Collaborative Selfish Node Detection with an
Incentive Mechanism for Opportunistic Networks

Radu-Ioan Ciobanu, Ciprian Dobre, Mihai Dascalu, Stefan Trausan-Matu, Valentin Cristea
Faculty of Automatic Control and Computers
University Politehnica of Bucharest
Bucharest, Romania
Emails: radu.ciobanu@cti.pub.ro, {ciprian.dobre, mihai.dascalu, stefan.trausan, valentin.cristea} @cs.pub.ro

Abstract—Selfish nodes in an opportunistic network are nodes
that do not want to participate in the routing process for various
reasons, such as low resources (e.g. battery, memory, CPU,
network or bandwidth), fear of malicious data from unknown
users, or even lack of interest in helping nodes from other
communities. This may lead to messages sent in the network
being delayed or even lost. Therefore, these types of nodes should
be detected and avoided. Moreover, incentive mechanisms that
reward nodes when they actively take part in the network (i.e.
relay messages for other nodes) and punish them when they
do not, should be employed where possible. In this paper, we
propose a novel collaborative content and context-based selfish
node detection algorithm and an incentive mechanism which
aim to reduce the issues of selfish nodes in an opportunistic
network. Since local information may not be sufficient to reach
an informed decision, nodes running our algorithm collaborate
through gossiping, for the final goal of detecting selfish nodes,
later on to punish and avoid them. We compare our approach to
an algorithm entitled IRONMAN and show that it behaves better
in terms of network performance and detection accuracy.

I. INTRODUCTION

The emergence of mobile devices has helped to create
the premises for various new means of communication and
interaction, particularly in the area of Delay-Tolerant Networks
(DTNs). Opportunistic networks are a recently proposed type
of such networks which are established in environments where
human-carried mobile devices act as network nodes that can
exchange data while in proximity. Opportunistic networks are
based on the store-carry-and-forward paradigm, where a node
stores a message, carries it around until it encounters its
destination or another node more likely to deliver the message
to the destination, and then forwards it.

The assumption generally made by opportunistic routing
algorithms is that nodes are willing to participate in the routing
process at all times, but in a real-life scenario this assumption
isn’t necessarily true. A node may be selfish for node A and
unselfish for node B. There are several reasons why a node
may be selfish. For example, it might be low on resources
(battery life, memory, CPU, network or bandwidth) at a certain
point and would like to save them for future use. Another
reason for selfishness might be the fear of malicious data
from unknown users, or even the lack of interest in helping
nodes from other communities. The existence of selfish nodes
in an opportunistic network might lead to messages having
high delays or never being delivered at all. Thus, selfish nodes
should be detected and avoided when routing. Furthermore,

978-3-901882-50-0 (©2013 IFIP

incentive mechanisms should reward nodes when they actively
take part in the network and punish them when they do not.

In this paper, we propose a novel social-based collaborative
content and context-based selfish node detection algorithm and
an incentive mechanism which aim to reduce the impact of
selfish nodes in an opportunistic network. Since information
collected locally by each node may not be sufficient to reach
an informed decision, nodes running our algorithm collaborate
through gossiping. After informing each other with their ob-
servations, each node individually reaches a decision based on
the received information. Unlike other collaborative detection
algorithms such as [1] or [2], nodes do not have to rely on other
nodes doing their computations. Moreover, perceived altruism
values for other nodes are not binary. Instead, we use fuzzy
values when analyzing a node’s altruism.

Our algorithm also bases its analysis on the current context,
by using social knowledge, as well as information about the
device’s battery. Social information is used because nodes tend
to interact more and be more altruistic towards other members
of their own community, while the battery status helps decide
if a node was being selfish due to the fact that it was low
on battery. Furthermore, the algorithm proposed in this paper
is also content-based since it analyzes every message a node
has sent and makes decisions based on their type. Messages
that are sent to selfish nodes may end up being dropped or
not delivered, and this is why a selfish node detection and
incentive mechanism is necessary. Our solution provides such
a mechanism that is able not only to avoid selfish nodes, but
also to increase the performance of the network by doing so
(in terms of various metrics such as hit rate, delivery latency,
etc.). In order to provide more insight into our approach, we
compare it to an existing algorithm entitled IRONMAN [2] and
show that it behaves better in terms of network performance
and detection accuracy.

Section II presents related work. Section III proposes a
novel social-based collaborative content and context-based
selfish node detection algorithm and an incentive mechanism.
Section IV compares the results obtained by IRONMAN and
our algorithm, while Section V presents our conclusions.

II. RELATED WORK

This section presents notions about altruism modeling
in practice and describes similar solutions for selfish node
detection and incentive mechanisms in opportunistic networks.
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A. Altruism Modeling

In order to design an opportunistic network, an altruism
model that specifies how selfish nodes are spread in the
network and how they behave towards the nodes they en-
counter should be used. In [3] and [4], several such models
are presented: percentage of selfishness, uniform, normal,
geometric, degree-biased or community-biased distributions.
In the percentage of selfishness model, nodes may either
be totally selfish or totally altruistic, and there is a given
percentage of selfish nodes in the network. However, this
model is not realistic, since a node isn’t generally totally
selfish or totally altruistic. The uniform distribution model
assumes that the altruism value of the opportunistic network is
uniformly distributed, while the normal distribution model uses
a normal distribution, restricting and normalizing the range of
values using the 5% and 95% values of the CDF [4]. The
advantages of these two models are that they are popularly
encountered in nature and are relatively easy to implement.
When employing a geometric distribution, altruism values are
computed for node pairs, each of them following a distribution
in which the probability decreases with the social hop-distance.
The degree-biased distribution is based on the assumption that
nodes become more popular and have many social connections
because the owners of the devices are willing to help other peo-
ple, while the community-biased model assumes that people
in a community have greater incentives to carry messages for
other members of the same community. In this case, altruism is
modeled using an intra and an inter-community altruism level.

For our purpose, the most suitable model would be the
community-biased distribution model, since we are dealing
with an opportunistic network where the nodes are mobile
devices carried by humans that interact based on social rela-
tionships. However, altruism values should also be distributed
inside a community (i.e. not all nodes in the same community
should have the same altruistic values towards each other),
using a uniform or normal distribution. Regarding the behavior
of a node when it is selfish, another node can send it messages,
but it can’t know if those messages were received or if they are
ever going to be delivered. This is inherent in mobile networks
based on WiFi or Bluetooth.

B. Selfishness Detection and Incentive Mechanisms

Although it has been shown that opportunistic networks
are robust towards altruism distribution [3], detecting and
avoiding selfish nodes (or making them unselfish) can lower
the unnecessary loss of resources or the delays that may appear.
Therefore, several methods for the detection of selfish nodes
in DTNs have been proposed in the past.

The selfish node detection mechanism for Mobile Ad
Hoc Networks (MANETSs) and DTNs described in [1] uses
a collaborative watchdog approach to detect selfish nodes and
spread this information in the network. In such an approach,
if one node has previously detected a selfish node, it transmits
this information to encountered nodes. However, this method
has the main disadvantage that it assumes that a node can either
be fully altruistic or fully selfish. Therefore, the perceived state
of a node can fluctuate heavily if contradictory information
comes from different sources.
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We propose an approach that uses fuzzy values for a node’s
altruism since it is more realistic, and computes perceived
altruism values based on both context (social knowledge,
battery level) and content (computations are performed per
message). Our approach is somewhat similar to [5], where
gossiping is used by nodes to spread their interpretation of
the monitoring level in order to have a faster detection of
selfish nodes in the network. Another proposed method [6]
splits selfish nodes into free riders, black holes and novas, and
uses message path analysis to separate them from other nodes.

However, simply detecting selfish nodes may not be enough
to improve the performance of a network. An incentive mech-
anism may, for example, not accept messages from nodes
considered selfish, thus forcing them to participate if they want
their messages delivered. Such a mechanism is IRONMAN [2]
that uses pre-existing social network information to detect and
punish selfish nodes, incentivising them to participate in the
network. Each node stores a perceived altruism (or trust) value
for other nodes, that is initialized based on the social network
layout: if the nodes are socially connected, this value is higher
than for regular nodes. When a node A meets a node B, it
checks its encounter history to see if B has ever created a
message for A that has been relayed to another node C. If
this is the case, and A has encountered C' after B had given
it the message but A didn’t receive the message, then C' is
considered selfish, and A’s trust in C' is decreased. Whenever
a node A receives a message from a node B which is not the
source of the message, A’s trust in B is increased.

Apart from detecting selfish nodes, IRONMAN also uses
incentives to make nodes behave better. Therefore, whenever
a node B is considered selfish by A (its trust score is below
a given threshold), it is notified, and A won’t send it any
messages. Moreover, it won’t accept any messages from B
either, so a selfish node might end up not being able to send
its messages, unless it becomes altruistic. We compare our
proposed solution to IRONMAN and highlight the advantages
it brings. Unlike IRONMAN, our approach doesn’t assume
that a node is either selfish or altruistic, but it computes a
fuzzy value that can be interpreted in multiple ways. Moreover,
we also take advantage of social information about the nodes,
but do not use it solely at the bootstrapping phase, but also
during the algorithm’s runtime. We have chosen to compare
our solution to IRONMAN because it has been shown to have
good results compared to previous existing mechanisms.

III. DETECTING AND HANDLING SELFISH NODES IN
OPPORTUNISTIC NETWORKS

In our algorithm, each node has a unique ID that can
be used to identify it within the entire network. Aside from
it, a node stores social information, i.e. the relationships it
has with other participants in the network. Since it has been
previously proven that nodes in opportunistic networks tend
to interact more with members of their own social community
than with others [7], [8], we consider this information to
be helpful in designing our selfishness detection algorithm.
Furthermore, as we have shown in Section II-A, nodes tend
to be less selfish towards their own communities, so having
knowledge about a node’s social connection might help us in
deciding whether it was being selfish or if it couldn’t deliver
a message due to other reasons (such as insufficient space in
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the data memory, or low battery). Therefore, a node contains
information about its own community as a list of nodes it has
social relationships with. The community can either be taken
from various social networks such as Facebook or Google+,
but when this information is not available, we use a distributed
community detection algorithm such as k-CLIQUE [9], which
is an algorithm that detects an opportunistic network node’s
community on the fly based on the duration and number of
encounters with other nodes. Also, the battery level is another
contextual information that a node has access to and may use
in the altruism computation process.

Each node running our algorithm also contains a data
memory split into four sections. Firstly, there is the list of
messages that the node has generated in the course of time.
Secondly, each node has a list of messages that it stores,
carries and then finally forwards (or drops, if the memory is
full) for other nodes. Additionally, each node has another two
sections of data memory that contain information regarding
past transfers: a list of past forwards O and a list of past
receives I. O contains information regarding past message
forward operations performed either by the current node,
or by other nodes. Therefore, the following information is
stored: ID and community of both nodes that participated
in the forward (sender and receiver), time of the encounter,
encountered node’s battery level when the contact occurred,
and metadata about the message that has been exchanged
between the sender and the receiver (source and destination
node IDs, TTL, priority, etc.). The list of past receives [
contains information regarding past message receive operations
performed either by the current node, or by other nodes, and
the stored data is similar to the one from O. Both of these
lists are updated whenever a new data exchange takes place
and they only store the most recent information.

When two nodes A and B running our algorithm meet,
they perform a series of steps. Firstly, each node computes an
altruism value towards the other node, as specified in Section
II-A and, based on that value, decides if it will help the other
node. If the two nodes decide that they are unselfish towards
one another, at the next step they exchange the I and O lists of
past data transfers. When a node receives one of these lists, it
updates its own list with the newly received information. Since
the sizes of I and O are limited, only the most recent transfers
are kept (regardless of whether they belonged to the current
node, or to a different one). This way, a node can have a more
informed view of the behavior of various nodes in the network,
through gossiping. We consider this to be an improvement
over IRONMAN, since node A isn’t simply told that node
C has a certain degree of altruism based on the computations
performed by B, but it is allowed to make the decision itself
based on information gathered from encountered nodes. This
is an advantage for our algorithm, as node C' may be selfish
towards node B because they are not socially connected, and
unselfish with regard to node A because they belong to the
same community. When this situation happens at IRONMAN,
if node B decides that C'is selfish and notifies A of this before
A ever encounters node C, then A will end up considering C'
as being selfish, although that may not be the case.

After two nodes decide to be altruistic towards one another
and they finish exchanging knowledge about past encounters,
each of them advertises its own specific information, such as
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battery level and metadata about the messages it carries (which
includes source and destination IDs). Based on the lists of
past encounters / and O, each node computes a perceived
altruism value for the other node with regard to the messages
stored in its own data memory (in other words, it computes
how willing the encountered node is to forward a certain type
of message). If this value is within certain thresholds, the
communication continues and the desired opportunistic routing
or dissemination algorithm is applied. If (for example) node
B’s computed altruism is not within the given limits for any of
A’s stored messages, then it is considered selfish by node A,
so A doesn’t send it messages for routing and doesn’t accept
messages from B, either. Node A then notifies B that it con-
siders it selfish, so B won’t end up considering node A selfish
(because this would lead to all nodes in the network becoming
selfish eventually, since nobody would accept messages from
anybody else). This also functions as an incentive mechanism,
because if a node wants its messages to be routed by other
nodes, it shouldn’t be selfish towards them. Therefore, every
time a node is notified that it is selfish in regard to a certain
message, it increases its altruism value. If there is a social
connection between the selfish node and the source of the
message, the inter-community altruism is increased. Otherwise,
the intra-community altruism value grows.

The formula for computing altruism values for a node N
and a message m based on the list of past forwards O and on
the list of past receives [ is the following:

N.id=o0.d,N.id=i.s
altruism(N, m) = E

0€0,iel,o.m=i.m

type(m, 0.m) x thr(o.b)

In the previous formula, a past encounter x has a field x.m
which specifies the message that was sent or received, z.s is
the source of the transfer, z.d is the destination and z.b is
the battery level of the source. type is a function that returns
1 if the types of the two messages received as parameters
are the same (in terms of communities, priorities, etc.), and
0 otherwise, while thr returns 1 if the value received as
parameter is higher than a preset threshold, and 0 if it’s not
the case. Thus, the function counts how many messages of the
same type as m have been forwarded with the help of node
N, when N’s battery was at an acceptable level.

Because the altruism computation takes into account in-
formation such as the battery life and social relationships,
the algorithm can be described as context-based. Furthermore,
as the perceived altruism value is computed with regards to
the content of every message in a node’s data memory, our
proposed selfish detection algorithm is also content-based.

IV. EVALUATION

This section presents an evaluation of our selfish detection
and incentive algorithm in various situations. We compare its
results with the ones obtained when running IRONMAN [2].

A. Test Setup and Scenarios

All tests were performed on the MobEmu emulator [10]
which parses human mobility traces or runs a mobility model
simulator, and then applies an opportunistic routing and selfish
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node detection algorithm. We used one mobility trace (UPB
2012) and one synthetic mobility model (HCMM). UPB 2012
[11] is one of a series of two mobility traces taken in an aca-
demic environment at the University Politehnica of Bucharest
(the other one being UPB 2011 [8]), where the participants
were students and teachers at the faculty. It includes data
collected for a period of 64 days by 66 participants, during
faculty working hours (8§ AM - 8 PM). We also tested our
algorithm using HCMM [12], a synthetic mobility model that
tries to replicate the behavior of nodes in an opportunistic
network. It assumes that nodes are driven not only by the
social relationships between them, but also by the attractions of
physical locations. HCMM is based on the caveman model and
assumes that each node is attracted to its home cell according
to the social attraction exerted on that node by all nodes that are
part of its community. We chose the UPB 2012 trace because
we were interested in applying our algorithm to an academic
environment, where contacts happen often, due to the large
number of participants in a relatively small space. HCMM
was deployed in order to simulate a similar environment, in
case the collected trace was incomplete or non-representative
of the actual academic environment. Therefore, the HCMM
simulations will have a lot more contacts than the trace.

The opportunistic routing algorithm we used in our tests
was Spray-and-Wait [13], where each message has a fixed
number of copies (chosen based on the number of encounters
in the network). At every encounter, a node sends half of its
copies of a message to the encountered node, if the latter
doesn’t already contain it. When a single copy of the message
is left at a node, it is only delivered directly to the destination.
However, we assumed we were in an environment with devices
that have limited resources, therefore the data memory of a
node was limited. We tested with multiple values, ranging
from 20 to 4500. When a node has to receive a message, but
doesn’t have enough room in its memory, it discards the oldest
message and replaces it with the new one. The size of the two
history lists O and I was set empirically to 1000, in order to
limit the overhead of the gossiping stage. An entry in one of
these two lists may contain up to 10 fields. Assuming they
are represented as integers, it means that an entry in O or
takes up about 80 bytes. Thus, the maximum size of a history
list is approximately 8 kilobytes. Compared to the sizes of
regular messages that are being sent between nodes (which
can reach an order of tens of megabytes), the history lists are
insignificant. Since the speed of Bluetooth 2.0 is around 3
megabits per second, this means that an entire history list can
be sent in 20 milliseconds. Since it has been shown that the
average contact duration in an academic environment can be
as much as 30 minutes [8], it is clear that the overhead of
exchanging history lists is insignificant.

For every test case, we tried to model the generation
of messages so as to resemble a real-life environment as
closely as possible. Thus, every weekday, each node from the
trace generates 30 messages with destinations chosen based
on its social relationships using a Zipf distribution with an
exponent of 1. Therefore, a node has a higher chance of
sending a message to another member of its community than to
other nodes. Inside the community, the destinations are chosen
randomly. The time of the day when the messages are sent is
randomly chosen inside the two-hour interval when the most
contacts occur for each particular trace.
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For the IRONMAN implementation, we used the descrip-
tion in [2] and the parameters shown there. Thus, the default
perceived altruism value for nodes in the social network was
100, and for unknown nodes it was 50. The trust threshold was
also 50, as well as the behavioral constant added or subtracted
when a node is found to be altruistic or selfish. Since we use
a community-biased distribution as an altruism model, a node
has two levels of altruism (one for nodes in its community, and
one for nodes outside it), both between 0 and 1. When a node
is informed by another that it is considered selfish, it increases
both these values by 0.1 (this value was chosen because we
have observed empirically that it is the most suitable in terms
of results obtained). This is done similarly for our algorithm,
except that only one of the two altruism values is increased
by 0.1, depending on the relationship between the current and
the encountered nodes (i.e. if they are in the same community,
the intra-community value is increased). Both the inter and the
intra-community altruism values were distributed normally in
the network with a mean of 0.4 for inter-community and 0.6
for intra-community. We opted for this discrepancy in order to
best model real-life scenarios, whereas the new mean values
for the altruism distributions were obtained as deviations of
trust in terms of incremental steps of 0.1 from the standard
mean of 0.5.

Taking into consideration the previously described scenar-
ios, we performed several simulations and analyzed various
metrics that highlight the benefits brought by our proposed
approach.

1) Hit rate, latency, delivery cost, and hop count: For all
sets of tests, we looked at four performance metrics very
important in opportunistic networks and how they are affected
by selfishness. The hit rate is the ratio between messages
delivered successfully and the total number of generated mes-
sages. The delivery latency is defined as the time between the
generation of a message and its delivery to the destination.
The delivery cost, defined as the ratio between the total
number of messages exchanged and the number of generated
messages, shows the network congestion. The hop count is
the number of nodes that carried a message until it reached
the destination on the shortest path, and should also be as
low as possible in order to avoid node congestion. The tests
were performed on UPB 2012 and on HCMM. We ran the
default Spray-and-Wait algorithm with and without any selfish
nodes (we called these the “default” and “selfish” cases), after
which we applied IRONMAN and our proposed algorithm.
For the UPB 2012 trace, there were 53 active devices in
the network, with 30 maximum message copies allowed for
the Spray-and-Wait algorithm, and a threshold of 1 for our
algorithm. For the test scenario using HCMM, we tried to
simulate an academic environment. Therefore, we split the
physical space into a 400x400-meter grid, with 10x10-meter
cells, in order to simulate the campus of a university. The
speed of the nodes was chosen between 1.25 and 1.5 meters
per second, which is the average human speed, while the
transmission radius of the nodes was 10 meters, which is the
regular Bluetooth range. There were 33 nodes in the network,
split into seven communities. The duration of the scenario
was three days, and we used the HCMM community grouping
to create the social network used for routing decisions. The
maximum number of allowed Spray-and-Wait copies was set
to 16 and our altruism threshold was set to 1.
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Fig. 1. Selfish node detection results for the UPB 2012 trace.

2) Community-biased detection accuracy: Normally, the
detection accuracy is the proportion of selfish nodes that
were correctly detected as selfish, but since we employ a
community-biased altruism model, nodes aren’t fully altruistic
or fully selfish. Instead, as we are dealing with fuzzy values
between 0 and 1, we define the community-biased detection
accuracy as the percentage of nodes that end up with an
altruism value of 1 thanks to the incentive mechanisms used.
These are the nodes that have been recognized by most
nodes in the network as being selfish and thus avoided until
their altruism levels increase and they start opportunistically
carrying data for other nodes. Community-biased detection
accuracy experiments were performed on the UPB 2012 trace.

B. Results for Opportunistic Network Metrics

Firstly, it can be seen from Figure 1 that, for the UPB 2012
trace, adding selfishness to an opportunistic network leads to
an important drop in hit rate, even for small data memory
sizes (for a data memory of 100 messages, the difference
between running with or without selfishness is 2.21%, while
for a memory of 4500, it is as high as 19.51%). This happens
because messages are sent to selfish nodes that end up dropping
or never delivering them, and this is why a selfish node
detection and incentive mechanism is necessary. Selfish nodes
must be avoided or convinced to become unselfish, in order for
the hit rate to improve. Figure 1 shows that using IRONMAN
doesn’t bring much improvement at all; the reason is that
selfish nodes are hard to detect because their perceived altruism
value by other nodes grows very quickly (i.e. nodes see then
as being very altruistic). The algorithm we proposed in Section
IIT outperforms IRONMAN for all data memory sizes and
gets relatively close to the hit rate obtained when no selfish
nodes are present. Furthermore, for small data memories (in
this case, of 20 messages), it even yields a better hit rate than
the default case. This happens because, for the default case,
nodes send messages to any encountered nodes and (since the
number of message copies is limited) may end up depleting
them, while the nodes that receive them do not ever encounter
the destinations. When employing our algorithm, messages
aren’t sent to just any node, but to nodes that have previously
delivered similar messages, so there is a higher chance of them
doing it again. It is also important to note that the hit rate
improves when increasing the size of the data memory, because
older messages are deleted after a much longer time and the
chance of replacing them becomes lower.

Also in Figure 1, it can be observed that latency increases
when there are selfish nodes in the network because giving
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messages to selfish nodes leads to their loss or to large delays
in their arrival at the destination. For example, let’s assume
that a selfish node A carries a message destined for node B.
When the two nodes first meet, A doesn’t deliver the message
because it is selfish. B may or may not infer that A is selfish,
but the important part is that A doesn’t deliver the message
when it is supposed to, only much later (at a future contact,
if any) or not at all. If the nodes hadn’t been selfish, A would
have delivered the message the first time it encountered 5.
Using IRONMAN doesn’t seem to improve the latency, which
means that selfish nodes aren’t always avoided. However, our
algorithm sees an improvement in delivery latency of as much
as 18 hours when compared to the selfish case. Although
opportunistic networks are delay-tolerant, we believe that the
latency should be decreased where possible.

The delivery cost and hop count are also affected by the
introduction of selfish nodes in the opportunistic network, and
this is where we achieve the most important results, as can be
seen in Figure 1. Not only are the hop count and delivery cost
values obtained by our algorithm lower (i.e. better) than the
ones from IRONMAN, they are better than what is obtained at
the default and selfish scenarios. This is due to the reason given
above, that messages are forwarded only to nodes that have
previously forwarded similar messages, not to any encountered
node. The improvement over the default scenario may happen
only because the hit rate also drops, which means that the
messages that aren’t delivered any more because of selfish
nodes were probably ones with high delays that moved a
lot across the network, so they increased the average values.
However, our hit rates are better than the ones from the selfish
scenario, and still the hop count and delivery cost are lower for
all test cases, which shows that our algorithm is very efficient
in terms of network and node congestion.

Additionally, Figure 2 shows the results obtained when
running on HCMM. It can be easily seen that our algorithm
performs very well in terms of hit rate. For a data memory
of 20 and 100 messages, it yields much higher hit rates than
even the default test case, with an improvement of 39.71% for
a data memory of 20 messages and 24.89% for 100 messages.
The explanation is that we are dealing with many contacts and
the copies of a node’s messages get consumed quickly on the
default case, so the node only remains with one copy of each,
that it can only deliver to the message’s destination. For higher
data memories, this no longer happens because nodes can store
more messages. The latency results correspond to what we
have seen earlier: having selfish nodes increases the latency,
but our algorithm can help decrease it. Finally, although our
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Fig. 3. Community-biased detection accuracy.

algorithm obtains hit rates close to that of the original test
case, it yields much better values for hop count and delivery
cost.

C. Results for Community-Biased Detection Accuracy

Figure 3 depicts the community-biased detection accuracy
for selfish nodes inside or outside the community. It can be
seen that, for nodes outside the community, our algorithm has
a much better accuracy than IRONMAN, the difference for
a data memory of 4500 being 69.81%. This suggests that
our algorithm detects more nodes that are selfish towards
non-connected nodes than IRONMAN, and convinces them
through incentives to become more altruistic. Our algorithm
also performs better regarding intra-community nodes, but the
differences are not so large. The high detection accuracy for
our algorithm is obtained thanks to the fact that our analysis
of encounter history is both context, as well as content-based.
It is also important to observe that, for both types of metrics,
the detection accuracy grows with the data memory size for
our approach, while for IRONMAN it decreases.

V. CONCLUSIONS

We have presented a novel social-based collaborative con-
tent and context-based selfish node detection algorithm, in-
cluding an incentive mechanism, which aims to reduce the
issues of having selfish nodes in an opportunistic network.
Our approach uses gossiping and context information to make
informed decisions regarding the altruism of nodes, on one
hand, and incentive mechanisms to make selfish nodes become
altruistic, on the other. It takes advantage of social knowledge
regarding the nodes in the network to decide if a node is selfish
towards its own community. Furthermore, it also makes its
decisions based on content, since a node’s perceived altruism
level is computed with respect to every message of a node.

In terms of validation, we have tested our algorithm on a
social trace and a mobility model and compared it to IRON-
MAN [2]. We have shown that it outperforms IRONMAN in
regards to hit rate and latency, and even that it fares better than
the default case in terms of hop count and delivery cost. This
happens because our solution sends messages in a selective
manner, only to nodes that have already successfully delivered
messages of that type. Furthermore, we have also shown that
our solution has better detection accuracy than IRONMAN.
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