

MONITORING DISTRIBUTED SYSTEMS
A Publish/Subscribe Methodology and Architecture

Karen Witting, James Challenger, Brian O’Connell
IBM T. J. Watson Research Center and IBM Global Services Special Events

Abstract: To support complex, rapidly changing, high-volume websites many
components contribute to keeping the content current. Monitoring the
workflow through all these components is a challenging task. This paper
describes a system in which monitoring objects created by the various
heterogeneous, distributed components are distributed to any application
choosing to present monitoring information.

Key words: Publish-Subscribe, Monitoring, Distributed Systems, Workflow Monitoring,
Queue Monitoring, High Volume Web Serving, Content Management

1. INTRODUCTION

Systems comprised of a large number of interacting components require a highly
flexible monitoring system. Modern, high volume web sites and their supporting
infrastructure are an example of this kind of large system. “24x7” availability
requires extremely flexible monitoring to cope with ever-changing hardware and
software components. New types of components may be needed, and previously
active components may be removed from the system. Any particular component
may provide different types of monitoring data over time.

In this paper we describe the system designed and implemented to monitor flows
within the publishing and content distribution systems for the Sydney 2000 Olympic
Website [1] [3] and the IBM sponsored Special Events websites [2].

2. SYSTEM DESCRIPTION AND ARCHITECTURE

The serving infrastructure is comprised of several geographically distributed
complexes. Content for the serving complexes flows from its originator, through one

2 Karen Witting, James Challenger, Brian O’Connell

or more stages, to its final destination. The number and configuration of the stages
varies by event. An application specific probe gathers monitoring data from the
components at each stage. This data is published to the distribution system which
delivers it to subscribers. Consumers subscribe to selected monitoring data and
present it in various views for display. Figure 1 shows an abstract view of the flow,
where M1 is delivering content to M2 and M3.

display

display

Machine M1

Machine M2

Machine M3

Monitor Data
Distrbution

web content flow

publish

consumer

producer

subscribe

Figure 1: Monitoring System Architecture
The monitoring system consists of three main elements: producers, consumers,

and a distribution mechanism. Producers gather and send out monitoring data,
consumers receive data. The distribution mechanism coordinates the delivery of the
data. The monitoring data itself is encapsulated into an opaque, self-describing
monitor object which is designed to be independent of both the distribution
mechanism and the consumer.

Monitor objects have properties that allow selection criteria to be applied by
consumers. Three main properties are associated with every object: event name ,
(“www.wimbledon.org”) host name (“server1.ibm.com”) and component name
(“SaveFile”) to create a selection space for use by consuming applications. Beyond
these base properties, a component may add any relevant data to the object. Data is
accessed by interrogating the self-describing object allowing it to change
independently of both distribution system and consumers.

Producers create and then publish monitor objects to the distribution system.
Each producer extracts monitor data that is specific to the monitored component.
All producers use common facilities for creating and publishing monitoring objects.

Monitoring Distributed Systems 3

Consumers receive data via subscription. After connecting to the distribution
system, consumers specify selection criteria to control which objects they will
receive. For example, a consumer may choose to receive data only associated with
a particular event, data from a particular host, data from a specific component, or
any combination of the above.

From the perspective of the distribution system, monitoring data is opaque.
Producers and consumers interact only with the distribution system and thus are
decoupled from each other. Because consumers are aware only of the self-
describing monitor objects (and thus not explicitely aware of producers), producers
can be added to or removed from the system and can change the type of object and
data they are producing.

The systems we monitor are composed of a series of cascading hierarchically
organized task/queue structures. Work flows through the system as tasks on queues.
Every queue collects data about things like the number of tasks waiting and
executing. Each queue is a producer and publishes a monitoring object containing
the data collected about the queue.

Queues form a workflow hierarchy, where the output of tasks on one queue
results in the addition of tasks onto queues below it in the hierarchy. Since each
queue is a producer, monitoring data is generated from each node in the hierarchy.

3. EXPERIENCES

The original implementation and experiences with the system occurred while
hosting the Sydney 2000 Olympic Website [1]. The general design and flow of the
system was re-used for monitoring the Events Infrastructure [2]. These two
experiences are similar in that they both are primarily involved in distributing work
via queues and consist primarily of ensuring that work travels through the system
without significant delay. Our methodology for monitoring the systems is a product
of our experiences running these sites.

The Sydney 2000 Olympic Website [1] was hosted on a network of IBM
RS/6000 SP2 complexes interconnected by a high-speed dedicated private network.
Producers ran on AIX machines; consumers ran on a variety of platforms. The
events infrastructure is currently hosted on a network of Netfinity X86 machines
connected by a virtual private network. All producers of monitoring data run Linux
while consumers of monitoring data run on a variety of platforms.

A key function of the monitoring systems is to provide data for management
reports. Predicting the level of detail needed for these reports in advance is
impossible. A novel hierarchical view of queues and tasks showing workflow
enabled rapid identification of potential bottlenecks and provided a high level of
flexibility in identifying and reporting problems . Detailed information about queues
in the system was displayed in tabular views. When high queue counts are a concern
the tabular views enable rapid diagnosis and correction.

Queues with work flowing through them were classified as active, slow, or busy.
An active queue is receiving significant workload but is not overloaded. Active
queues show large numbers of tasks flowing through them but relatively low

4 Karen Witting, James Challenger, Brian O’Connell

numbers for queued counts. That is, an active queue has high throughput but low
queue lengths, which indicates that tasks in that queue have very little wait time.

A slow queue is not working at its expected capacity. Slowdowns generally
indicate an undesirable system condition such as a networking problem. Throughput
is lower than expected, generally resulting in excessive queue wait time. A slow
queue has low throughput and may or may not have long queue lengths.

A busy queue is receiving more work than it has workload capacity for. A busy
queue could be indicative of component failure or simply indicate a spike in
workload. A busy queue has both high throughput and long queue lengths. It is
usually acceptable for a queue to be busy for some period of time (for example, as a
result of a load spike) but extended busy conditions could indicate subtle system
failures.

The ability for all queues to keep up with the workload demand is a significant
focus of the entire support team. When a queue is falling behind and unable to
process work in a timely manner, a great deal of focus and detailed understanding of
the situation is required. Most of the time these situations are caused by a sudden,
temporary, increase of work being added to the system, or a networking problem.

4. FUTURE ENHANCEMENTS

Enhancements include more sophisticated tools for log playback and database
driven post-event analysis tools. Failure detection can be difficult; more specialized
monitors to detect and rapidly report highly critical failures, increasing the
granularity of reporting would be useful. Integration with SNMP and other standard
protocols would allow other monitor clients to benefit from our queue based
collection and reporting scheme.

5. ACKNOWLEDGMENTS

Several people have contributed to this work including Sandy Cash, Paul
Dantzig, Cameron Ferstat, Ed Geraghty, Arun Iyengar, Herbie Pearthree, and Paul
Reed.

6. REFERENCES

1. Sydney 2000 Olympic Website www.olympics.com from September 15 through October 1,
2000.

2. Selected IBM Sponsored Web sites: www.ausopen.org, www.masters.org, www.rolandgaros.org,
www.wimbledon.org.

3. Challenger, Jim, et al., A Publishing System for Efficiently Creating Dynamic Web
Content. In Proceedings of IEEE INFOCOM 2000, March 2000.

