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1.1

IPSec/VPN is widely deployed for users to remotely access their corporate
data. IPSec policies must be correctly set up for VPN to provide anticipated
protection. Manual policy setup is unscalable, inefficient and error-prone.
Automated policy generation to comply with and enforce high-level security
policies is desired but difficult, especially in an inter-domain environment
when a VPN traverse multiple domains. This paper presents a distributed
framework and protocol, BANDS, for inter-domain policy negotiation and
generation. The BANDS architecture consists of two phases: AS (Autonomous
System) route path discovery and an inter-domain collaborative protocol for
policy negotiation among the autonomous systems discovered in the first
phase. Each AS conceptually has one security requirement server responsible
for the task of inter-domain policy negotiation. Following this two-step
process in BANDS, a set of distributed security policies (for the
implementation of policy enforcement) will be automatically
negotiated/generated based on decentralized and predefined security
requirements.

Inter-domain Security Management, Security Policy Management, IPSec/VPN

INTRODUCTION

Security Management for a Remote/Mobile Layer-3
Network Node

We had encountered various difficulties when we plugged in our laptop
computers in a foreign domain during a trip, as shown in Figure 1. We did not know
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the security policies along the route path from our laptops (then being connected to a
remote layer-3 network) or we did not even know what the route path was. In our
home layer-3 network, our own laptops might be protected by an intrusion detection
system as well as some other security counter measures, but, in a foreign domain,
we in general know very little. When our traffic caused conflicts with “some”
security policies along the route path, we did not know what the root cause was (or
even target security gateway). Maybe our destination server was down during that
time. Or, possibly, our SSH requests to certain restricted sites have been dropped by
a particular IPSec/Firewall/NAT gateway on the way. In [7], we have discussed how
such conflicts can occur in the context of [PSec/VPN and firewall.

Figure 1. Security management for a remote network node

What we really want is a plug-and-play Internet security management solution.
When we plug in a computer, a laptop, or any layer-3 addressable node under some
Internet/VPN access points, within a couple minutes or shorter, our connections to
some corresponding destinations will be established correctly and securely.

One short-term solution to this problem is to establish a bi-directional secure
virtual tunnel from the remote laptop to a “home agent” (similar to MobilelP) in the
home layer-3 network. This tunnel may be a L2ZVPN, a remote [PSec tunnel, a L2TP
tunnel, a SSH tunnel, or their combination. This approach has two major
shortcomings. First, the traffic will go through sub-optimal route paths, as they must
travel through the home network in both directions. Second, with this approach, the
traffic from the remote laptop will be properly protected by the home network
security gateways because the security gateways will treat them as “trusted home
traffic”. But, if the laptop (even if it is at home) wants to connect to a “new”
corresponding destination under a different administrative domain, it is not clear
whether some new “policy conflicts” will arise as we don’t know the security
policies at the other end of the communication at that particular moment.

1.2 IPSec/VPN Security Policy Management

Internet has been more and more “dynamic” in many ways. In order to provide
secure communications for end-to-end connections, [PSec (Internet Security
Protocol Suite) [10] policies are widely deployed in firewalls/gateways to restrict
access or selectively enforce security operations. Currently, most commercial IPSec
implementations require a manual policy configuration process, which is inefficient
and error-prone. Some IPSec management products (such as CISCO or
NETSCREEN) provide a policy distribution system to allow a centralized policy
server to distribute policies to all the IPSec devices in the same administrative
domain as shown in Figure 2. However, for all the venders we have talked to, none
of their products can provide any “correctness” assurance [7] about the IPSec/VPN
policy rules stored in the policy repository in the first place. In other words,
currently, even in an intra-domain environment, commercial [PSec/VPN policy tools
cannot generate or validate a set of provably correct policy rules.
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For the purpose of security policy formal analysis, in [1][7], we proposed a
separation principle between security policy and requirement. Based on this
principle, system administrators can unambiguously specify each individual security
model (or individual security requirement) in our policy language. Then, the
collection of such security requirements can be formally and efficiently analyzed for
its correctness and completeness properties. Furthermore, a set of [PSec security
policy rules will be automatically produced for all the PDP (Policy Decision Point) /
PEP (Policy Enforcement Point) devices.

Policy rules

Policy
Management Tool

P Policy rules

Policy Repository

PDP/PEP
Devices

Figure 2. A sample policy distribution system

Repository Access Protocol
(e.g., LDAF)

While our earlier work [1] provides a rigorous framework for security policy
management in an intra-domain environment, we do not yet have a good solution for
securing end-to-end connections across multiple administrative domains. Therefore,
the key contribution in this paper is a distributed and yet scaleable architecture and
protocol for inter-domain IPSec/VPN security policy management. The rest of the
paper is structured as follows. Section 2 defines the problem of inter-domain
security policy management. In Section 3, we briefly review the related work. Then,
we present how to solve our target problem as well as different components under
our solution in Section 4. Section 5 gives an example scenario to illustrate the
cooperation and interoperation of each component under the BANDS architecture.
We will also present some preliminary performance evaluation results in Section 6.
Finally, in Section 7, we summarize the paper and outline some future works.

2. TERMINOLOGY AND PROBLEM DEFINITION

2.1 Security Policy versus Requirement

Traditionally there is no rigorous definition of security requirements and security
policies. As a result, the relationship between them is so vague that the correctness
of security policies cannot be formally and automatically substantiated. The needs to
distinguish high-level security requirements and low-level policies were addressed
in [4][5]. Once the high-level requirements are specified/modified, it should be
possible to determine what kind of low-level policies must be created/changed.

Policy:

[szcIP-A dstIP-B ~ ¥ 1
IPSec  Prot=ESP Mode=Tunnel

@ Strength=strong

From-s6-A To=B

[szcIP—A dstIP-B prot— ¥ 1
() SR Encryption Strengtheweak
From=s6-A To= B
trusted=(SG-B}

Figure 3. An example of policy (a), requirement (b) under certain network topology (c)

Therefore, under the BANDS architecture, a two-level security
requirement/policy model is used. The word “policy” means “How should a network
entity or a policy domain handle a particular flow of packets” in the context of
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IPSec/VPN. In other words, policy is the command interface between a system
administrator and a network device such that the human administrator can instruct
the device to perform certain IPSec/VPN related operations. Once a “policy” rule is
defined, a network device can unambiguously process the packet flow, including
both packet headers and payloads. The left in Figure 3 is an example of policy. It
specifies that the TCP traffic from A to B will be encrypted through an ESP Tunnel

SA using the triple DES algorithm. And, the unidirectional SA starts at the security

gateway SG-A and ends at B itself. This “low-level” policy specifies how SG-A and

B should process the TCP packets from A to B.

On the other hand, in the context of this paper, the word “requirement” means
“How should a sequence of information bits (the original payload) be handled from
the source to the destination” regardless of any possible IP/IPSec header
transformation on the route path (e.g., [PSec Transport or Tunnel mode, NAT or
NAPT, IP fragmentation and de-fragmentation). In other words, “requirement”
(sometimes we call it “high-level” policy) expresses the administrator’s (or the
user’s) intentions about the security of some end-to-end information bits across
different administrative domains without concerning low-level security operations.
For instance, in the above SCR (Security Coverage Requirement) shown in Figure 3,
the system administrator specifies that the TCP traffic between A and B must be
encrypted between SG-A and B. And, furthermore, it might be OK to let SG-B to
examine the content (for the purpose of intrusion detection, for example).

Policy and requirement are not one-to-one mapping. Usually, one requirement
can be satisfied by a set of low-level security policy rules. As shown in [1][7], it is
possible to find multiple security policy sets and any one of them can satisfy the
target security requirement equally well.

In BANDS, IPSec/VPN security requirements have four different types:

— Access Control Requirement (ACR): ACR is related to a security gateway or
firewall’s access control function to some trusted traffic.

— Security Coverage Requirement (SCR): SCR applies security mechanism to
prevent traffic from being compromised during the transmission across certain
area. It requires the security protection to cover all links and nodes within the
certain area. Various algorithms of authentication and encryption can be
specified as the parameters in low-level policies.

— Content Access Requirement (CAR): Some network nodes may need to access
the content of certain traffic, yet the content cannot be viewed if an encryption
tunnel is built to across it. For example, a content access policy can be defined to
deny all the encrypted traffic.

— Security Associate Requirement (SAR): Security Associations (SA) must be
formed to perform desired security functions, thus there is a need to specify that
some node desire to or not to set up SA with other nodes. Network peers are
allowed to build SA unless explicitly disallowed.

[sTcIP=1 dstIP=6 prot=TCP srcPort=AHY dstPort=ANY] -

SCR Encryption Strength=STROHG

From=2 To= 4

Trusted={3}

[srcIP=1 dstIP—6 prot—TCP srcPort—AHY dstPort—ANY] = e

CAR {Encryption, Authentication}

AccessHode=4 AS400
[sTrcIP=1 dstIP=6 prot=TCP srcPort=AHY dstPort=ANY] —> ‘

SAR. NotEncryption
From=2 To=5

SCR#1: ENC 2-4 trusted 3
SCR#2: AUTH 1-4 trusted 3
SCR#3: ENC 3-6 trusted 4
8500 CAR¥1: (ENC, RUTH) by 4 A85600
SAR#1: not-ENC 2-
SAR#2: not-ENC 1-
SAR#3: not-AUTH 1-

[N

Figure 4. An end-to-end flow with 7 security requirements
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Based on the definitions, the following policy solution shown in Figure 5 (we
use a linear picture for an intuitive view) satisfies all the requirements. In order to
provide flow protection to satisfy ENC SCRs, two encryption tunnels are built
between 1 and 4, and between 4 and 5. Similarly, to satisfy AUTH SCR, two
authentication tunnels are built between 1 and 3, and between 3 and 4. Obviously,
all the tunnels are built to guarantee the certain protection, without violating any of
the CARs and SARs. Due to the size limit, we only show the formal definition of
one of the policies as follows:

[srcIP=1 dstIP=6 prot=TCP srcPort—ANY dstPort—aANY] =

ENC ENC
IPSec  Prot=ESP Mode—Tunnel 1.; £ AF — |
Strength=STRONG = _AUTH e AUTH | iy |
fram=1 to=4 = @ s
1 2 3 4 5 6

Figure 5. The policy solution

However, the following scenario as shown in Figure 6 may happen sometimes.
Each policy satisfies its corresponding requirement, while putting all the policies
together may cause conflicts. In this example, the flow is tunneled to 3 with
authentication. On the other hand, it is tunneled from 2 to 4 with encryption before
the authentication tunnel exits. It’s easy to see that the authentication function
applies at 1 and will not be de-applied at the tunnel 2 to 4. Thus, the traffic will be
encapsulated by 1 for authentication and be encapsulated again by 2 for encryption.
When 4 decapsulates and finds out that the destination is 3, the flow will be sent
back to 3. Eventually, 3 will decapsulate the flow and send it to its destination. As a
result, the flow is sent in plaintext from 3 to 4 because of the tunnel interaction,
which violates the original security intentions (requirements). This is one of the
reasons to avoid overlapping tunnels in BANDS architecture.

! ENC ENC
1 2 3 4 5 6
Figure 6. Overlapping Tunnels that cause conflicts

2.2 Inter-Domain Security Requirement Engineering

Under the BANDS framework, a system administrator and a user will use the
SRSL (Security Requirement Specification Language) to specify one or more
requirements related to either a particular domain (such as AS) or an information
flow/bundle. Then, based on all the requirements we have in the Internet, in [7], we
show that we can automatically and efficiently generate a set of IPSec security
policy rules such that all requirements will be satisfied. Furthermore, if there are any
conflicts among the requirements such that it is impossible to find a policy set to
satisfy all the requirements, our program can detect such a case as well.

However, in an inter-domain environment such as Internet, it is practically and
politically impossible, very inefficient, and un-scaleable to “collect all the
requirements in the whole system” and then perform the task of requirement analysis
and policy generation. One trick we can do under this situation is to determine the
exact “route” path from the source of the information flow to the destination. Then,
we can collect the requirements along the route path and then determine how to set
up the security policy rules to satisfy all the security requirements along the route
path. Furthermore, if BANDS detects that it is impossible to satisfy all the
requirements along one particular route path, it might be able to try another route
path (for example, in the case of multi-homing). Finally, we need to worry about
“routing dynamics” in the Internet. Whenever the route is changed, BANDS needs
to decide whether our current policy set has been affected or not. If necessary, we
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need to re-collect the requirements and re-compute the policies such that the security
will not be affected by the routing dynamics.

3. RELATED WORK

Currently, there are mainly two works related to our research, MSME project at
BBN Technologies and one of our research work --- Celestial system at NCSU.
— BBN’s MSME architecture

MSME (Multidimensional Security Management and Enforcement) [2] is a
research project being conducted at BBN technologies. It presents multidimensional
architecture to allow each member in the distributed system to maintain its own
policy management system while enabling him to exchange and resolve policies
with other members of the coalition. MSME uses one level policy model to achieve
the correctness of policy management, because there were vague definitions of
security requirements and policies. The high-level security requirement is defined in
an abstract format and somehow is mapped into a binding of the implementation, i.e.
security policy. When the policy agreements are exchanged, the policies are
complied to determine any conflict and to resolve it (if any). It is easy to see that, in
MSME architecture, security requirements are exposed when the agreements are
exchanged. Yet, in the network nowadays, people anticipate to keep the requirement
information sharing as minimal as possible.
— Celestial system

The other research work dealing with security policy management is called
Celestial system [3] at NCSU, which was designed to automatically discover
security policies along the network path and dynamically configure security
mechanisms across the network. Similarly, the Celestial system does not have
explicit definition between security requirements and security policies. It just
addresses every node’s security capabilities and policies, and the receiver computes
the corresponding policy strategy. Furthermore, the Celestial architecture is an
unscalable and pure centralized security management system, indeed.

4, BANDS: A SECURITY POLICY MANAGEMENT
SYSTEM ARCHITECTURE
4.1 Architecture overview

As we addressed in Section 2, there is a need to separate high-level requirements
from low-level policies. Therefore, the ultimate aim is to be able to define high-level
requirements beforehand and to automatically generate the low-level policies. On
the other hand, the information shared must be kept as minimal as possible because
we require only relevant information to be exposed. In order to achieve maximum
autonomy, the principle of providing policy implementers with everything they need
to know to satisfy the relevant requirements, but nothing more, should be respected.
Furthermore, today’s Internet acts like a huge distributed system. Therefore a pure
centralized network management model is not ideal enough to provide reliable and
scalable service, which could also guarantee the minimal information sharing.
Therefore, the architecture that we developed adopts a hybrid structure of
centralized and distributed systems. One of the important roles in the architecture is
that every domain (i.e. AS) contains a Requirement Server (RS), which is
responsible for cooperation and policy negotiation with other RSs in a distributed
environment, as shown in Figure 7. Based on the architecture of RS, a two-phase
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policy negotiation process is preceded by each RS to generate correct policies
automatically.

Phase 2:
Reguivement Discovery
and Policy Negotiation:

Figure 7. An architecture example in a multiple-domain environment

The first step of the overall protocol is to discover the AS route path, in order to
get the RS of each AS involved along the path ready for the incoming negotiation
process. This phase is called “route path discovery”, explained in Section 4.4. Based
on the discovered AS route path, each RS should be able to identify the IP addresses
(e.g. with DNS servers or LDAP) of other RSs along the path, such that the RS in
the original AS could find out the corresponding security requirements along the
path and exchange those which are relevant to each other. Each RS needs to make
queries to its “neighbor” RS along the path for requirement discovery request. This
requirement discovery phase is followed by policy negotiation. When the RS
receives the negotiation message from the remote RS, it computes the corresponding
policies using the automatical policy generation algorithm, direct approach [1], as
explained in Section 4.5. Eventually, each RS notifies its local routers the security
policies for a certain flow. Hence, under BANDS, we only introduce and add a
requirement server in each domain, which stores routing information, maintains
requirement information and performs policy negotiation, while routers remain
unchanged. From the routers’ point of view, the operations of BANDS operation are
transparent, because the routers still carry out the regular router operations. A router
performs its corresponding action only when it receives the policies from its RS.

Server

Rencte
< > Requirement

> Local Roarters

MIB [nkchie
£

LNIn

e TR
I

Figure 8. The architecture of a Requirement Server

Figure 8 illustrates each AS’s RS’s architecture, which has several sub-
components to interoperate with each other to precede the requirement discovery
and policy negotiation with remote RSs and has interfaces to access its routing
information, requirement information and tunnel information databases.
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4.2 Components

The functionality of the components shown in Figure 8 is described in the
following sections.

a) Routing Management Information Base (Routing MIB) and Local

Requirement Management Information Base (Local Requirement MIB)

All the routing information of local routers is stored in each RS’s Routing MIB
such that the RS will be able to calculate the route path within the AS and the AS
path across the AS. The RS needs to maintain periodical routing update from each of
the routers in the AS through its Information Base Interface. Similarly, all the
security requirements of local routers are stored in each RS’s Local Requirement
MIB. Together with the information in the Routing MIB, the Local Requirement
MIB provides the RS the capability of computing the security policy for each local
router for different flows. The RS also needs to maintain periodical requirement
update from each of the routers in the AS through its MIB Interface. And the
consistent maintenance is implemented using SNMP.

Each router runs an SNMP agent to maintain a local database of its
security/routing requirements. Each RS, as SNMP management station, must have
some SNMP management software, which is running one or more processes to
communicate with the SNMP agents within the local domain (i.e. in the same AS)
using SNMP protocol, in order to query the state of an agent’s local
requirement/routing information (under PKI infrastructure if necessary).

b) Tunnel Management Information Base (Tunnel MIB)

Since each RS knows what local routers establish what kinds of tunnels with
what remote routers, every RS should be able to make query to each of its neighbors
to find out what are the existing tunnels that are related to certain flows. In another
word, with the information in Tunnel MIB, the RS is capable of building a tunnel
map to certain flow, with which it could easily find out all the relevant security
requirements and all the relevant existing tunnels to run the direct approach
algorithm. In addition, the RS needs to maintain periodical tunnel update from each
of the remote RSs because it must delete relevant information from its Tunnel MIB
when some tunnel has been withdrawn.
¢) Policy Negotiation Module (PolNegM)

With PolNegM, the RS negotiates with the remote RS for a set of security
policies. Through Negotiation Interface, the PolNegM not only receives the policy
negotiation requests from the remote RS and responds with its relevant requirement
information to the remote RS, but also informs the appropriate security policy to
each of the routers, which will participate along the route path. It will need to access
the Routing MIB and the Local Requirement MIB to obtain the routing information
for the flow and to gather the requirement details for each of the local routers on the
route path of the flow. After collecting all the information, including the routing
information and existing tunnel information, the PolNegM runs algorithm for each
of the security coverage requirements to obtain the policy solution and then notifies
both the local router and the remote router for the SA establishment.

4.3 Interface between Modules

a) MIB interface

The Information Base Interface provides the access interface between the
database and the Policy Negotiation Module in the requirement server module.
When the PolNegM needs to access the Routing MIB, it sends the query to the MIB
Interface. The interface forwards the message to Routing MIB and sends the
response back to PolNegM. The same procedure applies to the communication
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between PolNegM and Local Requirement MIB, and between PolNegM and
Routing MIB.
b) Negotiation Interface

The Negotiation Interface provides the communication interface between the
requirement server and the remote requirement server to negotiate security policy.
When the RS contacts the remote RS to exchange requirements and to negotiate the
policies, the Negotiation Interface forwards the negotiation message to the remote
RS’s PolNegM component through its Negotiation Interface

4.4 AS Route Path Discovery

The overall protocol consists of two phases, “AS route path discovery” phase
and “collaborative policy negotiation protocol” phase. Before an end-to-end
connection can be established securely, the RS in the original AS needs to initiate
the “AS router path discovery” phase to explore the AS route path to discover all the
RSs that will be involved in the subsequent policy negotiation phase.

Depending on what routing mechanism is used, the route path discovery
strategies could vary. For instance, Border Gateway Reservation Protocol (BGRP)
[11] is an inter-domain aggregated resource reservation protocol for unicast traffic,
in which a sink tree is built for each of the stub domains to perform a destination-
based reservation aggregation as shown in the example in Figure 9. If we use it
under BANDS architecture, the overall protocol starts a route path discovery phase
by sending a BGRP PROBE message to the destination. After the initiator gets a
GRAFT message back, the exact AS route path has been probed and reserved. Each
RS that will be involved in the following protocol then needs to sustain the flow
information and launch the PolNegM to prepare for the negotiation.

45500

Figure 9. An example of a BGRP reservation sink tree rooted at router 6

4.5 Algorithm: direct approach

Before we dive into the next section for the detailed collaborative negotiation
protocol, we will briefly introduce our automatic policy generation algorithm in each
RS under BANDS, i.e. direct approach presented in [1], an efficient and scalable
way for calculating policies. The algorithm considers one SCR at one time and takes
in other relevant requirements (e.g. CARs and SARs) as parameters. By knowing the
exact route path and the existing tunnels along the path, it computes the solutions to
satisfy one SCR and related requirements without violating any existing tunnels.

To ensure that the generated policy satisfies one SCR without violating
corresponding CARs and SARs, the algorithm starts with the initial (node) graph
with full connection. To remove CAR conflicts, it eliminates all the links crossing
the nodes that have CARs. Then it deletes all the links that starts or ends at the
distrusted nodes. Finally among the rest of the edges, it uses Dijkstra shortest path
algorithm to get the final tunnel solution. To better understand the algorithm, we use
the previous scenario (SCR #2) in Section 2.1 as an example. Figure 10 (a) presents
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the initial primary graph and Figure 10 (b) shows the graph after CAR conflict check
(i.e. after removing all the edges crossing node 4). Then Figure 10 (c) takes away all
of the distrusted edges (i.e. edges that starts or ends at node 2, the distrusted node)
and Figure 10 (d) comes with the final solution.

(<) Affter distrusted node processing (@) Final policy solution

Figure 10. An example of direct approach

4.6 The Collaborative Negotiation Protocol

The architecture is designed to provide reliable and secure end-to-end
connections in a distributed environment. On one hand, the exact AS route path for a
certain flow needs to be discovered. On the other hand, after the route path is
explored, the sub-components of each RS along the path must collaborate and
negotiate to figure out the appropriate tunnel (policy) solutions to guarantee that all
the security requirements along the route path are satisfied. Our collaborative
negotiation protocol consists of two steps.

1. Requirement Discovery Phase

Procedure Requirement Discovery(low) Procedure GetRequirements(Req, flow )

1. /*Get the route path of the flow through MIE Interface % 1. /*For CAR, inserf into Local Requirement MIB *

2. routepath =MIBI_Gei_Route_Fath(fow) 2. [*For SCR if it is for myself, change SCR from and insert inso Local Requir
3. /* Check for all CARs on the path through MIB interface™ 3. [*atherwise send to previous RS */

4. CARList = MIBI Get_CAR_List(flow, routepath) 4. if (Reg is SCR and RegAggregate = ()

5. /¥ [fany CARs, send to previous Requirement Server through Negotiation Interface % 5. then Reg.from = MIBI Get_Reg_From(Req, flow)

6. For every CAR in CARList 6. MIBI Jnsert_ReqReq)

7 NI_Send_Req(CAR, PreRS) End of Pracedure

& /¥ Check for all SCRs on the path through MIBI

0. SCQRList = MIBI et SCR_List(flow, routepath)
10. /* Raguirement Aggragation *

11. For avery SCRin SCREist

12. i SCR strangth < flow. strength

13, then SCR. strongth = flow. strength

14, if flow. ReqAggregate = 1

15, than SCRfrom = PrakS

16. NI_Send_Req(SCR, PreRS)
17. MIBI_Remave_Req(SCR)
18. ow. RegAggregate = 0

19. [f no SCR betwaen myszif and naxt RS
20, then flow.ReqAgeregate = 1
End of Frocedurs

Figure 11. The pseudo code of Requirement Discovery

After the AS route path is discovered, the RS in the original AS should start
phase II to find out the requirements. The RS in the first AS sends out a
“Requirement Discovery” message to the RS in the next AS, including the target
security requirements for this end-to-end flow. It is easy for the RS to find out what
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are the local requirements for this certain flow in its Local Requirement MIB. The
RS launches its PolNegM to prepare for the incoming negotiation request from
remote RS. When the “Requirement Discovery” message reaches another RS in
another AS, the RS needs to be prepared to participate in the negotiation and find
out what are the related requirements for the flow. Furthermore, if the flow
requirements could be aggregated with certain local requirements, the RS should be
able to make the required aggregation and notify the RS, that may be affected
accordingly, to update the requirements. If a router on the route path is the one
which has CARs, its RS needs to advertise its CARSs to its previous RS through its
Negotiation Interface and the latter propagates them to every RS along the path.
Therefore, for CARs, every RS on the path knows who are the ones that need to
access the content for certain flow. For SARs, because SAR is the security
requirement that two network entities cannot establish Security Associate between
each other, both RSs should maintain the SARs. When the destination RS gets the
“Requirement Discovery” message, it will respond a confirmation message to the
sender and this step finishes. The pseudo code of the phase is as follows in Figure
11. It should be noted that solid synchronization mechanism should ensure the inter-
domain requirement consistency.
2. Policy Negotiation Phase

Next, the initiator RS sends out a “Policy Negotiation” message to the
destination RS. Accordingly, the PoINegM checks its Routing MIB to get the route
path and queries Local Requirement MIB to obtain the relevant requirements. With
the interact tunnel information in the Tunnel MIB, the PolNegM runs the direct
approach algorithm to determine what policy set it will be using. After the solution
is obtained, the RS must inform its neighbor and the next RS on the route path, the
intended policy solution, which will be considered as the existing tunnel as the input
parameters for the direct approach algorithm. If there is no appropriate solution
available, the RS must send an error message back to the original RS to either adjust
the requirements or withdraw the negotiation process. The pseudo code of this phase
is as above in Figure 12.

Procedure PalicyNegotiationflow)
L /*Generate policies for each SCR Y

1% Gt the raute pati of the flow through MEB bnterface

. routepath = MIBI_Cet_Route_Path(flow)

J* Check far all SCR on the path thraugh MIB Interface

SCRList = MIBI_Get_SCR_List(flow, routepatih)

. /* Check jor all the existing interacted tunneis through MIB Interface %
. ExistTunnels = MIBI_Cet_Exist_Tunnels(flow, routepath)

% Regm the direct approach io generate the tunnel

. /% If no solution found, send a fail message to previous RS %

10. For every SCRin SCRList

i policy = Nonoverlapping DirectApproach(fiow, SCR, Exist Tunnels)
12. i (palicy = NULL) NI_Send_Fail(PreRS)

3. Insert_Policy(paiicy, Palicyfist)

4. /% If a confirmation is received, notify local routers of policies %

15, /* atherwise send a fail message back %

26, If a confirmation is received

7. then NI_Notify_Router(paiicy)

18, else NI_Send_FailfPre RS)

End of Procedure

© 502 P e

Figure 12. The pseudo code of Policy Negotiation

When the “Policy Negotiation” message reaches the receiver and no error
occurs, the receiver responds with a confirmation message to the sender. As a result,
every RS along the path knows the solution plan is feasible and it will inform the
corresponding local router so that the router could initiate Internet Key Exchange
(IKE) to exchange the session key between itself and the certain remote router and
then set up IPSec Security Associate with the remote router. The specifications of
IKE SA and IPSec SA establishment are in [9] [10].

The overall protocol finishes when the corresponding routers start to establish
Security Associations with remote routers. Apparently, phase | guarantees the
determination of the exact route path and make resource reservation on it if
necessary. Next, all the RSs participate in the policy negotiation, including
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discovering all of the relevant requirements and calculating the policies. Thus
certain security mechanism and functions could be applied to corresponding
area/links to protect the flow. The security requirement information revealed in the
protocol are just those CARs on the route path that every RS must know to avoid
CAR violation during the policy computation and the existing tunnel information
that is only related to the flow.

S. EXAMPLE SCENARIO

The following example demonstrates the whole operation of the various modules
in the architecture and explains how the collaborative negotiation protocol works
among the network peers. Suppose that there are 6 autonomous systems in the
network using BGRP, each of which has an RS and some routers. Also, we have
some security requirements' at relevant routers as three SCRs (ENC, ordinary, 2, 4,
{3}), (ENC, strong, 3, 6, {4}) and (AUTH, middle, 1, 4, {3}), one CAR (ENC,
AUTH, 4) and three SARs (2, 5, ENC), (1, 4, AUTH) and (1, 5, ENC).

1. Discover the route path

Router 1 needs to communicate with router 6 through a strong encryption
mechanism, in our example. It initiates a route path discovery phase by sending a
BGRP PROBE message to router 6. After router 1 gets a GRAFT message back
from router 6, the exact path has been probed and reserved as shown in Figure 13.

CAR [ (ENC AUTHA)

. —— ez e
S— S — cap | (LAAITH) [CeR] - ]
SAR (LSENC) A
(1L5ENC) Ger 1 {EUTHMID 1431
SCR_| (WUTHMIDLAT3Y | SCF | ENCSTRLAGY

AS500
(a) The original state after AS route path discovery (b) After requirement discovery

Figure 13. Example scenario: The original state after AS route path discovery (a) and after
requirement discovery (b)

2. Discover the requirements

Now the RS in AS100 should begin the second phase with the requirement
discovery. It sends the “Requirement Discovery” message to next RS in AS200 to
see if there is any related requirement the latter has to share with it. The RS in
AS200 figures out that one of its SCR (ENC, ORD, 2, 4, {3}) could be aggregated
with the original flow requirement to be (ENC, STR, 1, 4, {3}). As the SCR.from is
router 1, the RS in AS200 must inform the RS in AS100 of the newly aggregated
requirement so that the latter must consider this new requirement when calculating
the policy while the RS in AS200 must not. When the RS in AS300 receives the
message and notices that there is a CAR related to the flow (ENC, AUTH, 4),
therefore, it passes the CAR to its previous RS (in AS200) and the RS propagates it
to the RS (in AS100) through its Negotiation Interface. Until the message reaches
the other end (the RS in AS400), the requirement discovery part finishes with the
last RS sending back a confirmation message.

! For simplicity, we use the abbreviation MID, ORD, STR for MIDDLE, ORDINARY,
STRONG respectively as one of the parameters of the requirements in the figure.
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3. Negotiate the policies

The RS in AS100 gets the confirmation message and thus it could run the
PolNegM to calculate the policy solutions shown in Figure 14 (a) (we use a linear
picture for a intuitive view). Similarly, the RS in AS200 runs the algorithm in the
PolNegM to figure out the policy solution shown in Figure 14 (b). Therefore, the
overall security policy solution is as follows in Figure 14 (c).

ENC, STR.

1 | ]
| = —1 J
(ay %W | ENC, STR. ENC, STR
L] O:W L]}
1 2 3 4 5 6 E% @ 5
ENC, STR. “"mIp MID e
- L] % m| 2 3 4 s 6
=R 3 .
1 2 3 4 5 6

Figure 14. Example scenario: The policy solution computed by the RS in AS100 (a) and AS
200 (b) and the final policy solution (c)

6. EVALUATION

We have implemented a simulation program for the BANDS architecture. Under
a simulated network topology, our program takes security requirements file as input
and outputs [PSec/VPN policy rules. According to our preliminary performance
results shown in Figure 15, while the number of security requirements increased
dramatically as well as the number of messages transmitted during the whole
process, the number of automatically produced security policies (the actual number
of IPSec tunnels that will be built) increased linearly with the number of
requirements. Because in the direct approach, one SCR requirement is considered at
a time to compute the corresponding policy solution, our algorithm could be
considered as a requirement-based algorithm. Certain requirement-based
aggregation will be performed during “requirement discovery phase”, as we show in
the pseudo code. In summary, the BANDS framework from our simulation-based
evaluation is indeed very scaleable and practical. Currently, our simulation program
does not simulate the dynamic routing aspect of BANDS, and therefore, the route
discovery part is omitted. More real network experiments involving routing are with
development, in order to test the correctness and scalability of our architecture.
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Figure 15. Experimental results
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7. CONCLUSIONS

We presented a distributed architecture and a collaborative negotiation protocol
for inter-domain Internet security policy management. We introduced the separation
principle between security policies and requirements such that we can express the
security intentions unambiguously. Furthermore, under the BANDS framework, the
low-level policies are automatically generated with high-level requirements defined
in advance. As a result, with the requirement server in each autonomous system in
an inter-domain environment, we could manage the local requirements and calculate
the corresponding policies for a certain flow. The overall protocol includes “AS
route path discovery” phase and “collaborative negotiation protocol”. After the AS
route path is discovered, each RS along the AS path participates in the requirement
discovery phase, followed by policy negotiation phase, which are both called the
overall collaborative policy negotiation protocol. During the negotiation phase, the
requirement information shared is kept as minimal as possible, so that only
requirements that are pertinent to the flow are revealed to others.

While the performance simulation we have so far is only for static routing on
some given end-to-end connections, our preliminary results demonstrate that our
framework is very scaleable with respect to the number of automatically generated
policy rules in an inter-domain networking environment. In the future, we will
extend our evaluation to a prototype implementation on a routing network test-bed.
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