Network-Aware Coordin
Migrations in Enterprise

Haifeng Chen™ Hui Kang®

(1) NEC Laboratories America, Inc.

4 Independence Way, Princeton, NJ 08540

{haifeng, gfj, yueping} @nec-labs.com

Abstract—Virtual machine(VM) migration usually requires a
considerable amount of system resources such as the network
bandwidth. In the case of multiple simultaneous migrations, such
resource demands will increase dramatically and are difficult
to be satisfied immediately. This paper proposes a scheduling
method for multiple VM migrations to guarantee the fast
completion of those tasks and hence the reduced impacts on
system performance. We discover the best bandwidth sharing
policy for each network link, and further propose a bin-packing
algorithm to organize bandwidth resources from all the network
links. As a result, the migration tasks can fully utilize available
resources in the whole network to achieve the fast completion.

Keywords-VM migration; scheduling; simulation; bin packing

I. INTRODUCTION

Multiple VM migrations[1] show up regularly in real system
operations. For instance, if some physical machines need to
be removed from service for maintenance, all the VMs in
those machines have to be migrated to other places. Since
applications are nowadays comprised of many VMs distributed
across several machines due to load balancing and fault
tolerance, the workload surge in an application may require
the rearrangement of several VM instances in the system.
An even worse situation is that some system faults such
as configuration mistakes may trigger a large number of
VM migrations. In those cases, it is important to handle
concurrent VM migrations in an effective way, so that they
can be completed as fast as possible to minimize the total
performance degradation time for those VMs.

There are several challenges when multiple VMs request
to migrate simultaneously. First, since those migrations may
have overlapped links in their migration paths, we need to
determine whether to let them share the link by initiating them
concurrently, and what is the maximum number of concurrent
migrations allowed in that link. The link sharing between
multiple migrations can improve the overall utilization of
network bandwidth due to the resource multiplexing between
migration flows, and thus contribute to the quick completion
of migrations. However, the amount of transferred memory
pages also increases since each VM is only allocated with a
portion of bandwidth in the overlapped links. We need to find
a balance in determining the optimal number of concurrent
migrations that share the network link.

978-3-901882-50-0 (©2013 IFIP 8

ation of Virtual Machine
Data Centers and Clouds

Guofei Jiang®") Yueping Zhang(!)

(2) SUNY Stony Brook University
Stony Brook, NY 11794
hkang @cs.sunysb.edu

This paper considers two aspects to address those chal-
lenges. First, we analyze the VM migration behavior and build
a simulation tool to predict the time of multiple migrations
under different links conditions and VM characteristics. By
running the simulation tool, we can compare VM migration
performance under different conditions, and then generate
the optimal sharing policy for each link, i.e., the number of
concurrent VM migrations that can achieve the minimal total
migration time, based on the link’s available bandwidth and
VM’s memory page dirty rate.

Given the link sharing policy, we further propose a bin-
packing algorithm to organize bandwidth resources from all
the network links, and allocate them to different migration
tasks. The bins in the algorithm represent all the links in the
network and the item denotes each migration task. While the
capacity of the bin is determined by the available bandwidth in
all network links, the size of each item is associated with the
bandwidth demand of each migration, which can be estimated
from the migration sharing policy in each link along that VM’s
migration path. Given the bin capacity and item sizes, we
use the first-fit decreasing (FFD) heuristic to allocate each
migration to a corresponding bin so that the total number of
bins to host those migrations is minimized.

We have evaluated our migration scheduling algorithm by
simulating different numbers of VM migrations in our test
bed systems. Results show that with the help of our migration
scheduler, we can achieve the fast completion of multiple VM
migrations.

II. NETWORK LINK SHARING

Our study focuses on the pre-copy migration technique[1]
implemented in common virtualization software such as Xen
and VMware. It makes use of an iterative multi-pass algorithm
to transfer VM guest memory in successive steps. In each
iteration, only the memory that has been dirtied in the interim
is sent. When the pre-copy stage is terminated, the final state
is sent to the new host and the transfer of control to the new
physical machine is completed.

When executing s migrations simultaneously in one network
link, the total migration time 7% becomes

T(pal) = max {Tmigflv Tmig727 co

9 Tmigfs} (1)

88

where T,,;—; is the duration of the ith migration. Note that the
value of T},;4—; varies with number of concurrent migrations
s due to the differences in allocated bandwidth. In this section,
we estimate 1},;,—; under various setting of s, and identify
the best network link sharing strategy, i.e., the s concurrent
migrations that lead to the shortest total migration time. We
use the normalized value TP*)/s to compare the overall
migration time under different s values.

When s = 1, it corresponds to the case when migrations are
performed sequentially. With the increase of s value, more
migrations are executed in parallel. Running s migrations
in parallel can improve the overall utilization of network
bandwidth due to the resource multiplexing between migration
flows. However, the amount of transferred memory pages also
increases since each VM is only allocated with a portion of
bandwidth in the overlapped links. In order to find the best
s, we need to first predict the VM migration performance
under different link sharing strategies. However, due to the
complexity of VM migration, its duration depends on several
factors such as the available bandwidth in the link and VM
memory dirty rates. Table I presents two examples to illustrate
this, in which we compare the time of two migrations when
they are executed in a sequential order and simultaneously. In
the first example, we migrate the VMs with 1GB memory in
a link with 1Gbps bandwidth. It shows that when the VMs
have 2k memory dirty pages per second, it takes only 20
seconds for parallel migration to complete, whereas sequential
migration consumes 22 seconds. However, when the VM
memory dirty rate increases to 15k pages per second, parallel
migration becomes slower than the sequential one. In the
second example, we compare the migration time of two VMs
with 1GB memory and 10k memory pages per second dirty
rate in different link situations. It shows that while parallel
migration is faster when two migrations are executed in a
link with 1Gbps available bandwidth, sequential migration
becomes much faster when the link bandwidth drops to 300
Mbps.

VM page | link band- || sequential parallel
dirty rate width migration migration
2 k/s 1 Gbps 22s 20s
1
Case 5K5s T Gbps 275 385
10 k/s 1 Gbps 23s 21s
Case 2
ase T0Ks | 300 Mbps 78s 90s
TABLE I

TOTAL TIME OF VM MIGRATIONS WHEN THEY ARE EXECUTED
SEQUENTIALLY AND IN PARALLEL.

Due to nonlinear dependency of migration performance
with respect to factors such as the link capacity and the VM
memory dirty rate, it is hard to predict the VM migration time
by some mathematical formulas. As an alternative, this paper
proposes to use software simulation to identify the optimum
link sharing policy under different VM and link conditions.
Our simulation follows the source code implementation in Xen
to predict the VM migration time given the available link
bandwidth and VM characteristics. In the case of multiple
VM migrations, we incorporate several extra factors in the

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper

Fig. 1. The optimal link sharing policy for multiple migrations with respect
to the link bandwidth and VM memory dirty rates.

simulation. For example, some migration overheads, such as
the time spent in the initial resource reservation and final
VM activation in the target machine, can be saved by the
parallelism of multiple migrations. We also model behavior of
bandwidth usages when multiple migrations share the network
link. By running the simulation tool, we can compare VM
migration performance under different conditions, and then
generate the optimal sharing policy for each link, i.e., the
number of concurrent migrations that can achieve the minimal
total time based on the link’s available bandwidth and VM’s
memory page dirty rate.

By using our simulation tool, we evaluate the total VM
migration time under various link sharing strategies, given
different VM characteristics and link available bandwidth.
From the simulation results, we find that the optimal link
sharing mainly depends on two factors: the link available
bandwidth, and the memory dirty rates of migrating VMs.
This is because that those two metrics determine the size of
extra contents, in addition to the original VM memory, that
need to be transferred during the migration. After summarizing
many simulation scenarios, we obtain the optimal s number of
concurrent migrations, given specific link bandwidth and VM
memory dirty rates. Some of our simulation results are shown
in Figure 1.

III. GLOBAL RESOURCE ASSIGNMENT

In reality, the whole network is comprised of a large number
of communication links organized by certain topology design.
Meanwhile, each migration usually covers a set of network
links in its migration path, i.e., from the source to destination
machines. Based on the bandwidth sharing policy in each
link, this section attempts to find an optimal assignment of
global network resources for multiple migrations to achieve
the minimal total migration time.

It becomes a combinatorial optimization problem to find the
best organization of many migrations with different overlapped
links along their migration paths. In this paper, we use a bin-
packing algorithm [4] to address that issue. We treat all the
links in the network as a bin, and use a multi-dimensional
vector C to represent its capacity. That is, we index each link
in the network, and measure the available bandwidth in those
links as

C=ler,ea, o ,e0)” 2)

889

where 7 equals to the number of links in the bin. In practice,
the value of depends on the number of physical links in the
network as well as the network configurations. For example,
when the network is operated in the full-duplex mode, which
is typical in network configurations, the value r equals to twice
the size of network links due to the differentiation in traffic
directions. If the network is configured by equal-cost multipath
(ECMP) load sharing [3], we need to combine those multiple
links that are used for balancing the load into a logic link, and
only include the logical link in the vector (2). We will discuss
this more in the section of experiments.

This item in our bin-packing algorithm relates to each
migration task. Given the indices of network links, we use a r
dimensional binary vector Pl = [1,0,0,---, 1]T to represent
the path of migration M;, in which the value ‘1’ in the ith entry
indicates the inclusion of the 7th link in the path and ‘0’ vice
versa. The end-to-end bandwidth demand for migration M; is
defined as a vector

DY = PO xd® =[1,0,0,--- 17 xd® (3)

d® is the expected bandwidth allocated to M;, which is
determined as following.

We denote the links in M;’s path as a set
{89,157 . 191, each of which has available bandwidth
¢j, j = 1,---, k. Given the available capacity c¢; of link l;l)
and a migrating VM with memory page dirty rate I2;, we can
identify its optimal bandwidth sharing policy Sy) in that link
from the simulation results in Section II, which represents the
optimal number of such VMs that can migrate simultaneously
in the link to achieve the minimal total migration time. We
then determine the bandwidth demand of M, in link l‘gl) as

di) = ¢;/s}" (4)

That is, the local bandwidth demand d;z) of M, is determined
to allow ng) such concurrent migrations in the link to achieve
the optimal migration time. Once we find the bandwidth
demand dy) for all the links l]@, j =1,---,k along M;’s
path, the overall bandwidth demand of M; is determined as
the maximum demand among all the local estimations

The intuition here is that the overall demand d™ should satisfy
all the local demands d;l) to ensure the quick completion of
migrations.

Now given the capacity of the bin and the resource demands
of all items, the bin-packing algorithm is to pack those items
into the smallest number of bins. By doing so, we can achieve
the quickest completion of all migrations, because the number
of bins generated by bin-packing represents the total duration
of those migrations. In Figure 2, we demonstrate such a
process by first assuming that all migrations take the same
amount of time 7. The x axis in the figure denotes the
time, which is divided into b intervals 1%, 15, ---,1}, with
equal length T'. Since all migrations are assumed to have the

890

U = =
L = .:> E>
v, B 3 :
M, E E o o |:>i
e =
M., [E) I:> : :
M. B >
Ty T, Tpa Tp time

Fig. 2. Migration scheduling is regarded as a bin-packing process.

same duration 7, the network has the bandwidth capacity C
at the beginning of each epoch 7T;. The y axis in Figure 2
represents the migration tasks. Considering the link sharing
policy discussed in Section II, we can only initiate a subset
of migrations in each epoch T;. Our bin-packing solution is
to find an optimal assignment of VM migrations into those
epochs, so that the total migrations can be completed in the
shortest time.

The bin-packing problem is NP-hard, and there have been

a number of heuristics [2] to identify its near optimal so-
lution. In this paper we use the first-fit decreasing (FFD)
heuristic to schedule the migrations. The FFD method sorts
migration tasks in a decreasing order of bandwidth demands,
and attempts to place each task in the earliest epoch that can
accommodate it. More concretely, the FFD based migration
scheduling can be described in the following steps.

1) Transform the resource demand vector D for each migration
M;, described in equation (3), into a scalar n(i), DO - n(i),
where n(i) equals to the summation of all the elements in DO,

2) Sort the resource demands based on their transformed nm
values ;

3) Scan migration tasks from high to low n(i) s. For each selected

migration task, we try to place it in the earliest time interval
T that still has free capacities to host it;

4) Repeat Step 3) until all the migration jobs have been allocated.

In practice, the migration tasks have different time durations
due to their variances in VM memory size, memory page dirty
rate, and so on. There are no clear boundaries between each
time slot, described as vertical dash lines in Figure 2, to syn-
chronize migration tasks. In those general situations, we still
use the FFD based heuristics to schedule migrations. However,
the start of each migration is triggered by event signals rather
than the time. That is, when a migration is completed, it sends
a signal to the migration scheduler. Upon receiving that event,
the scheduler computes the current available bandwidth in the
network links

>

active migrations Mj,

cnew) — ¢ — D®) (6)

where C is the original link capacity described in equation (2)
and D®)s are the bandwidth demands of ongoing migrations.
We regard C(new) 4 the current bin size, and scan the ordered
migration tasks in the waiting list with an attempt to allocate
as many of them as possible to fill the capacity C("¢*). The
whole process stops when all the VMs have migrated to their
target machines.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper

IV. EXPERIMENTAL RESULTS

We use the data generated from our simulation tool to
evaluate the performance of multiple VM migrations in a
typical two-tiered data center network as shown in Figure
3. There is an aggregation switch at the top of the network
hierarchy, which connects to eight edge switches via 10Gbps
network links. Each edge switch in turn connects to sixteen
servers via 1Gbps network links. We create background traffic
in the network. While the traffic in 1Gbps network links
is randomly generated from a predefined range, the traffic
in 10Gbps links is the aggregation of incoming traffic from
its associated 1Gbps links. There are four virtual machines
in each physical server. Each VM has 1GB memory size,
and its memory dirty rates is randomly chosen between 4k
to 8k memory pages per second. As a result, the system
we simulated consists of 64 physical servers and 256 virtual
machines in total. Note that since our focus here is the network
impact on migration performance, we assume that all the
physical machines have enough CPU and memory resources
to host VMs.

Fig. 3. The system for evaluating the migration performance.

We generate different numbers of VM migrations in the
system and simulate the migration time. For each migration,
the source VM is randomly selected from machines connecting
to the left two edge switches, and its destination is from those
machines connecting to the right two edge switches. We use
the bin-packing method to schedule those migrations. Here
the network links are configured in the full-duplex mode. As
a result, the number of links in each bin, i.e., the size of the
vector C in equation (2), is twice the number of physical links
in the network. The resource demand of each migration is
determined by the VM’s memory dirty rate and the available
bandwidths of all links along its migration path. Given the
bin capacity and resource demand of each migration, we vary
the number of VM migrations in the system and simulate
the migration time under those different situations. In order
to demonstrate the superior performance of our approach,
we compare our results with the performance of the fixed
k-simultaneous migrations, where maximal k& migrations are
executed simultaneously in each round and the new round
starts only after the previous k& migrations are all completed.
In the experiments we choose k& = 4 and 8 for the comparison.

Figure 4 presents the results of VM migrations when
they are executed under two different network bandwidth
conditions. While in Figure 4(a) we generate around 500
Mbps background network traffic in each second-tier link to
create a relatively light-load network, Figure 4(b) increases
the background traffic to have a heavily loaded situation.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper

migration time (seconds)

o El w0 o El &0
total number of migrations total number of migrations

(a) (b)
Fig. 4. The duration of different number of VM migrations when they are
executed under (a) lightly loaded and (b) heavily loaded network conditions.

The x axis in both figures represent the number migrations
that need to execute, and the y axis represents the migration
time. The curves are obtained from the average performance
of ten repeated simulations, in which the solid and dash
lines denote the results of 4-simultacous migration and 8-
simultaeous migration respectively, and the dash dot lines
represent the results of our scheduling method. As we can
see, when the network is lightly loaded, the 8-simultaeous
migration completes faster than the 4-simultacous migration,
because the large network bandwidth allows more simultane-
ous migrations to share the resource for accelerating the task.
On the other hand, when the network available bandwidth
is limited, the 4-simultaeous migration performs better than
the 8-simultacous migration, as shown in Figure 4(b). This
is due to the large amount of dirty memory pages generated
by the 8 simultaneous migration under the bandwidth limited
condition. Nevertheless, compared with the strategy of fixed
k-simultaneous migrations, our bin-packing based scheduling
works much better in both situations. It can automatically
adapt to the network conditions and generate the migration
schedule with the shortest completion time.

V. CONCLUSIONS

This paper has proposed a novel method to coordinate
multiple VM migrations in enterprise data centers and clouds.
It has considered the migration sharing in each network link,
as well as the global network bandwidth assignment for
migration tasks. While the network link sharing has been
addressed by software simulation, we have proposed a bin-
packing algorithm to deal with the global resource assignment.
As a result, the total time for those migration tasks can be
minimized. The experiments have validated the effectiveness
of our approach.

REFERENCES

[1] C. Clark, K. Fraser, S. Hand, and et. al. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation (NSDI ’05),
pages 273-286, Berkeley, CA, 2005.

[2] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation
algorithms for bin packing: a survey. Approximation algorithms
for NP-hard problems, pages 46-93, 1997.

[3] C. Hopps. Analysis of an equal-cost multi-path algorithm, 2000.

[4] B. Korte and J. Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer, 4th edition, 2007.

891

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

