Make it Green and Useful: Reshaping Puzzles for Identity
Management in Large-scale Distributed Systems

Weverton Luis da Costa Cordeiro, Flavio Roberto Santos,
Marinho Pilla Barcellos, Luciano Paschoal Gaspary

Institute of Informatics, Federal University of Rio Grande do Sul, Brazil
{wlccordeiro, frsantos, marinho, paschoal} @inf.ufrgs.br

Abstract—A vast number of large-scale distributed systems
offer a lightweight process for creating new accounts, so that
users can easily join them. Although convenient, such lightweight
process fosters the spread of fake accounts (Sybil attack). Existing
identity management schemes lack mechanisms to make identity
creation easier for honest users and at the same time increasingly
harder for an attacker. In this paper, we focus on identity lifecycle
management as an (alternative) approach in order to augment the
cost of possessing several identities, and thus reduce the volume of
counterfeit ones. We build on adaptive puzzles and combine them
with waiting time to introduce a green design for lightweight,
long-term identity management; it minimally penalizes honest
users (by assigning easier-to-solve puzzles to them), and reduces
the energy consumption caused by puzzle-solving (by adopting
passive wait to reduce their average complexity). We also take
advantage of lessons learned from massive distributed computing
to come up with a design that makes puzzle-processing useful.
We evaluate our proposal via simulation and experimentation
using PlanetLab. In summary, we show that an attacker must
dedicate a large amount of resources to control a given fraction
of identities. We also provide evidence that the overhead imposed
to honest users is kept to a minimum.

I. INTRODUCTION

Online systems such as Facebook, Twitter, Digg, Skype,
and BitTorrent communities (among various others) offer a
lightweight process for obtaining identities (e.g., confirming
a valid e-mail address; the actual requirements may vary
depending on the system), so that users can easily join them.
Such convenience comes with a price, however: with minimum
effort, an attacker can obtain a horde of fake acounts (Sybil
attack [1]), and use them to either perform malicious activities
(that might harm honest users) or obtain unfair benefits. The
corruptive power of counterfeit identities (or sybils) is widely
known, being the object of several studies in the literature [2].

There exists no silver bullet or “one size fits all” solution to
this problem. The major challenge faced by the operations &
management community is then to devise identity management
schemes that support a multitude of users, using heterogeneous
devices, in environments having a diverse set of purposes,
requirements, and constraints (e.g., large-scale distributed sys-
tems, Internet-of-Things [3], and Future Internet [4]). More
importantly, such schemes should be resilient enough so as to
make it easier for honest users to obtain their identities and,
at the same time, increasingly harder for an attacker.

In this paper, we approach the issue of fake accounts in
large-scale, distributed systems. More specifically, we target
those based on the peer-to-peer paradigm and that can accomo-
date lightweight, long-term identity management schemes [5]
(e.g. file sharing and live streaming networks, collaborative in-
trusion detection systems, among others); lightweight because

978-3-901882-50-0 (©2013 IFIP

users should obtain identities without being required to provide
“proof of identity” (e.g., personal documents) and/or pay taxes;
and long-term because users should be able to maintain their
identities (e.g., through renewal) for an indefinite period.

In the scope of these systems, strategies such as social
networks [2], [6] and proof of work (e.g., computational
puzzles) [7], [8] have been suggested as promising directions to
limit the spread of fake accounts. In spite of the potentialities,
important questions remain. Recent research [9], [10] has
shown that some of the key assumptions on which social
network-based schemes rely (e.g., social graphs are fast mix-
ing, and sybils form tight-knit communities) are invalid. More
importantly, the use of social networks for identity verification
might violate the user’s privacy. This is an extremely sensitive
issue, specially in a moment when there is a growing concern
and discussion about privacy issues in social networks [11].

Puzzle-based schemes inherently preserve the users’ pri-
vacy (since no personal information is required to obtain iden-
tities), and therefore represent an interesting approach to stop
sybils. Existing schemes focus on the users’ computing power,
and use cryptographic puzzles of fixed complexity to limit
the spread of sybils [7], [8]. However, puzzle-solving incur
considerable energy consumption, which increases proportion-
ally to the system popularity and the interest of attackers
in controlling counterfeit identities. Furthermore, users waste
computing resources when solving puzzles. These aspects lead
to the following research questions:

1) Is it possible to force potential attackers to pay
proportionally higher costs than honest users for each
identity?

2) Can one reduce resource consumption required for
puzzle-solving, without compromising its effective-
ness?

3) Can one compute useful information with the pro-
cessing cycles allocated for puzzle-solving?

To tackle this issue, we build on adaptive puzzles [12]
— a mechanism that defines puzzle complexity based on the
frequency in which users (sources of requests) obtain new
identities — and combine them with waiting time to introduce a
green design for lightweight, long-term identity management.
Our design minimally penalizes presumably honest users with
easier-to-solve puzzles, and also reduces energy consumption
incurred from puzzle-solving. We also take advantage of
lessons learned from massive distributed computing to come up
with a design that makes puzzle-processing useful — it uses real
data processing jobs in replacement to cryptographic puzzles.
This is similar to the phylosophy of the ReCAPTCHA project,
which aims at keeping robots away from websites and helps

387

digitizing books [13]. In summary, we make the following
contributions to the state of the art:

e An identity management scheme for large-scale dis-
tributed systems, in which honest users are less penal-
ized for obtaining/controlling identities than attackers;

e The concept of “wait time” as a strategy to decrease
the average puzzle complexity, and consequently the
energy consumption incurred from puzzle-solving;

e The reshaping of puzzles based on lessons learned
from massive distributed computing, to provide utility
to the processing cycles dedicated to solving puzzles.

To assess the effectiveness of our design, we evaluated it
by means of simulation and experiments using PlanetLab. The
results obtained show that an attacker must dedicate a large
amount of resources to control 1/3 of the identities in the
system (proportion considered since it exceedes the amount of
fake accounts in large-scale distributed systems that most of the
sybil-tolerant solutions are able to cope with [14], [15]). The
results also show that presumably honest users are minimally
affected (being assigned easier-to-solve puzzles), and that the
overall energy consumption is comparatively lower than in
existing puzzle-based identity management schemes.

The remainder of this paper is organized as follows. In
Section II we introduce our design for identity management,
whereas in Section III we describe our proposal for making
puzzles green and useful. In Section IV we present and analyze
the results obtained. Finally, we briefly review related work in
Section V, and close the paper in Section VI with concluding
remarks and perspectives for future research.

II. CONCEPTUAL DESIGN FOR IDENTITY MANAGEMENT
IN LARGE-SCALE DISTRIBUTED SYSTEMS

Our design for identity management is built upon the notion
that a user has to dedicate a fraction of resources to obtain
and renew identities in large-scale distributed systems. The
primary goal of our design is to minimize the number of
conterfeit identities that an attacker can obtain and control. The
secondary goal is to reduce as much as possible the resource
consumption incurred from puzzle-solving, and make their
processing something useful. Our design makes the following
considerations about the target system:

e The amount of resources available to users (processing
cycles, memory, time, etc.), although unknown, is
finite. Therefore, it is possible to bound the number of
identities a single entity can control by establishing a
“price” for the possession of each identity;

e To control at least 1/3 of the identities in a system,
an attacker must launch several requests to the system
identity management entity. By tracking these requests
back to their sources of origin, it is possible to assign
higher costs to those coming from sources that have
performed a larger number of requests;

e It is often difficult (and in certain circumstances,
impossible) to reliably track sources of requests. With
some effort, an attacker may obfuscate the source of
her requests so that they appear to originate from
various, distinct ones. For this reason, our design
requires that identities be periodically renewed (as

in [8]), in order to make it even more prohibitive for
an attacker to accumulate them.

Our design is suitable for systems with various degrees of
centralization (purely centralized, with a number of distributed
servers, and structured networks). It is not suitable, however,
for purely decentralized systems, where there is no central
service providing any sort of coordination to participating
users. In the remainder of this paper we discuss how our
proposed scheme exploits the characteristics enumerated above
to limit the number of fake accounts an attacker can control.

A. Identity Management Overview

To aid the presentation of our design, we use the following
terminology. We call an entity interested in obtaining an
identity a user. The bootstrap service is the entity responsible
for granting/renewing identities to users. From the moment a
user has a working identity, we call it a peer. A source is
the location (identified by the bootstrap service) from which
a given user requests her identity. The definition of a source
accomodates the situation in which both several users and/or
several identity requests are associated to a single location. An
attacker is a person interested in controlling a large fraction
of fake accounts in the system.

sources of identity requests generic large-scale

2 distributed system
requests

* bootstrap ‘ 8 peer

service 8

X malicious user
8 malicious peer

Fig. 1. Overview of the proposed identity management scheme

Fig. 1 gives an overview of the identity lifecycle man-
agement process (further discussed in Subsec. II-B). Before
joining the system, a user must contact the bootstrap service
in order to obtain an identity (arrow 1 in Fig. 1). In response,
it estimates the complexity of the puzzle the user has to solve
(based on the trust score of the source the user is associated
to) in order to proceed with the request. Once the bootstrap is
done, it replies the user with the puzzle to be solved and its
parameters (arrow 2). The user then solves the assigned puzzle
and returns to the bootstrap both the puzzle and its solution
(3). The bootstrap validates the authenticity of the puzzle, the
correctness of the solution, and then replies the user with a
“waiting time” (4). This waiting time, also computed based
on the source trust score, must be respected by the user before
she contacts the bootstrap again to finally obtain a working
identity (5). The bootstrap then delivers the requested identity
(6), which can be used to join the system (7). This procedure
is similar for renewing an existing identity, as a registered user
is expected to provide fresher evidence about her identity.

B. Proposed Identity Lifecycle and Supporting Protocol

In our scheme, we envisage an identity as a tuple I =
(i,t,v,e,0,s). In this tuple, I(i) is a unique, universal identi-
fier, and I(t) is the last time it was processed by the bootstrap
(e.g., during a renewal). Element I(v) represents the validity
timestamp. Being 7" the current time, an identity is valid for

388 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

valid identity
up to date expired
identity identity

Possible states in an identity lifecycle

no valid
identity

Fig. 2.

contacting the bootstrap only if I{(v) < T (i.e., I {v) has not yet
passed); otherwise, the user must obtain a new identity (which
will incur in a comparatively higher cost than in the case of
renewal, as it will be discussed in the following subsections).

Element I{e) denotes the expiration timestamp (with
I{e) < I{v)). An identity is valid for identifying a user in
the system only if I{e) < T. Observe that I{e) may have
expired, but the identity can still be valid for renewal; this is
true as long as I(v) is not yet passed. Element I(f) represents
the trust score associated to the identity (it will be discussed in
the following subsection). Finally, I(s) is a digital signature
of the identity (computed by the bootstrap service upon its
creation or renewal), and is used to assert its authenticity. The
elements I(v) and I(e) play an important role in defining the
current state of an identity. The set of possible states, along
with the transitions between them, is depicted in Fig. 2. The
conditions that trigger each of the transitions depicted in this
figure are described in the following paragraphs.

We envisage two parameters to be used by the bootstrap
service to support the identity lifecycle management: V and E
(with V' > FE). These parameters are used to update [(v) and
I{e) upon creation and renewal of identities, using the current
time 7" as base. Whenever an identity [is processed (created or
renewed), the bootstrap must make I(t) < T, I{v) <~ T+ V,

and I{e) + T + E.
R S S <

u: user b: bootstrap b: bootstrap

1
REQUESTIDENTITY (U) 1

RENEWIDENTITY (U, id) |

puzzle
puzzle

(a) Identity Request (b) Identity Renewal

Fig. 3. Protocol for obtaining (a) and renewing (b) identities

Fig. 3 presents a general view of the protocol for managing
the lifecycle of identities, and the entities involved. The mes-
sages exchanged with this protocol should be digitally signed,
to prevent tampering. The initial state of a user is “no valid
identity” (either because she had never joined the system, or
her identity is not valid anymore). Transition A (arrow 1 in
Fig. 2) takes place when she contacts the bootstrap service to
request a new identity.

The process to obtain a new identity (Fig. 3(a)) initiates
when the user issues a REQUESTIDENTITY message to the
bootstrap service (first arrow in the sequence diagram of
Fig. 3(a)). The bootstrap replies with a puzzle to be solved
(second arrow), whose complexity is defined according to
the frequency of requests of the source from which the

request departed. After solving the puzzle, the user issues
the PUZZLESOLUTION message (third arrow). Once verified
the correctness of the solution, the bootstrap increments the
number of identities obtained by the source from which the
request departed; after that, it calculates (and informs) a
waiting period to be obeyed (fourth arrow). After the wait
time is expired, the user issues the WAITFINISHED message
(fifth arrow), and in response obtains the requested identity
(sixth arrow). Note that the user can send this message only
after finished the waiting period. Otherwise, the bootstrap can
terminate the request process (as a penalty), and the user will
have to restart it from scratch. To ensure that users will in fact
obey the waiting time, the WAITFINISHED message should
include the original message (along with its signature, for
verification) in which the bootstrap informed the waiting time.
Once the request identity process is completed successfully, the
user evolves to the “up to date identity” state, which means
she has a valid, unexpired identity.

As previously mentioned, the user must renew her identity
periodically to keep contacting other peers. To this end, she
performs the renewal process (Fig. 3(b)). This process is
initiated when she issues a RENEWIDENTITY message (first
arrow in the sequence diagram of Fig. 3(b)), informing the
identity to be renewed. In response, the bootstrap assigns a
puzzle to be processed (second arrow). After solving it, the
user issues a PUZZLESOLUTION message informing the puzzle
solution; if valid, the bootstrap renews her identity. The waiting
time is not used in this process.

In case the user does not renew its identity and I{e) is
passed, transition C' (Fig. 2) takes place; the identity then
becomes no longer valid for joining the system (state “expired
identity”), but it still can be renewed by the bootstrap. If the
user renews it before I(v) is passed (transition D), it becomes
valid again for joining the system (state “up to date identity”).
Otherwise, transition B takes place and the identity becomes
useless; the user must then go through the process of obtaining
a new identity as if she had never been in the system.

III. MAKING PuzzZLES GREEN AND USEFUL

In this section we discuss the model for measuring the
reputation of identity requests and renewals (Subsec. III-A),
the concept of adaptive puzzles (Subsec. III-B) and waiting
time (Subsec. III-C), and how real data processing jobs are
used to materialize puzzles in our design (Subsec. III-D).

A. Model for Pricing Identity Requests/Renewals

In our identity management scheme, the complexity of
puzzles is defined according to the measured trust score of
the sources from which the identity requests departed. In this
subsection we discuss this aspect in detail.

Identifying the Sources of Identity Requests

A source of identity requests is defined as an aggregation of
one or more users, sharing locational similarities, from where
identity requests depart. In Fig. 1, a source is represented as a
“cloud”, with one or more users (either honest or malicious)
in it. It is important to emphasize that the bootstrap service
has no way to distinguish users of a single source.

Two strategies have been traditionally used to identify the
source from where service requests depart (in the context
of this work, identity requests/renewals): IP addresses and

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 389

network coordinate systems [16]. Although effective, these
strategies have important limitations. The distinction of sources
considering IP addresses may penalize users located in net-
works using NAT. Network coordinate systems, in turn, may
not precisely distinguish users located in a same region (e.g.,
city, neighborhood, or even a same building). In addition, both
strategies can be tampered by a user that aims at forging her
real location and/or faking various distinct ones.

In order to minimize the negative impact of the shortcom-
ing discussed above, we propose to provide incentives to those
users who already possess and maintain (i.e., constantly renew)
their identities. The rationale is that the users who request
new identities are not yet known, and therefore no strong
assumption can be made on whether they are honest users or
a potential attacker. The incentive we explore in this paper is
to consistently decrease the complexity of puzzles these users
must solve, and release them from obeying a wait time, prior
to renewing their identities. In contrast, users requesting new
identities are required to solve puzzles with a differentiated,
higher complexity, and obey a waiting time.

Measuring the Source and Network Recurrence Rates

The identification of the source from which a request
departed and the characterization of the behavior of sources is
the first step towards granting a new identity to a user. To this
end, it is important to maintain information of the identities
effectively granted to users associated to a given source. This
information, defined as ¢;(t) for the i-th source at instant ¢
(with ¢,(t) € N), serves as basis for the computation of the
source recurrence rate and network recurrence rate (9(t)). The
former, defined by A¢;(t) = ¢;(t) — ¢;(t — At) in function
of a sliding window At, represents the number of identities
granted to a source 7 in the past At units of time. The latter is
given by the total sum of identities granted, averaged by the
number sources currently online (those which have obtained at
least one identity in the past At units of time, i.e. A¢;(t) > 0).

Computing the Trust Score of Identity Requests

The trust score is used for estimating both the puzzle
complexity and the wait period. The procedure for computing
this value depends on the process currently taking place.

1) Identity Request Process: The second stage in this
process initiates with the computation of an index that reflects
the relationship between the source (A¢;(t)) and network
recurrence rate (P (¢)). This index, defined as p;(t) for a given
source ¢, is given by Eq. 1. It assumes negative values to
indicate how many times the recurrence of the i-th source is
smaller than of the network, and positive to indicate otherwise.

B D(t) . 4
Agi(t) if Agi(t) < (1) (1)

Af&(;) —1 L if Agi(t) > D(t)

pi(t) =

The p;(t) index serves as input for calculating a partial
value of the source trust score, 6;(t). Defined according to
Eq. 2, it assumes values in the interval [0, 1], with the extreme
0 meaning total distrust and 1, total trust on the legitimacy of
the users associated to the ¢-th source.

arctan (®(k) - p;(k)?)

0:(t) = 0.5 —)

From 0;(t) we finally obtain a smoothed trust score,
which takes into account the historic behavior of the user(s)
associated to the i-th source. Denoted as ¢/ (¢) for instant ¢y,
it assigns a weight 8 (with 8 € (0,1]) to the partial value of
the source trust score 6;(t), and weight 1 — /3 to the last known
value of smoothed trust score, computed at instant ¢_.

/ 91
ilt) = { s Ftﬁki)(tk) +

The bootstrap must save the value of ¢;(t) in the identity,
ie. I(0) < 0;(ty). as it will be used during the identity
renewal.

,if k=0

(1-8) 6i(ty_y) .ifk>0 O

2) Identity Renewal Process: In this process, the value of
0! (tr) used to estimate the puzzle complexity is computed
based on the trust score saved in the identity, I(6), according
to Eq. 4. Once the renewal process is complete, the bootstrap
must save /() in the identity (I(0) < 0.(ty)), for use during
future renewal processes.

0;(te) = - 14 (1 = B) - I(0) 4)

It is important to emphasize that the equation above repre-
sents an approach to encourage users to renew their identities.
This incentive comes in the form of increasing, after each
identity renewal, the value of trust score, until it reaches
the extreme 1 (situation in which puzzles having the lowest
complexity possible are assigned as a requirement for renewing
identities). Other equations can be used, given that they provide
incentives for renewing identities.

B. Defining the Puzzle Complexity

In this stage, we use as input the value of smoothed
trust score 6.(¢x) to estimate the complexity of the puzzle
to be solved. The mapping function, defined abstractly as
v : © — N*, depends essentially on the nature of the
adopted puzzle. In this function, the value of the trust score
0l(ty) € © is mapped to a computational puzzle having
exponential complexity, equivalent to 27.

An example of mapping function for computing v is given
in Eq. 5; note that the puzzle complexity is defined based on a
maximum possible complexity I'. The resulting value, v;(tx),
can then be used to assess the difficulty of the puzzle.

Yilte) = [T~ (1= 0;(tr))] +1 (5)

As an example of puzzle, consider the one proposed by
Douceur [1]: given a high random number ¥, find two numbers
x and z such that the contatenation x|y|z, after processed by
a secure hash function, leads to a number whose ;(t;) least
significant bits are 0. The time required to solve the proposed
puzzle is proportional to 27:(#s)=1 and the time to assert the
validity of the solution is constant.

When a user requests a new identity, she must solve a
puzzle defined over a differentiated, higher value of maximum

390 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

complexity, I' = I'..;. In order to renew her identity, she
must solve a puzzle considering a lower value of maximum
complexity, ' = I",¢pe. If the identity has expired by the time
the user renews it, the bootstrap service must use another value
of maximum puzzle complexity, I' = T',cyq;. As a general
recommendation to encourage users to maintain their identities
and renew them before expiration, I'rcnew < I'revai < I'reg.

C. Estimating the Wait Time

Similarly to the puzzle complexity, the waiting time should
increase exponentially (e.g., proportionally to 2%, where w is a
wait factor), and be defined as a function of ¢/ (¢). The design
we consider for computing w is given in Eq. 6. In this function,
Q) represents the maximum factor for the waiting time.

wi(tr) = Q- (1= 05(tr)) (©)

A possible attack to this protocol is the “parallelization” of
the wait period: an attacker could request n identities in a same
instant, solve the puzzles and use a same time interval to obey
simultaneously the n assigned wait periods. To mitigate this
attack, the bootstrap service must compare the current value
of the source trust score with the one used to estimate the
wait period (which is also included in the WAITFINISHED
message); if the difference between these values exceeds a
treshold A6 (i.e., 0/(tk—1) — 0;(tx) > AB), the bootstrap
can interrupt the identity request process (similarly to what
happens if the user does not obey the wait time). The rationale
is that the user has not fully paid the price for obtaining an
identity, as 0}(tx) (the trust score of her request) decreased
more than Af (maximum tolerable) since the request initiated.

D. Using Massive Distributed Computing

There are several proposals of cryptographic puzzles in the
literature that can be used with our design to establish a cost
for the identity renewal process [1], [7], [8]. In this paper, we
propose a different type of puzzle, which takes advantage of
the users’ processing cycles to compute useful information.

To assign a puzzle to be solved, the bootstrap service
replies to REQUESTIDENTITY and RENEWIDENTITY mes-
sages (i) an URL that contains a piece of software that
implements the puzzle (which can be a useful puzzle or a
cryptographic one) and (ii) a set J of jobs (where each job is
comprised of a number of input arguments to the downloaded
piece of software). The puzzle complexity is given by |J|.

An example of puzzle is a software that runs a simulation
and generates the results using plain text. In this context, J
contains a number of seeds, chosen by the bootstrap, that must
be used as input to the simulation. Supposing that +;(¢;) = 4
(as computed from Eq. 5), then |J| = 2% = 16.

It is important to observe that one cannot fully trust on
the results received, as an attacker may fake job results. For
this reason, the bootstrap must inform in 7 some “test jobs”
(for which the result is already known); this approach follows
the same strategy used in other solutions based on massive
distributed computing (e.g., ReCAPTCHA [13]). In this case,
the attacker will not be able to distinguish which are “test jobs”
and “real jobs”; she will have to solve all of them correctly to
avoid the risk of faking the result for a test job, and having
her request process terminated by the bootstrap.

IV. EVALUATION

In this section we present and discuss the results achieved
by means of simulation (Subsec. IV-A) and experimentation
in the PlanetLab environment (Subsec. IV-B).

A. Simulation

In this evaluation, we attempt to answer two main ques-
tions: what is the impact of our scheme to honest users and
attackers? And what are the potential energy savings that our
scheme can provide? To answer them, we have evaluated
scenarios with and without attack, considering the following
identity management schemes: without control, based on static
puzzles (as proposed by Rowaihy et al. [8]), and our scheme.

Characteristics of the Simulation Environment

The simulation has a duration of 168 hours. In this period,
160,000 users (from 10,000 distinct sources) arrive 320,000
times in the system. The number of users behind a given
source follows an exponential distribution, and varies between
1 and 16. The number of arrivals per source is exponentially
distributed, bounded between 16 and 64.

The first arrival of each user is normally distributed
throughout the simulation; the time between arrivals follows an
exponential distribution, bounded between one minute and two
hours; the user recurrence is uniformly distributed, between
1 and 2 recurrences at most per user; finally, the comput-
ing power of honest users is normalized and exponentially
distributed, bounded between 0.1 (1/10 of the capacity of a
standard, off-the-shelf hardware used as reference) and 2.5. It
is important to emphasize that the above choices are arbitrary,
for the sake of investigation only; as far as we are aware of,
there is no such model that is generally representative of the
behavior of users in large-scale, distributed systems.

To model the delay incurred from puzzle-solvin%, we
consider that a puzzle of complexity ; () takes 26 427:(ts)—1
seconds to be solved using the standard, off-the-shelf hard-
ware; a computer twice as fast takes half of that time. As for
the waiting time, we consider that a factor of w;(¢)) results in
2wi(tr) seconds of wait period the user must obey.

The goal of the attacker is controlling 1/3 of the identities
in the system, i.e. 80,000. To achieve this goal, we consider
two scenarios for the attacker: one in which she increases
her computing power (using a cluster of high-performance
computers, i.e. 2.5 times faster than the reference hardware), or
increase both her computing power and the number of distinct
sources from which her requests depart (using a botnet of high-
performance computers).

The other parameters in our evaluation are defined as
follows. For our identity management scheme, At = 48
hours and 5 = 0.125. We use I',., = 15 (as maximum
possible complexity when the user does not have a valid
identity), [';¢pq; = 14 (when the user has a valid but expired
identity), and T'yenewy = 13 (otherwise). The waiting time
factor is 2 = 17. Given the short scale of our simulation
(one week), we consider that identities expire £ = 24 hours
after created/renewed, and become invalid after V' = 48 hours.
For the puzzle-based scheme, we consider a scenario with
puzzles of complexity I' = 10 (which take around 17 minutes
to be solved, depending on the hardware capacity) and I' = 15
(which take around 9 hours to be solved).

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 391

20k 20k
No control —+ Mg =1 & M;=1% o /‘ Nocontrol —— Mg=10 - No control + Mg=1 - M;=1% -o /‘ No control = My =10 -
3 Static (10)-& Mc=10 -9~ Mc=5% -o 8 15K Static (10) - Mg=0.5% -o- 3 Static (10) -8 Mc=10 v M =5% -0 8 - Static (10) & Mg = 0.5%-o-
£ 160k Static (15) - M, = 0.5%-4- = Static (15) & Mc=1% -o £ 160k Static (15) - M, = 0.5%-4- =1 Static (15) -6~ Mc=1% -o
g = o = = 3
§ 140k s =1 & Mi=5% -o & 140k] Mc=1 & Mi=5% -o
3 3 k-] 3
2 120k 2 2 120k 2 o
5 5 10k s 5 10k o
S 100k S S 100k S 0% a0
S 80k 3 ?/ _o00900000660000q & 80k 8 g g,gle}gmy&%ﬁm«e
E 60k E K E 60k E sk «. o A
] y % E] y 4l S RN ® od
Z 40k) Z Z 40k) 2 2 v i 00 bodooD®
20K S 0 4e380808232922232220222F 206 Sl ka2 lanslRegedetesSaas
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Time (h) Time (h) Time (h) Time (h)

(a) Legitimate, M, = 10 (b) Fake, M, = 10

(c) Legitimate, My, = 5% (d) Fake, M, = 5%

Fig. 4. Number of legitimate and fake accounts, in the scenario where the attacker increases her computing power to solve the puzzles.

Effectiveness of our Scheme in Mitigating Fake Accounts

Fig. 4 shows the results achieved when the attacker in-
creases her computing power as an strategy to control more
counterfeit identities. The scenarios considered are one in
which the attacker has M, 10 sources in her control
(Figures 4(a) and 4(b)), and another in which she controls
M, = 500 sources (Figures 4(c) and 4(d)). The number of
high-performance computers available for the attack is defined
proportionally to the number of legitimate sources considered:
M, = 1 computer; M, = 10; M, = 0.5% (50 computers);
M. = 1% (100 computers); and M. = 5% (500 computers).

One can see in Fig. 4(b) that our scheme clearly limits the
number of fake accounts the attacker can control, in contrast to
the scenario where static puzzles [8] are used (curves “Static
(10)” and “Static (15)”). This observarion holds even for the
worst case scenario to our scheme, i.e. when the attacker has a
cluster of M. = 5% high-performance computers: our scheme
reduced in 79% the number of fake accounts she can control,
comparing to the scenario “Static (15)” (from 6,237 valid
identities to 1,309). As for the overhead imposed to honest
users, Fig. 4(a) shows that it was negligible. Observe, however,
that the use of static puzzles with complexity I' = 15 imposed
a non-negligible overhead to honest users.

Fig. 4(d) evidences that increasing the computing power
available is the only way the attacker can circumvent our
scheme; even so, she is not able to control more identities than
would happen in the case of static puzzles with complexity
I' = 15; the gain with our scheme was of 34.2% when
compared to static puzzles (from 6,237 identities to 4,161).
Fig. 4(c) shows that honest users remain unaffected.

From the results described above, two major conclusions
can be drawn. First, our scheme makes it more expensive for an
attacker to control fake accounts in the system, and she cannot
repeat the same performance as seen in traditional approaches.
Second, static puzzles impose an important trade-off between
effectiveness (in mitigating fake accounts) and overhead (to
honest users); with I' = 10, static puzzles were totally unef-
fective; with I' = 15, there was a considerable overhead (in
terms of resources to be allocated to solve puzzles) imposed to
honest users, in exchange for some improvement in mitigating
fake accounts.

The attack does not improve much when the attacker uses
a botnet to solve puzzles. Fig. 5 shows that she only achieves
a relative success in the extreme scenario where the botnet
represents 5% of the total of sources. However, such success
is not sustainable; by the end of the evaluation, she has only a
few identities more than she would have if static puzzles were
used. Again, the overhead to honest users was minimum.

Table I presents the average time that honest users and

392

Number of Identities

N
S
2

No control + M, =1 A My=1% -o M, =10

Staiic (10) & My =10 < My=5% -o 8 o /t STl S M ok 2
160k |- Static (15) <~ M, = 0.5%-o- g 19 Static (15) - My=1% -o
128& g M, = 4 My=5% -
100k 5 10k F/mm o
80k 5
60k T o e oeo 80890 00-0q
40k 2 ©0 Spo0d
20k 4 o0-a

o " o 8-0-0-aup g 8

40 60 80 100 120 140 160
Time (h)

(b) Fake

0 20 40 60 80 100 120 140 160

Time (h)

o
N
3

(a) Legitimate

Fig. 5. Number of legitimate and fake accounts in the botnet scenario
TABLE 1. PUZZLE RESOLUTION TIMES (SECONDS)

Scenario Mean Std. Dev. Median 9th decile

honest users, " Mg = 107 534.5 13175 55 1,751

attacker, ‘Mg = 10" 6,224.1 13885 | 6,582 6,582

Proposed scheme | 505t users, “Me = 5%" 627.9 1,555.1 54 1,886
attacker, "M = 5% 13227 | 1541.8 847 3,305

honest users, “I" = 10" 497.6 198.5 455 596

) attacker, “I' = 10 412 0 412 412
Static puzzles honest users, “I' = 15" 158254 | 60322 | 14466 | 19,003
attacker, “I' = 15” 13,110 0 13,110 13,110

the attacker take to solve puzzles, in each of the scenarios
evaluated. The table also shows the standard deviation of the
resolution times, median, and the 9th decile. Results show
that in our scheme honest users are assigned easier-to-solve
puzzles (which took 534 seconds on average to be solved,
in the scenario “M,. = 107). In contrast, the attacker took
eleven times more on average to solve the puzzles assigned to
her (6,224 seconds in the same scenario). More importantly,
90% of honest users took at most 1,751 seconds to solve the
assigned puzzles; for the attacker, this time was 6,582 seconds.

In the case of static puzzles, the honest users and the
attacker took on average almost the same time to solve the
puzzles (and extremely high, in the scenario “I' = 157); the
difference observed is because the computing power of honest
users is not uniform, and different from the attacker (which in
turn is fixed). These results evidence that long-term identity
management based on adaptive puzzles and waiting time is a
promising direction to tackle fake accounts.

Energy Efficiency of our Identity Management Scheme

The estimate for the energy consumption is based on the
resolution of puzzles written in python, ran on an Intel Core
i3-350M notebook, with 3MB of cache memory, 2.26 GHz
CPU clock, and Windows 7. We used JouleMeter! to collect
the measurements, and considered only the processor energy
consumption with its usage around 100%. In an average of 10
runs of the puzzle for each value of complexity considered, we
observed that the consumption is constant and equals to 1.215

! JouleMeter page: http://research.microsoft.com/en-us/projects/joulemeter/

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

TABLE II. PUZZLE COMPLEXITY AND ENERGY CONSUMPTION

(ESTIMATES)

Puzzle Resolution Consumption Proposed scheme
complexity (seconds) (joules) #leg. KJ leg. # mal. KJ mal.
0 65 78.97 75,179 5,937.26 0 0
1 66 80.19 20,229 1,622.16 0 0
2 68 82.62 18,026 1,489.31 0 0
3 72 87.48 16,489 1,442.46 0 0
4 80 97.2 16,900 1,642.68 0 0
5 96 116.64 18,321 2,136.96 0 0
6 128 155.52 20,838 3,240.73 261 40.59
7 192 233.28 21,781 5,081.07 4,477 1,044.39
8 320 388.8 17,807 6,923.36 1,258 487.17
9 576 699.84 16,658 11,657.93 2,081 1,456.37
10 1.088 1,321.92 16,644 22,002.04 2,871 3,795.23
11 2112 2,566.08 17,953 46,068.83 3,599 9,235.32
12 4.160 5,054.4 19,127 96,675.51 4,464 22,562.84
13 8.256 10,031.04 17,722 177,770.09 3,704 37,154.97
14 16.448 19,984.32 5,926 118,427.08 959 19,164.96
15 32.832 39,890.88 0 0 0 0
Total 319,600 502,117.48 23,669 94,941.85

joules. It is important to emphasize that, although we do not
consider the various existing hardware and processor types,
this estimate remains as an important indicator — which was
neglected in previous investigations — for the average energy
consumption expected for a puzzle-based mechanism.

Table II gives an overview of the energy consumption
caused by our scheme for the scenario M, = 5% depicted in
Fig. 5. In this table we present the values of puzzle complexity
considered in the evaluation, estimates of the time required
to solve such puzzle (column resolution), and the estimated
energy consumption measured in joules.

The total energy consumption (summing up honest users
and the attacker) caused by our scheme (597 MJ) is only 3,84%
of the consumption estimated for the mechanism based on
static puzzles (15,530 MJ; consequence of 319,722 puzzles of
complexity 15 assigned to honest users, and 23,174 assigned
to the attacker). This represents a difference of 14,945 MJ
(4.15 MWh), or 28.25% of the annual energy consumption
per capita in Brazil [17]. These results not only emphasize the
need for “green” puzzles, but also highlight the potentialities
of using waiting time to materialize them.

B. Experimental Evaluation using PlanetLab

The primary goal of this evaluation — carried out using the
BitTornado framework — is to assert the technical feasibility
of our scheme in hampering the spread of fake accounts. We
also compare our scheme with existing approaches.

In this evaluation we consider 240 honest sources and
20 malicious ones. The honest users request 2,400 identities
during one hour. The first request of each user is uniformly
distributed during this period; their recurrence follows an
exponential distribution, varying from 1 to 15. The interval
between arrivals is also exponentially distributed, between 1
and 10 minutes. The attacker requests 1,200 identities (1/3
of the requests of honest users), making an average of 60
identities per malicious source; their recurrence follows a fixed
rate of one request per minute. Our evaluation (including
the behavior of honest users and the attacker) was defined
observing the technical constraints imposed by the PlanetLab
environment (e.g., limited computing power, and unstable
nodes and network connectivity); due to these constraints, the
identity renewal aspect of our scheme could not be evaluated.

To make puzzles useful in our design, we used a software
that emulates a small simulation experiment; it receives a list
of random number generator seeds, and generates a single text

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

3500 3500
No control —— No control ——
¢ 3000 I Ourscheme —@— @ 3000 [Ourscheme —@—
= 2500 Static, y=16 —8— = 2500 Static, y=16 —8—
S Static, y=20 —— S Static, y=20 —o—
S 2000 y © 2000 Static, y=24 —A—
2 1500 2 1500
] 8
£ 1000 £ 1000
S S
Z 500 Z 500
0 e 2 0 eod 5
0 0.5 1 15 2 0 0.5 1 1.5 2

Time (h)

(b) Malicious

(a) Legitimate

Fig. 6. Results achieved with the PlanetLab environment

file containing the results (for all seeds informed). The puzzle
complexity is determined by the number of seeds informed,
which in turn is proportional to 27 (t+)=1_ For the mechanism
based on static puzzles, we considered the one proposed by
Douceur [1] (discussed in Subsec. III-B).

The other parameters were defined as follows. For our
scheme, At = 48 hours, 5 = 0.125, I'y; req = 22 (which is
equivalent to I' = 4 used in the simulation model), I revar =
21 (Freval =3), Fpl,renew =20 (Frenew = 2), and Q = 10.
For the mechanism based on static puzzles, we considered
three scenarios: v, = 16 (v = 1), 7y = 20 (v = 2),
and v, = 24 (y = 6). It is important to mention that the
difference in the puzzle complexity, comparing the simulation
model with the evaluation presented next, was necessary to
adapt the puzzle-based mechanisms to the computing power
constraints present in the PlanetLab environment.

Fig. 6 shows that the dynamic of identity assignments
to honest users with the proposed scheme (curve “Our
scheme”) is similar to what is observed in the scenario
without control (“No control”). In contrast, it evidences the
overhead/ineffectiveness of using static puzzles for identity
management. Focusing on the attacker, our scheme reduced
significantly the number of fake accounts she created (com-
pared to the scenario without control).

The estimates of energy consumption obtained also indicate
the efficacy of our scheme. While static puzzles with ~y,,; = 16,
Yp = 20, and v,; = 24 caused an estimated consumption
of 58.70 KJ, 533.85 KJ, and 803.92 KIJ (respectively), our
scheme led to a consumption of only 13.39 KJ. It represents
22.81%, 2.41%, and 1.66% of the estimated consumption with
static puzzles. In summary, the experiments carried out in the
PlanetLab environment not only confirmed the results achieved
through simulation, but also evidenced the technical feasibility
of using adaptive puzzles, waiting time, and massive dis-
tributed compuring for green and useful identity management.

V. RELATED WORK

In 2002, Douceur [1] coined the term “Sybil attack” to
designate the creation of fake accounts in online systems. The
author proved that, in the absence of a central certification
authority, an unknown entity can always present himself to
other entitites in the system using more than one identity,
unless under conditions and assumptions that are unfeasible
for large-scale distributed systems. Since then, investigations
on this subject have focused on limiting the dissemination of
fake accounts and also on mitigating their potential harm.

According to the mechanism employed to authenticate
users, these investigations can be classified into strong and

393

weak-based identity schemes [5]. The first category comprise
solutions in which users obtain identities through certification
authorities [18]. Although these solutions virtually prevent
sybils, such mechanisms either force users to trust unknown
authorities, or require them to pay fees and/or provide personal
identification data to obtain identities. In the second category,
users create their own identities or obtain them from bootstrap
services. The major goal of the solutions that fit in this category
is to bound the number of sybils to an “acceptable limit”.
This approach may be useful, for example, to applications that
can tolerate a certain fraction of sybils. The solutions in this
category may be further classified according to the strategy
employed to enforce authenticity: social networks [2], [6], trust
and reputation [19], IP blacklisting [20], and computational
puzzles [7], [8], to cite the most prominent ones. However,
these solutions are limited as they either rely on invalid as-
sumptions and expose the user privacy, are subject to spoofing,
free-riding and white-washing attacks [21], or cause the waste
of a significant amount of resources.

The operations & management community has also ded-
icated considerable efforts on research in the topic of iden-
tity management, and many prominent schemes have been
proposed in various contexts [3], [4]. These efforts, however,
have mainly focused on strongly authenticating users (through
certification authorities) and ensuring that services are accessed
only when the user possess the required privileges; they are not
suitable for those distributed systems in which weak identity-
based schemes are more appropriate.

VI. FINAL CONSIDERATIONS

The use of computational puzzles has been long considered
a potential strategy to mitigate the dissemination of fake
accounts in large-scale, distributed systems. However, the lack
of mechanisms that be fair with honest users and severe with
attackers, and at the same time consume resources in an
efficient and useful manner, has hampered the adoption of this
strategy. To bridge this gap, we proposed a novel, lightweight
scheme for long-term identity management, based on adaptive
puzzles, waiting time, and massive distributed computing to
limit the spread of fake accounts.

With regard to the research questions posed in the in-
troduction, we make the following considerations. First, the
results achieved have shown that it is possible to force potential
attackers to pay substantially higher costs for each identity;
honest users received more easier-to-solve puzzles than the
attacker, and took 52.9% less time on average to solve them.
Second, the use of waiting time, technique traditionally used
in websites to limit the access to services, led to significant
energy savings (at least 77.1% when compared to static
puzzles [8]). More importantly, we observed an improvement
of 34% in the mitigation of fake accounts when compared
to the state-of-the-art mechanisms; this provides evidence to
our claim that a puzzle-based identity management scheme
can be modified so as to reduce its resource consumption,
and without compromising its effectiveness. As for the third
question, the use of massive distributed computing has shown
to be technically feasible (considering several experiments
carried out in environments such as PlanetLab) for providing
utility for the processing cycles dedicated to solve puzzles.

In spite of the progress reported in the paper, much research
opportunities remain. Examples include (i) a refinement of the
mechanism to track sources of identity requests (to make it

increasingly difficult for an attacker to impersonate multiple
sources), and (i) the extension of the proposed scheme to make
it suitable for those systems having no central service provid-
ing coordination to participating users (e.g., P2P networks such
as Gnutella).

ACKNOWLEDGEMENTS

The research work presented in this paper was supported
in part by funding from Project 560226/2010-1, granted by
CNPq (Edital MCT/CNPq no. 09/2010 PDI — Pequeno Porte).

REFERENCES

[1] J. Douceur, “The sybil attack,” in Ist International Workshop on Peer-
to-Peer Systems (IPTPS 2002), 2002, pp. 251-260.

[2] O. Jetter, J. Dinger, and H. Hartenstein, “Quantitative Analysis of the
Sybil Attack and Effective Sybil Resistance in Peer-to-Peer Systems,”
in ICC 2010, Cape Town, South Africa, may 2010, pp. 1-6.

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, 2010.

[4] K. Lampropoulos and S. Denazis, “Identity management directions in
future internet,” Communications Magazine, IEEE, vol. 49, no. 12,
pp. 74 83, december 2011.

[S] G. Danezis and P. Mittal, “Sybillnfer: Detecting Sybil Nodes using
Social Networks,” in NDSS 2009. San Diego, California, USA: The
Internet Society, 2009.

[6] Q. Cao et al., “Aiding the detection of fake accounts in large scale
social online services,” in NSDI 2012. Berkeley, CA, USA: USENIX
Association, 2012.

[71 N. Borisov, “Computational Puzzles as Sybil Defenses,” in P2P 2006,
September 2006, pp. 171-176.

[8] H. Rowaihy e al., “Limiting Sybil Attacks in Structured P2P Net-
works,” in INFOCOM 2007, 2007, pp. 2596-2600.

[9] A.Mohaisen, A. Yun, and Y. Kim, “Measuring the mixing time of social
graphs,” in IMC ’10. New York, NY, USA: ACM, 2010, pp. 383-389.

[10] Z. Yang et al., “Uncovering Social Network Sybils in the Wild,” in
IMC’11. New York, NY, USA: ACM, 2011, pp. 259-268.

[11] The Wall Street Journal, “Selling You on Facebook,” 2012. [Online].

[12] W. Cordeiro et al., “Identity management based on adaptive puzzles to
protect p2p systems from sybil attacks,” Computer Networks, vol. 56,
no. 11, pp. 2569 — 2589, 2012.

[13] L. von Ahn et al., “recaptcha: Human-based character recognition via
web security measures,” Science, vol. 321, no. 5895, 2008.

[14] H. Yu et al., “SybilGuard: Defending against Sybil Attacks via Social
Networks,” in SIGCOMM ’06. New York, NY, USA: ACM Press,
2006, pp. 267-278.

[15] H. Yu et al., “SybilLimit: A Near-Optimal Social Network Defense

against Sybil Attacks,” in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2008.

[16] M. Sherr, M. Blaze, and B. T. Loo, “Veracity: Practical Secure Network
Coordinates via Vote-based Agreements,” in USENIX 09, June 2009.

[17] IBGE, “Sustainable Development Indexes 2012 (in Portuguese),” 2012.
[Online]. Available: http://www.ibge.gov.br/home/presidencia/noticias/
noticia_visualiza.php?id_noticia=2161

[18] K. Aberer, A. Datta, and M. Hauswirth, “A decentralized public key
infrastructure for customer-to customer e-commerce,” in Intl. Journal
of Business Process Integration and Management, 2005, pp. 26-33.

[19] A.Jgsang, R. Ismail, and C. Boyd, “A survey of trust and reputation sys-
tems for online service provision,” Decision Support Systems, vol. 43,
no. 2, pp. 618 — 644, 2007.

[20] J. Liang, N. Naoumov, and K. W. Ross, “Efficient blacklisting and
pollution-level estimation in p2p file-sharing systems,” in AINTEC’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 1-21.

[21] M. Feldman et al, “Free-riding and whitewashing in peer-to-peer

systems,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 5, pp. 1010-1019, 2006.

394 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

