operations can be defined through WSDL and
called via SOAP [6]. E.g., row creation and deletion in SNMP through RowSta-
tus objects can be quite complicated. This task can be achieved by higher-level
operations in a more convenient way. However, these operations have to be well
defined by WSDL [18] definitions for SOAP [19, 20, 21] functions.

Figure 1 illustrates how the XML technologies and according tools that are dis-
cussed above relate to each other. Specifications and tutorials for all of these tech-
nologies as well as pointers to detailed literature and implementations are available
from the W3C [22].

3. Related Work
This section presents a vendor product, three research projects on Web and XML

based management and an open source software project, as well as the starting points
of related standardization work within the IETF and an industry consortium.

3.1 JUNOScript from Juniper Networks

Recent releases of routers from Juniper Networks are equipped with a JUNOS oper-
ating system that supports the JUNOScript [23] subsystem. JUNOScript allows client

Frank Strauß, Torsten Klie

HTTP or
other

well−known
protocols

XPath

SOAP or XML−RPC
message

WSDL
specification

XML Schema
definition

XML
document

XSL
stylesheet

is a

is a

is a is a

can be used to
transport

is used by

XML parser XSLT processor
XML parser
validating

read byread by read by

specifies

through

SAX DOM

accessed
can be

used by used by

validation
reports

statistics, web pages, other
human readable documents

creates creates

Figure 1. XML technologies and tools.

applications to connect to the Juniper router and exchange messages formed as XML
documents. The grammars of these documents representing requests and responses
are supplied by Juniper as DTDs and XML Schemas along with documentation that
details the semantics of all message elements. A Perl module is supplied to ease the de-
velopment of client applications communicating with the routers. Further processing
of the XML documents can be achieved with third party XML tools that are available
for Perl and many other programming languages.

Various protocols can be used to establish sessions between client applications and
JUNOScript servers, e.g. TELNET, SSL or SSH. The messages sent by the client con-
stitute RPC requests wrapped in ���������
	�	�	���
�������� elements, upon which the server
responds with ����������������������	�	�	���
�������������������� responses. The contained elements
represent the requested actions, e.g. client authentication, configuration queries, con-
figuration modifications, locking for exclusive access, etc. Collections of configura-
tion data can be represented as nested XML elements within the messages as well as
in the text format that is also used by the JUNOS CLI.

Towards XML oriented Internet Management

3.2 Avaya Labs Research on an XML based Management
Interface for SNMP Enabled Devices

Concepts for an XML based interface to read and write management information
of SNMP agents are being researched in a project at Avaya Labs [24]. To achieve
these aims, a mapping from SMI MIB modules to XML Schema definitions has been
defined and implemented. Furthermore, an XML-RPC based protocol is being defined
and implemented for retrieving and modifying MIB information on SNMP agents.
This protocol uses XPath to identify MIB variables within the agent.

The XML Schema definitions are derived from SMI MIB definitions in a
straightforward way. For instance, the native XPath expression for addressing
the first interface within an XML document derived from the IF-MIB would be
�������������

	���
������������
��
�	�������������

	�������
�������	���������� ��!"�$# . For one SMI MIB mod-
ule the compiler generates a number of XML Schema files: one main file, one file
containing all type definitions, one file per scalar object group, one file per additional
MIB tree level and one file per MIB table. All these files are included by the main
XML Schema file.

Much of the MIB information that is not necessarily required in XML Schema
definitions is dropped, e.g. description clauses and display hints of type definitions.
Some SMI types are mapped to more ‘tolerant’ XML Schema types, e.g. � ��%������������
is mapped to �&���(')��
��&	���* . Elements representing scalar groups contain a redundant
	�������� attribute and, more seriously, tables with multiple index attributes are not yet
supported. However, these problems could probably be fixed subsequently in this
project.

The development and implementation of an appropriate SNMP-to-XML adapter
based on the NET-SNMP and XML-RPC libraries has been underway during this writ-
ing.

3.3 POSTECH Research on XML-based Internet Management

Hong et al propose an XML-based Management (XBM) architecture [6] that is
based on XML/HTTP as its management protocol. To allow the integration of SNMP
managed devices they propose three methods to realize an XML/SNMP gateway [16].

The first approach is to implement a DOM interface that translates DOM function
calls to SNMP operations. The results of the internally executed SNMP operations are
then translated to XML nodes and passed back to the DOM based management appli-
cation. In this approach the gateway is tightly bound to the management application
through the DOM API.

In the second approach, a standalone gateway accepts HTTP requests from manage-
ment stations that are based on URIs that may contain XPath or XQuery expressions to
address specific agent object instances. The gateway parses these requests and trans-
lates them to SNMP operations issued to the SNMP agents. The SNMP responses are
used to build a “response XML document” which is then sent back to the manager
in response to its request. SNMP traps destined to the gateway can be processed in
a similar way and forwarded as XML documents to managers through HTTP POST
requests.

In the third approach, the gateway implements a SOAP RPC service. On receipt
of a SOAP input message from a manager it is translated to SNMP operations. Vice

Frank Strauß, Torsten Klie

versa, the SNMP responses are used to construct the SOAP output message. While
this approach introduces the most protocol and processing overhead, it also gives the
best possibilities to extend the gateway with more powerful operations like scheduled
polling.

Although this project carefully examines valuable methods to realize an
XML/SNMP gateway, the mapping of SNMP management data to XML documents
is quite simple and driven by SNMP practice, similar to the Avaya approach (Section
3.2).

3.4 WIMA

The Web-based Integrated Management Architecture (WIMA) proposed by
Martin-Flatin [5] integrates multiple management data models, namely at least SMI
and CIM, without introducing another data model. This is achieved by defined map-
pings of specific data models at two levels: In case of SMI, on the model-level an
SMI MIB module is mapped to a DTD, i.e., an XML document that complies to such
a DTD represents management instance data, e.g., retrieved from an SNMP agent.
On the metamodel-level the items within an SMI module are mapped to element and
attribute values within a document that complies to a generic WIMA-specified DTD.

WIMA’s model-level SMI mapping is comparable to the mapping of SMI to XML
Schema definitions presented in this paper: The resulting documents describe a formal
grammar of management instance data. On the other hand, WIMA’s metamodel-level
mapping is also comparable to the XML Schema mapping presented in Section 4 in
a way that its vocabulary is generic (WIMA-proprietary vs. XML Schema) while its
content represents MIB data models.

As with the approaches presented in Section 3.2 and 3.3, the mapping from SNMP
and SMI to XML and XML Schema is quite simple and bound to SNMP requirements
and not driven by native XML concepts.

3.5 SCLI
� ���
	 [25] is a tool that implements a command line interface to interact with SNMP

agents in an interactive or batch-mode fashion. Despite many other SNMP tools, �����
	
is not a generic tool to process arbitrary MIB data. Instead, it is designed in a way so
that it is aware of the structure and semantics of a number of MIB modules. This
way, it is capable to present and accept information to and from the user in a much
more human friendly form that often significantly differs from the underlying MIB
structures. E.g., when a user requests information on a specific interface, it can be
specified by its human-friendly name instead of the agent’s notion of an 	��&���������
variable. The data that is displayed is formatted in a human-readable tabular form
where numbers are printed with appropriate units and the items are gathered from
different tables of different MIBs like the ����������� , the ����� ����� , and the ������������� �����
[26, 27, 28]. It requires a well experienced person to develop new �����
	 modes, but
the resulting functionality facilitates the work of less experienced users significantly.

Besides the plain text form, �����
	 is also capable to dump its information in an
XML form. This way, it is possible, for example, to post-process the data by XSL
stylesheets. The XSL programmer can benefit from �����
	 ’s gathering of all related
information and its pre-processing. Currently, XML output is only supported for a

Towards XML oriented Internet Management

limited number of �����
	 modes. XML Schema definitions for those XML dumps are
not yet available.

3.6 The IETF XMLCONF BOF

During the 54th IETF meeting in Yokohama in July 2002, a BOF session concerned
with XML configuration management (XMLCONF) has been held [29]. The goals
were to discuss today’s operator requirements for configuration management, to iden-
tify the disadvantages of today’s IETF technologies to meet these requirements and
to evaluate some XML related technologies with this respect, namely, SOAP/WSDL,
SyncML, WBEM, and JUNOScript. There are some Internet-Drafts that represent a
starting point to narrow down these requirements and evaluations. It has not yet been
decided whether a new working group shall be formed to continue this work, but it
looks very reasonable to work on the standardization of XML based network man-
agement within the IETF so that the gap between the wide range of existing SNMP
environments and new XML based solutions can be bridged.

3.7 The OASIS Management Protocol Technical Committee

In July 2002, OASIS, a consortium that focuses on industry standards specifica-
tions based on XML, founded a technical committee [30] that intends to provide a
web-based mechanism to monitor and control managed elements “based on indus-
try accepted management models, methods, and operations, including, OMI, XML,
SOAP, DMTF CIM, and DMTF CIM Operations”.

4. Converting SMI MIBs to XML Schema Definitions
While the previous two Sections presented general concepts and actual efforts to

use XML technologies for network management tasks, in this Section we will study
how the large existing SNMP infrastructure can benefit from XML based management
data processing. This obviously requires a representation of SNMP data as XML
documents.

While the structure of SNMP data is formally described in SMI MIB modules, the
structure of XML documents can be defined as a Document Type Definition (DTD)
or an XML Schema definition. Whereas DTDs follow a rather simple grammar no-
tation, XML Schema is more flexible to express characteristics of XML documents,
e.g., there is a type system that allows to define derived types, and a powerful mecha-
nism to express the format of string values as regular expressions. Furthermore, XML
Schema definitions themselves are well-formed XML documents so that they can also
be processed by XML parsers.

Consequently, a mapping from SMI MIB modules to XML Schema definitions is
useful. While the approaches presented in Sections 3.2 – 3.4 use a straightforward
way, we attempt to represent the data in a way that narrows the usual XML character-
istics as closely as possible to make the XML instance documents as convenient for
reading and processing as possible. For instance, we explicitly do not intend to stick
with deep OID equivalent nesting hierarchies. On the other hand, the generated XML
Schema definitions contain as much of the underlying SMI MIB module information
as possible. The following list describes the most relevant characteristics of the XML
documents and XML Schema definitions:

Frank Strauß, Torsten Klie

The range of data that can be represented in an XML document shall be as
flexible as possible. Hence, the root element is not bound to a specific MIB or
agent or point in time.

The root element may contain an arbitrary number of ����� ��
�����
�� elements at
the second level that represent agent contexts which are identified by a tuple of
an SNMP agent, a community string (in case of SNMPv1), and a time stamp
to specify the point in time when a context has been created. This allows, for
instance, to store data from multiple agents or time series of polled data in a
single document.

The third-level elements can either represent containers of scalar elements that
appear at most once, or instances of objects that are derived from table entries
and thus can appear multiple times. Note that the list of these elements is not
limited to a single MIB module. While scalar container elements don’t have
any attributes, the table entry elements include one ore more index attributes
to uniquely identify the instances. These attributes are derived from the MIB
entry’s ��������� clauses.

Note that MIB modules are not represented by elements. Instead they are iden-
tified by namespaces in which the elements are defined. Since unique naming in
SMI is based on modulename-descriptor pairs, we compile each MIB module
into a separate XML Schema definition where each schema defines an according
namespace.

The fourth-level elements represent scalar objects or columnar objects. There
is no deeper level of element containment (except for nested tables described
below), since there is no need for a hierarchy such as with OIDs. This way
the XML document hierarchy remains simple but powerful. Unique naming is
purely based on namespaces, grouping names with indexing attributes, and leaf
element names without any ambiguity.

Augmentation tables and tables that share a common prefix list of index objects
with another table are somewhat confusing SMI constructs to represent nested
data structures. When these structures appear in a single MIB they are mapped
to a native representation in XML: The columnar objects of augmentation tables
are simply added as child elements of the element that represents the parent
table. Similarly, “tables in tables” are represented by nesting the according
elements.

The text of leaf elements (and index attributes) is represented in a human read-
able fashion where possible: Integers are written as decimal numbers. Named
number types, such as enumeration types and bit sets, are written as the accord-
ing names. Strings are written in a human readable ASCII form, if the underly-
ing MIB type has a display hint that ‘suggests’ an according representation of
all octets of the value.

Type and ����������%�����	�
 ����� ������
 � definitions in MIB modules are
mapped to XML Schema types derived from base types with appro-
priate ���&� �(' ���
��
��&	���
�	
����� clauses containing value restrictions for
numbers (��� � �('�� 	��"������������	������ , ���&� � '��������������
����	������) or strings
(��� � �('�� 	���������*�
���� , ��� � �('�������������*�
����). However, some limitations

Towards XML oriented Internet Management

such as length alternatives (i.e., not length ranges) cannot be expressed
completely in XML Schema.

Even complex display hints can automatically be translated to ���&���(' �
��
�
��������
constructs with regular expressions that formally limit the value set so that, e.g.,
a number of typos or otherwise illegal values in XML documents can be pre-
vented.

SMI MIB module information that is not necessarily required in the XML
Schema definition is contained in � �&� �('$�����"	�������� clauses. This way, it re-
mains available for special applications, e.g., XSLT-based MIB compilers or
MIB browsers.

Despite the representation of the status of MIB object instances an XML docu-
ment can also represent a sequence of notifications. Hence, the XML Schema
for a MIB module contains a ���&���(' ��� �
	������ construct where the second alter-
native is intended to form the grammar rules for arbitrary lists of notifications
conforming to a MIB’s �
 ��������	�%�����
 ����������� definitions.

Figure 2 shows an example of an XML instance document, while Figure 3 illus-
trates some XML Schema constructs compiled from the SMIv2 ����������� module [26].
The compiler implementation is based on �
	��&� � 	 [31].

�������	��

�����������
������� �������
��� ���� �!��"�#����$�%����&!�'
�)(������+*
�������
'�,
��$-("./�	��("$�%��
0+�1�2���43"�&�
��,+��$���,1�5�����
�"�6���
0���$"'�,"'-���	���������7!
,�,�098 :":�;�;�;1�2��("�1� <
��� ,�%���(���� $
�":�0"�"��=
��<�,���:�����(��6�	��:�����$
:
>�?
��@�>�AB�

���	������82>�?���@�>�A"���7!",�,�0C8 :�:�;�;";1� ��("�9� <"��� ,�%���(���� $
��:�0
�"��="��<�,���:��"��(��7�B��:�����$�:">�?
��@�>�A	�
���	������8 ���������7!",",�098 :�:�;�;�;1� ;
DE� ����*�:�F����
��:�G�@"H"I
<�!��6�	'"��������,"'���<"�
�
�����E82��<�!��6��'�H"�"<�'�,
���������7!",�,�098 :�:�;";�;1� ��(
�1� <"��� ,�%���(��� $
��:�0"�"��=
��<�,���:�����(��6�	��:�����$
:
>�?
��@�>�A

!",�,�0982:�:�;�;�;9� ��("�1�2<"��� ,�%���(���� $���:�0"�"�"="��<�,���:�����(��6�	��:�����$
:
>�?
��@�>�A9� ����$	���
��<����",
����,+'�*
���","����<"�"��<���(��� �"JE� ,�%���(���� $
�
�K<��6���
%"����,�."���70�%�(��"��<
�/0
���","������L��"�

,
�7�B������F��"��F"�"��F
�"��F� "F"DE8 M"F�N"�
���������
�
>�?
��@�>�A18 ���",�����O"'"<"�"���
�">�?���@�>�A182��O�P�%���(����
��Q
��:">�?
��@�>�A18 ��O�P�%��
(����
�

�":">�?
��@	>�A18 ���
,
����O"'
<��"���
R ����� S

�
>�?
��@�>�A18 ��O�T��",���.U��O�>6�"$
���
����F����
�">�?���@�>�A182��O�3
�"��<��
��?"'���,�T�,�!���������,
�":��"��:
>�?
��@�>�A18 ��O�3��"��<����
�">�?���@�>�A182��O� �.�0�������,�!���������,
V
�W��'"<�$
��:">�?���@�>�A182��O� �.�0����
�">�?���@�>�A182��O�@",�%��"��X����
��:">�?
��@�>�A18 ��O�@",�%��
�">�?���@�>�A182��O"I�0��"��$
�"���"���������"���"��:">�?
��@�>�A98 ��O"I�0�����$
�
�">�?���@�>�A182��O�Y�!".���Z�$�$����"���+����<����7!����	�������E8 ��DE8 O�$98 D�FE8 ��M18 ���"�":">�?
��@	>�A18 ��O"Y�!".���Z
$�$��
�
�����
�">�?���@�>�A182��O�Z�$��B���
I�,"'�,�%�����%"0���:">�?���@�>�A182��O�Z�$��B���
I�,"'�,�%����

R ����� S
�">�?���@�>�A182��O�P"'6�B����["�"��:��"��:">�?
��@�>�A98 ��O�P"'��	���
�">�?���@�>�A182��O�H
���
\�]�0"3"��;��" ��"'�0"T��
'�(�����������'�(�����$���:">�?
��@�>�A982��O�H
����\�]�0"3
��;��
 "�"'�0"T���'�(����"�

R ����� S
�":">�?
��@	>�A18 ��O"T��",���.��

R ����� S
�
>�?
��@�>�A18 ��O"I�,"'"<�\�T��",���.^��O"I�,"'"<�\�_
��*�!�����H"'�.����"����F��`��O"I�,"'
<�\�H"��;�����H"'�.����"���������
�">�?���@�>�A182��O"I�,"'
<�\"I�,"'�,�%�����'
<�,
��

�"��:">�?
��@�>�A18 ��O"I�,"'"<�\"I�,
'�,�%����

�":">�?
��@	>�A18 ��O
I�,"'"<�\"T��",���.��
��:�<����",
���",
�

��:"�6����0���$"'�,
'"�

Figure 2. An XML instance document conforming to the IF-MIB XML Schema.

�������	��

�����������
������� �������
��� ���� �!��"�#����$�%����&!�'
�)(������+*
�������
'�,
��$-(".K�W�	��$�%��
0+�1� M1� F"��0"�
���a3"�/�
��,b��$
��,1�5�����
������$18W��<�!��7�	'

Frank Strauß, Torsten Klie

,"'���*
��,�P"'6�	�
�60
'"<������7!",�,�098 :�:�;";�;1� ��(
�1� <"��� ,�%���(���� $
��:�0
�
��="�"<�,���:
����(��W�B��:�����$
:">�?���@�>�A��
���	������8 ���	�����7!",�,�0C8 :�:�;�;";1� ;"DE� ����*
:�G�@"H
:"�������":��
'��	�"�60
'
<"�
�
���	������8 ����$"���7!",�,�0C8 :�:�;�;";1� ;"DE� ����*
:�F"���
��:�G�@"H"I"<�!��7��'��
���	������82�W�	�����7!",�,�0C8 :�:�;�;";1� ��("�9� <"��� ,�%���(���� $
��:�0"�
��="��<�,���:�����(��W�	�
:�����$
:
�W�B�
�
���	������8 I�P�@"Y"
"F"��I�@	>����7!",",�098 :�:�;�;�;1� ��("�1� <"��� ,�%���(��� $
��:�0
�"��=
��<�,��":�����(��7�	�":�����$
:�I"P�@"Y�
"F
��I�@�>
�
���	������8 I�P�@"Y"
"F"�� "V"���7!",�,�098 :�:�;";�;1� ��(
�1� <"��� ,�%���(���� $
��:�0
�
��="�"<�,���:
����(��W�B��:�����$
:�I�P"@"Y�
"F"�� "V��
���	������8 I�P�@"Y"
"F"��V���P�?"���7!
,�,�098 :":�;�;�;1�2��("�1� <
��� ,�%���(���� $
�":�0"�"�"="��<�,	��:�����(�W�B��:�����$
:"I�P�@"Y�

F"��V���P�?��
���	������8 I�P�@"Y"
"F"��@�>�A"���7!",",�098 :�:�;�;�;1� ��("�1� <"��� ,�%���(��� $
��:�0
�"��=
��<�,��":�����(��7�	�":�����$
:�I"P�@"Y�
"F
��@	>�A	�
���	������82>�Z�P�Z���O� �.�0�����@�>�A
���7!",�,�098 :�:�;";�;1� ��(
�1� <"��� ,�%���(���� $
��:�0"�"��=���<�,���:"����(��7�	��:��	��$
:">�Z"P�Z���O" �.�0��
��@�>�A��
���	��8 ��'��"*"�������	�
�����7�	���",�?"������3
��O"'�%���,"������%
'"����O
����$��
'�,�,��
��(�%",
��?
������3
��O"'�%���,
���7%�����%
'"����O�����$����

������$18 '�������,"'�,
�������
������$18 $"�"<�%��B���","'�,��������

 �!��&@	>�A)����$�%�����,"�-$
�"��<�����(���*
����������<���(
="��<�,��/O
���/����,�;"����\
���",
����O
'"<��b�6%�(��"��'�.
������� �!��"�)@�>�Ab�"�&'��-%�0
$"'�,
��$`

�����������b��O
@	>�A
�">�>	�7�`��O� "'�(�����
5'��"$`����<�����0����"'�,
�
�/,�!��-����,
��������������$
��O�������$b���
� ?"V+��F�F��E�

��:�����$98 $"�"<�%��	���","'�,
�������
��:�����$18 '��"�
��,"'�,��������
������$18 �7�
0�����,`�
'6�	�
�60
'"<������7!",�,�098 :�:�;";�;1� ��(
�1� <"��� ,�%���(���� $
��:�0
�"��="�
<�,���:��"��(�W�B��:�����$
:�I�P�@
Y�

F"��I�@�>"�

��<�!��7�	'�H"�"<�'�,
�����
���7!",�,�0C8 :�:�;�;";1� ��("�9� <"��� ,�%���(���� $���:�0
�"��="�
<�,���:��"��(�W�B��:�����$
:�I�P�@
Y�

F"��I�@�>�� ����$���:"�
R ����� S
������$18 �����6�	���",`�
'6�B�������6���
0���$"'�,"'����
������$182<��6�
0��"���� �.�0����
������$182���
��%�����<��"�
������$18 �"���7�	���
,-��'6�	������<����",
����,�� �	�����"<�<�%"�����������)��'�����<�<�%
�������7%"��(
��%��
$
��$����
������$98 <��6�
0������� �.�0����
������$182���
��%�����<����
������$98 �����7�B���",`�
'6�	���������",�����O"'"<"�"�"��,�.�0����������
,
����O"'
<��"�� �.�0��
�)�	������<�<�%"������������:��
������$98 �����7�B���",`�
'6�	��������O�T��",���.��/,�.�0���������O�T��",��".� �.�0����)�	������<"<�%"����������� ��'����"<�<�%"�������7%���(���%��"$
��$���:��

R ����� S
�":�����$18W���
��%�����<����
������$18 '�,�,��
��("%",
���
'6�	������'�*
���",��/,�.�0������6����$98 P�@" ��
��T�P��/%��������6�
����%����
��$���:��
������$18 '�,�,��
��("%",
���
'6�	������<��6�"�
%�����,".���,�.�0������6����$98 P�@" ��
��T�P��&%��������6�
�
��%����
��$	��:��
������$18 '�,�,��
��("%",
���
'6�	�����70
���",��/,�.�0������6����$18 %�������*�����$�>6�
,��/%��������6�
�
��%����
��$���:��
������$18 '�,�,��
��("%",
���
'6�	�����6,
�7�B�
�/,�.�0������6����$18 $"'�,
�� ��7�	�
�/%��������6�
����%����
��$���:��

��:�����$18 <��6��0������� ".�0����
�":�����$182�����7�	���",
�

��:�����$182������%�����<"���
��:�����$98 <��6�
0������� �.�0����

��:�����$18 ���"�7�	���",��
R ����� S
������$18 <��6��0������� ".�0��-�
'6�B��������O"T��",���." �.�0��
���
������$18 '����
��,
'�,
�������
������$18 '�0�0����"O"�"�
�6��'���Z
<"<��"�������
��,
��'
<�<��"������(������":7��'���Z�<�<��"�����
�
��,"'�,�%	����<�%"�"�
���",
�":"��,"'�,�%����
���"��$
�"��� DE� LE�W��� FE�2��� FE� FE�W����:��"��$
�

��:�����$18 '�0"0����"O"�
�
������$18 $"�"<�%��	���",
'�,
�������
Z��b���
,���.b<����","'
�������"*/��'���'�*
�7�	���",K���"O"������'�,
�����b'�0�0�����<�'�(�����,"�`'
0�'���,
��<�%���'��K���",�����O"'"<"���

��:�����$18 $"�
<�%��	���
,"'�,
�������
��:�����$98 '����
��,"'�,
�������
������$18W���
��%�����<����
������$18 �����6�	���",`�
'6�B��������O"3
�"��<��	�#�B������<�<�%"�������������
������$18 '����
��,"'�,
�������
������$98 '�0�0����"O"�"�
�6��'���Z
<"<��"�������
��'�$
��������.
�":7��'���Z�<�<��"�����
�
��,"'�,�%	����<�%"�"�
���",
�":"��,"'�,�%����
���"��$
�"��� DE� LE�W��� FE�2��� FE� FE�W��� F"��:��"��$
�

��:�����$18 '�0�0����"O"�"�
������$98 $"�"<�%��	���","'�,
�������
Z-,
����,�%
'"�+��,��
���
*+<����","'"�������"*K���"O"������'�,
�����K'�(
��%",`,�!��
���",
����O
'"<���� �!��"����,"�
���"*K�6!
��%���$+����<���%"$���,�!��)�
'��	����O�,�!��
�	'���%"O"'
<�,�%"�
����
5,�!��)0
�"��$�%�<�,-��'6�	�/'��"$-,�!��/
������������+��O-,�!��
���",
����O
'"<��/!
'���$�;
'��
��:"����O�,�;"'��
���

��:�����$18 $"�"<�%��	���",
'�,
�������
�":�����$18 '����
��,
'�,
�������
������$182���7�
0����� �.�0����
������$98 �
�"��,"�
��<�,
�����b(
'
�������6����$982��,��
���"*����

Towards XML oriented Internet Management

������$18 0�'�,�,
�����+

'"��%������B� ���
2F�X�X��
��:��
��:�����$18 �
�"��,��
��<�,��������

�":�����$18W���7�
0��"�� �.�0��"�
��:�����$18 ���"�7�	���",��
������$18 �����6�	���",`�
'6�B��������O" �.�0��
�/,�.�0�������>�Z�P�Z
��O" �.�0�����@�>�A182>�Z�P�Z
��O" �.�0��
���	�����"<�<�%"�������������
������$18 '����
��,"'�,
�������

R ����� S
������$182���7��0����� �.�0����
'6�	������>6�",
����O"'"<��
>6�"$
���	���
������$18 '����
��,"'�,
�������
������$18 $"�"<�%��	���",
'�,
�������

Z�%"���
��%���
"'"��%���
a*��
��'�,����-,�!
'��bJ"���"�
aO"���+��'"<�!K���",�����O"'"<"�����
���",
����O"'"<��b�6%"(�����'�.����+���`,�!��#��'���'�*
��$U��.���,
�7� � >�,+�"�
�
��<������	���"$���$+,�!
'�,`
"'"��%��"�/'��
��'�������*�����$+<����",
��*�%
��%�����.K��,"'���,
���"*
O��"�6� ��� �!��/
"'"��%��/O"���+��'
<�!b���",
����O
'"<��+�6%�(�����'�.
�����
%���,��
�7�	'"���
<�������,"'��",b'�,+����'
��,`O��"���K�����&�
���"������,
��'"����J�'�,
�����U��O`,�!��-���",
��,�. �7�
����,�;
����\/��'��
'�*��7�	���",U��.���,
�7�K,"�-,�!��)������,`�
����������,
��'"�"��J�'�,
�����9�

��:�����$18 $"�
<�%��	���
,"'�,
�������
������$18 '�0�0����"O"�"�
��$
�"�60���'�.�_
���
,
��$
��:�$
�"�60���'�.�_
���
,
�

��:�����$18 '�0"0����"O"�
�
�":�����$18 '����
��,
'�,
�������
������$18 ���"��,��
�"<�,
�����b(�'
���������W�	��82>��",
��*
���"D�F����
������$18 �	���	>6��<���%	����

�-
"'"��%��������
��:��
������$18 ��'���>6��<���%	����

�-
"'"��%�������F���M"Q�M��"D�L�M"Q���:��

R ����� S
��:�����$982��<�!��6��'"�

Figure 3. An XML Schema file automatically generated from IF-MIB.

5. Applications
The previous Section presented an approach to represent management data as XML

documents and their structure as XML Schema definitions. So, in this Section we will
discuss some applications that could make use of these representations. Note that at
this point in time these applications, except the one presented in Section 5.4, are just
ideas that have not yet been implemented by the authors of this paper.

5.1 Configuration Management

SNMP is not very suitable for configuration management, since moving configura-
tion data between devices and managers is inefficient and cannot be done in an atomic
way without additional MIB support. Putting XML technologies on top of it cannot
do any better. Furthermore, data dumped from arbitrary MIBs cannot be regarded as a
configuration: To restore a configuration, e.g., if a broken device has been replaced by
a new one, additional information like ordering of the required SNMP Set operations
and the semantics of many MIB objects is required. However, it could be an advantage
if such additional information on a specific MIB is provided in a DOM or XSLT based
application and the dumped data is available as an XML document. Accessing data
through the DOM API or addressing items through XPath expressions would be more
flexible and more familiar to many developers than using any proprietary management
toolkit.

5.2 Notification Processing

Not only the values of agent objects that can be read or written, i.e., instances of
the MIBs’
 ������	�������� ��� definitions, can be represented as XML elements. Instances

Frank Strauß, Torsten Klie

of notifications emitted by an agent can be dumped as XML documents as well. This
way, they can be filtered, searched, and post-processed by XPath and XSLT means,
for example. Even event correlation tasks could be realized as XSLT applications and
produce HTML output for a concise presentation to the operator.

5.3 Agent Validation

Today, there are many agent implementations of MIBs that do not conform to the
underlying SNMP and SMI MIB module specifications. Typical cases are objects that
have another base type than that in the authoritative MIB definition, string objects of
illegal length or object values that the agent is not aware, but which are served as
unspecified ‘zero’ values instead of just skipping the object.

To some degree such flawed implementations can be checked automatically based
on a comparison of an agent’s dump against the MIB specification. If the data is
represented as an XML document and the MIB structure is represented as an XML
Schema definition, this comparison can be done by any validating XML parser. Of
course, this would require a very ‘verbose’ representation of agent data that keeps
a lot of SNMP specific information in the XML document which is not necessarily
required for other XML based post-processing.

5.4 An SNMP-to-XML Gateway

An obvious approach to make management data supplied by SNMP agents avail-
able as XML documents is the use of an appropriate translator or gateway. We have
implemented a prototype of such a translator that conforms to the XML Schema char-
acteristics described in Section 4. The example of an XML document seen in Figure
2 has actually been generated by this translator named � 	���������� . It works as follows:
The SNMP agent (address, port, SNMPv1 community string) and the MIB module to
be dumped are passed to � 	������
��� . Then the SNMP session is initiated, the structure
of the MIB is analyzed through �
	��&� � 	 means, and then sequences of SNMP GetNext
operations are issued to retrieve all subtrees of the MIB from the agent. ��	������
��� col-
lects the retrieved data in internal data structures, first. When the gathering phase has
been finished, the contents of these data structures are dumped in the form of appro-
priately nested XML elements forming a valid document with respect to the XML
Schema.
�&	���������� has been developed as a first prototype of a translator to generate XML

instance documents that comply to the XML Schema definitions we proposed in Sec-
tion 4. Hence, for simplicity reasons it supports no other granularity than the level of
MIB modules: neither single objects or tables of a MIB, nor the whole set of all MIBs
implemented by an agent can be retrieved through � 	���������� at once.

Work is underway to develop a real gateway that translates HTTP requests for XML
documents to SNMP operations and forms the resulting XML document out of the
SNMP response messages. This approach is very similar to the second method pro-
posed by POSTECH (Section 3.3, [16]). The gateway accepts HTTP GET requests
for URIs that contain XPath expressions to address regions of the schema compliant
XML documents with the full complexity of XPath. Generally, location paths of the
XPath expressions can be interpreted in the gateway before sending SNMP requests
in order limit SNMP operations, while the predicate parts have to be applied when
the SNMP data has been received at the gateway to filter out the parts that the XML

Towards XML oriented Internet Management

requestor wishes to receive. DOM is used to represent and access the XML documents
at runtime in the gateway. In case of HTTP GET requests the DOM is built by the core
translator based on the received SNMP response messages. In case of HTTP POST
requests the applied document is parsed to build the DOM so that the translator can
access it to issue appropriate SNMP Set operations. Traps can be logged (for later
access by managers) and result in short XML documents sent to registered managers
that listen as HTTP POST receivers. To enhance performance in case of subsequent
XML operations on related objects, a short-term cache can be used. Problems related
by caching and write operations to create or delete objects are subject for future work.

SchemaNotification

HTTP
Engine

(with
CGI
or

Servlet
Interface)

SNMP
Engine

(Command
Generator

and
Notification
Originator)

SNMP
Agent

XML−based
Management
Application

HTTP GET

HTTP POST

(HTTP POST)

TranslatorXML
Parser

DOM

XPath
Interpreter

SNMP Set

SNMP Get*

SNMP Trap

Cache
RepositoryLog

Figure 4. Architecture of an SNMP/XML gateway.

6. Conclusions and Outlook
This paper gave a condensed overview of some XML technologies and how they

can be used to solve network management tasks that are partly difficult to address with
the current SNMP framework as it is. A number of related projects and standardiza-
tion efforts that are underway have been presented. However, it has been argued that
a smooth bridging between the widely deployed SNMP infrastructure and the ‘new
generation’ of XML based solutions is essential.

The presented approach to represent management data received from and stored
to SNMP agents as XML documents and to represent their structure as automatically
generated XML Schema definitions based on SMI MIB modules constitutes one step
in this direction. In contrast to other attempts that define a simple straightforward
mapping of SMI data models to DTDs or schemas the presented approach is driven
by the goal to tap the full potential of XML and XML Schema leaving drawbacks
of SNMP behind where possible. Furthermore, this paper presents some visions on
other XML applications. Within the presented project, an SNMP-to-XML gateway
is under development that represents management data conforming to the presented
XML Schema model.

The standardization work done so far in the area of XML/SNMP integration is not
much more than the discussion of requirements and the evaluation of some technolo-
gies. In the future, more work on specific schemas and protocol support has to be done
to support the higher-level tasks in XML based network management and configura-
tion management.

References
[1] M. Rose and K. McCloghrie. Structure and Identification of Management Information for TCP/IP-

based internets. RFC 1065, TWG, August 1988.

Frank Strauß, Torsten Klie

[2] K. McCloghrie and M. Rose. Management Information Base for Network Management of TCP/IP-
based internets. RFC 1066, TWG, August 1988.

[3] J. Case, M. Fedor, M. Stoffstall, and J. Davin. A Simple Network Management Protocol. RFC 1067,
University of Tennessee at Knoxville, NYSERNet, Rensselaer Polytechnic Institute, Proteon, August
1988.

[4] J. Schönwälder and A. Pras. The Simple Times. An openly-available online publication on SNMP,
http://www.simple-times.org/.

[5] J.-P. Martin-Flatin. Web-Based Management of IP Networks and Systems. Wiley, 2002.
[6] H. Ju, M. Choi, S. Han, Y. Oh, J. Yoon, H. Lee, and J. W. Hong. An Embedded Web Server Archi-

tecture for XML-Based Network Management. In Proc. 2002 IEEE/IFIP Network Operations and
Management Symposium, April 2002.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup Language (XML) 1.0
(Second Edition). W3C Recommendation, October 2000.

[8] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommendation, November 1999.
[9] D. C. Fallside. XML Schema Part 0: Primer. W3C Recommendation, IBM, May 2001.

[10] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures. W3C
Recommendation, University of Edinburgh, Oracle, Lotus, May 2001.

[11] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C Recommendation, Kaiser Per-
manente, Microsoft, May 2001.

[12] R. Sprenkels and J. P. Martin-Flatin. Bulk Transfer of MIB Data. Simple Times, 7(1), March 1999.
[13] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators (URL). RFC 1738, CERN,

Xerox Corporation, University of Minnesota, December 1994.
[14] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax.

RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.
[15] L. Wood, et al. Document Object Model (DOM) Level 1 Specification Version 1.0. W3C Recommen-

dation, Soft Quad, October 1998.
[16] Y. Oh, H. Ju, M. Choi, and J. W. Hong. Interaction Translation Methods for XML/SNMP Gateway. In

Proc. 13th IFIP/IEEE International Workshop on Distributed Systems: Operations and Management,
October 2002.

[17] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recommendation, Inso
Corp., November 1999.

[18] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 1.1. W3C Note, Microsoft, IBM, March 2001.

[19] N. Mitra. SOAP Version 1.2 Part 0: Primer. W3C Working Draft, Ericsson, June 2002.
[20] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. F. Nielsen. SOAP Version 1.2 Part 1:

Messaging Framework. W3C Working Draft, DevelopMentor, Sun, IBM, Canon, Microsoft, June
2002.

[21] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. F. Nielsen. SOAP Version 1.2 Part 2:
Adjuncts. W3C Working Draft, DevelopMentor, Sun, IBM, Canon, Microsoft, June 2002.

[22] W3C. W3C – The World Wide Web Consortium. WWW Page, 2002. http://www.w3c.org/.
[23] Juniper Networks. JUNOScript API Software. WWW Page, November 2002.

http://www.juniper.net/support/junoscript/.
[24] Avaya Labs Research. XML-Based Management Interface for SNMP Enabled Devices. WWW Page,

2001. http://www.research.avayalabs.com/user/mazum/Projects/XML/.
[25] J. Schönwälder. Specific Simple Network Management Tools. In Proc. LISA 2001, pages 109–119,

December 2001. http://www.ibr.cs.tu-bs.de/projects/scli/.
[26] K. McCloghrie and F. Kastenholz. The Interfaces Group MIB. RFC 2863, Cisco Systems, Argon

Networks, June 2000.
[27] K. McCloghrie. SNMPv2 Management Information Base for the Internet Protocol using SMIv2. RFC

2011, Cisco Systems, November 1996.
[28] K. McCloghrie and A. Bierman. Entity MIB (Version 2). RFC 2737, Cisco Systems, December 1999.
[29] M. Wasserman. XML Configuration BOF. WWW Page, July 2002.

http://www.ietf.org/ietf/02jul/xmlconf.txt.
[30] OASIS. Management Protocol TC. WWW Page, December 2002. http://www.oasis-

open.org/committees/mgmtprotocol/.
[31] F. Strauß. Libsmi – A Library to Access SMI MIB Information. WWW Page, December 2002.

http://www.ibr.cs.tu-bs.de/projects/libsmi/.

