
Cost Aware Fault Recovery in Clouds

Assaf Israel and Danny Raz
Technion Institute of Technology, Israel

{assafi,danny}@cs.technion.ac.il

Abstract—Maintaining high availability of IaaS services at a
reasonable cost is a challenging task that received recent attention
due to the growing popularity of Cloud computing as a preferred
means of affordable IT outsourcing. In large data-centers faults
are prone to happen and thus the only reasonable cost-effective
method of providing high availability of services is an SLA aware
recovery plan; that is, a mapping of the service VMs onto backup
machines where they can be executed in case of a failure. The
recovery process may benefit from powering on some of these
machines in advance, since redeployment on powered machines is
much faster. However, this comes with an additional maintenance
cost, so the real problem is how to balance between the expected
recovery time improvement and the cost of machines activation.

We model this problem as an offline optimization problem and
present a bicriteria approximation algorithm for it. While this is
the first performance guaranteed algorithm for this problem, it
is somewhat complex to implement in practice. Thus, we further
present a much simpler and practical heuristic based on a greedy
approach. We evaluate the performance of this heuristic over real
data-center data, and show that it performs well in terms of scale,
hierarchical faults and variant costs. Our results indicate that our
scheme can reduce the overall recovery costs by 10-15% when
compared to currently used approaches. We also show that fault
recovery cost aware VM placement may farther help reducing
the expected recovery costs, as it can reduce the backup machine
activations costs.

I. INTRODUCTION

Recent advances in virtualization technologies and in data

center management systems accelerated the deployment of

variety of applications on shared computing environments

(also known as clouds). The main motivation behind large

scale resource sharing is the reduction of costs, which is

achieved by lower infrastructure cost as well as by high

resources utilization. In addition, cloud providers are con-

tinuously motivated to provide higher levels of VM avail-

ability, forcing heavy investments in hardware acquisitions

and machine maintenance. While more expensive hardware

reduces the chance of hardware faults, it does not eliminate it.

Moreover, it does not protect against software or human errors.

As a result, the de-facto assumption in cloud environments

is that faults are bound to happen and it is up to the cloud

operator to ensure a certain level of service availability in the

present of failures.

Techniques of achieving high availability are usually di-

vided into active/active or active/inactive techniques [1]. While

active/active solutions like Xen Remus, VMware FT and

KVM Kemari [2]–[4] may help protecting mission critical

services, they require additional resources for maintaining

This research was partly supported by the Israel Science Foundation (grant
no. 1129/10)

shadow replicas of the protected instances. On the other hand

active/inactive solutions like VMware HA [3] simply recover

failed VMs from a backed up image onto a powered backup

machine. While this technique provides recovery at reasonable

speed for most services, it too does not take into consideration

system wide operational costs to the provider. For example, a

cloud provider may wish to implement a rapid VM recovery

solution to protect against a a rack failure of 40-80 hosts.

While the cold recovery solution may indeed help speed up the

recovery process of the hosted VMs, it may also require an idle

backup rack, raising the total maintenance costs considerably.

Powering off the backup machines reduces the operational

costs, but may incur considerable delay when recovery is

needed (i.e., when fault occurs). Barroso & Hölzle [5] an-

alyzed one of Google’s data-centers and showed that while

55% of boot events took less then 6 minutes, 25% of them

took between 6 and 30 minutes with a total average of just

over 3 hours. In their analysis, they related the long boot

times to several causes, including file system integrity checks,

machines hangs that requires semiautomatic boot process,

software installation and testing. Furthermore, these techniques

do not distinguish between VMs with different SLA require-

ments (in terms of failure tolerance). As some VMs may be

more susceptible to failures, it is reasonable to prioritize their

recovery to further minimize the expected cost caused due to

SLA breaches.

In this paper we study the trade-off between the SLA

related cost associated with the recovery process (termed VM

recovery costs) and the maintenance cost of having powered-

on back up machines (termed active cost). We define the VM
Recovery Problem (VMRP) as a formal optimization problem

that provides an optimal recovery solution taking into account

both the cost of keeping machines active as well as the VM

recovery cost, and observe that this problem is in NP-hard.

We then develop a novel LP-based bicriteria approximation

algorithm for this problem and formally prove that it has a

guaranteed performance bound of O(log n+m
OPT + 1))OPT in

terms of cost while allowed a factor of (6 + ε) in terms of

machines load. To the best of our knowledge this is the first

theoretical proven approximation algorithm for this problem.

Our theoretical algorithm is somewhat complex and it is not

practical to implement, so we turn to develop a more practical

heuristic that can be easily implemented. We evaluate this

approach using simulations based on data from one of IBM’s

research data centers and study how the performance depends

on the container level (e.g., machine level or rack level) and

on the VM SLAs. The simulation results indicate that this

9978-3-901882-50-0 c©2013 IFIP

heuristic approach can reduce the overall cost by 10-15% in

many practical scenarios.

Moreover, this cost reduction also depends on the initial

placement of the VMs in the data center, thus we also

demonstrate that recovery cost aware VM placement can

further reduce the cost of VM recovery. As mentioned before,

efficient resource utilization is one of the key ingredients in

the attractiveness of cloud computing. The main contribution

of this paper is the development of both theoretically proven

and practical algorithms that can be used by cloud providers

to offer affordable high availability of services.

The paper is structured as follows. In Section III we

define the VM Recovery Problem (VMRP) as an optimization

problem. We present the bicriteria approximation algorithm

and a proof of its bounds in Section IV, then in Section

V we present our greedy heuristic and the simulation based

evaluation. Finally, in Section VI we present the role of

VM placement, and in Section VII we briefly discuss our

conclusions.

II. BACKGROUND & RELATED WORK

During the last decade, advancements in the field of system

management enabled increasing the efficiency of large data

center. New management systems [6], [7] elevated hardware

abstractions in the form of OS Virtualization and included

monitoring capabilities that enabled secure, adaptive, on-

demand resources provisioning in data-centers. Housing appli-

cations in Virtual Machines (VM) instances helped decouple

applications from the underlying data center hardware, while

advanced Server Consolidation techniques [8], [9] helped

running the data center infrastructure at high utilization and

thus bringing operating costs down significantly.

Recently, many cloud providers started offering high-

availability commitments as part of their standard or premium

priced IaaS offerings. Some even commit for 100% availability

[10]–[12], refunding the client a percentage of his investment

for any service downtime period. These SLA models emphasis

the importance of offering highly available services at a cost

effective manner from the cloud provider standpoint.

In order to achieve a complete fault tolerant solution, all

of the application resources usually needs to be replicated

across availability zones, including the application instance

itself. Addis et al. presented in [13] a resource allocation model

that takes into consideration availability constraints. While

their model aimed at maximizing the total profit, based on

the differences between the SLA profits and the total machine

costs, they also guaranteed certain levels of availability based

on the services SLAs. The availability guarantees in their

model were achieved by balancing between machine costs

and the number of instance replications for each VM. In

an effort to better profile application components and tailor

the FT solution, Zheng et al. [14] devised a framework that

ranks service components according to their significance and

suggest a fault tolerant solution for each component based on

its ranking. While this approach proved useful in simulations,

it does not consider the infrastructure costs of the advised

solution. FT solutions were assumed to be independent, and

as such a component FT solution did not affect the cost or the

feasibility on the next. Moreover, both of the above approaches

considered only the active/active fault tolerant technique as

means of achieving high levels of availability, ignoring the

less expensive and yet effective active/inactive approach.

These methods save a periodical snapshot of an application

state to disk. This enables restoring an application to its prior

state in case of a disaster [15]. Using advanced deduplication

techniques [16] it is possible to reduce the storage footprint of

the VM snapshots using a small amount of cloud resources,

making this solution highly cost effective. Finally, proactive

techniques like those suggested by Nagarajan et al [17] use

VM live migration from faulty machines prior to the actual

fault. These techniques guaranty virtually no downtime as-

suming the health prediction mechanisms are effective.

III. MODEL

Let H = (1, 2, . . . ,M) be the set of physical machines

(PMs) that are currently available in the data center and let

X = (x1, x2, ..., xM) be the indicators vector specifying

which host is currently powered on (xi = 1) and which is

powered off (xi = 0). The cost associated with keeping host

i powered on is denoted by Cost-Hi. This cost may include

power, maintenance and additional personnel costs that are

caused due to the host activation.

The set of virtual machines V = (1, 2, . . . , N) which are

currently maintained by the cloud provider is initially assigned

to H according to a placement schema O which is described

by the following indication matrix:

oi,j =

{
1 If VM j is assigned to host i

0 Otherwise
(3.1)

Once a physical host had failed, all of its resident VMs are

unavailable until they are redeployed on another physical host,

or until the failing host has recovered. The cost associated with

the failure of the physical host is derived from the SLA of the

guest VMs which are now unavailable, and the total time in

which their service is denied.

Let U = {U1, U2, . . . , Uk} be a partition of the physical

hosts to k Virtual Components (VC). We consider every VC

as a potential faulty unit (e.g., rack, network segment) that is

independent of other VCs, and assuming that at any point in

time only one VC can fail.

Upon a VC failure, every one of it’s guest VMs must be

redeployed to some PM that is outside of the failed VC. A

VM can be redeployed to an active host, thus shortening the

expected down-time and lowering the expected cost to the

customer. However, keeping a host active incurs maintenance

and power costs [5] which can negate the gain of speeding

up the VM recovery. Thus, it is important to balance be-

tween reducing VM recovery costs and active PM costs. Let

Cost-Vi,j(xi) be the recovery cost of the jth VM destined

to the ith host given the host’s activation indicator xi. These

costs can be derived from various parameters such as VM

10 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

SLAs, redundancy levels, image profiles, expected VM, host

boot times, etc. We assume that the recovery cost of VM j
to an active host i is at most the cost of recovery of j to an

inactive i, i.e. ∀i ∈ H, j ∈ V Cost-Vi,j(1) ≤ Cost-Vi,j(0).
Next, we define the Recovery Plan that specifies the re-

deployment targets of failed VMs. Let M be the recovery

plan matrix (defined similarly to O) so that in case Ur had

failed, after the recovery process will end, the new VM-to-host

mapping Or will be defined as follows:

ori,j =

{
mi,j If ∃l(l ∈ Ur ∧ ol,j = 1)

oi,j Otherwise
(3.2)

This means that only guest VMs of the faulty VC will be

redeployed to their target physical machine (PM) according to

the recovery plan M while other VMs will not be affected

and will remain in their original placement. Note that we

refrain from performing farther reshuffling of VMs, as this

may impose farther costs that are hard to model and predict.
Finally, let Y = (y1, y2, ..., yM) be the Activation Schema

of hosts following the recovery plan calculation, that is, yi = 1
if and only if PM i is powered on.

IV. APPROXIMATING VM RECOVERY WITH HOST

ACTIVATION COSTS

In order to specify a recovery plan for VMs and an

activation schema for the hosts we use a variation of the

algorithm presented by Khuller et al [18], with adjustments

to suit our model where machines can have two distinct states

(active & inactive), and VMs are partitioned according to their

original placement and their respective VCs. Khuller et al.

addressed the problem of scheduling jobs to machines with the

goal of minimizing the aggregated cost that includes machine

activation costs and job assignment costs. In their model, a

collection of m machines (M) and n jobs (J) is given, where

the processing time of job j on machine i is pi,j . Each machine

i has an activation cost ai, and each assignment of job j
to machine i incurs an assignment cost ci,j . The objective

is to assign jobs only to active machines with the minimal

overall cost (machines activation and jobs assignment costs)

while keeping maximum makespan smaller or equal to some

constant T .
While Khuller et al. considered simple capacity constraints,

in the recovery version of the problem these constraints are too

strict, since one host can be the recovery destination of several

VMs originating from different VCs. Also, as oppose to the

job assignment model presented in [18] our model permits the

assignment of jobs (VMs) to inactive machines (PMs) at higher

costs. To overcome this, we extend the set of hosts to include

an additional set of “inactive” representations of the backup

hosts Hoff = {i′ : i ∈ H ∧ xi = 0}. Thus, currently-inactive

PMs have two representations in our model. The “active”

representation with a positive activation cost and lower VM

assignment costs, and the “inactive” representation with a zero

machine activation cost but with higher VM assignment costs.

For simplicity, let H̄ = H ∪Hoff and V̄ = V be the extended

sets of PMs and VMs.

Let ai be the activation cost of PM i ∈ H̄ , defined as

follows:

ai =

{
Cost-Hi (i ∈ H) ∧ (xi = 0)

0 (i ∈ Hoff) ∨ (xi = 1)
(4.1)

Note that the activation cost of currently active machines is

unimportant as we assume the decision of powering them has

already been made by other processes, such as VM placement

procedures or previous VM migrations that caused the current

VM assignment and activation scheme. Thus the usage of

vacant resources in currently active PMs as part of a recovery

process does not incur farther activation costs for those PMs.

Let ci,j be the assignment cost of VM j on PM i, defined

as follows:

ci,j =

⎧⎨
⎩

Cost-Vi,j(1) i ∈ H

Cost-Vi,j(0) i ∈ Hoff
(4.2)

For each VM j and PM i we define pi,j to be the normalized

size of j compared to PM’s i free capacity. For every host

i′ ∈ Hoff and VM j, pi′,j is equal to the normalized size of j
in i′ counterpart i, pi,j .

Finally, we can express the VMRP as an Integer Program:

min
∑
i∈H̄

aiyi +
∑
(i,j)

ci,jmi,j

s.t.
∑
i∈H̄

mi,j = 1 ∀j ∈ V̄

mi,j ≤ yi ∀i ∈ H̄, j ∈ V̄∑
j∈V̄ r

or,jmi,jpi,j ≤ yi ∀Ur ∈ U, i ∈ H̄

yi + yi′ ≤ 1 ∀i′ ∈ Hoff

yi ∈ {0, 1}, mi,j ∈ {0, 1} ∀i ∈ H̄, j ∈ V̄

(4.3)

Where V̄ r denote the guest VMs of the Ur VC.

The first set of constraints ensures that each VM will be

assigned exactly once. The second set of constraint ensures

that VMs will only be assigned to marked machines. Note

that the activation schema is derived from the identity of the

marked machines (as described in Section IV-D). The third

set of constraints is the capacity constraints on the machines,

which bound the assignment of VMs, originating from the

same VC, according to their target’s capacity. The final set

of constraints ensures that only one representative (active or

inactive) of every host will be considered for the activation

schema.

Next, we relax the IP into a LP by relaxing yi and mi,j to be

in the range [0, 1]. This LP can be solved in polynomial time

while achieving a fractional solution m̄, ȳ which we process

and finally round in order to achieve an approximated discrete

solution. Our rounding approach achieves an approximation

factor of O(log n+m
OPT +1) for the recovery cost while allowing

a (6+ ε) factor for the PM’s capacity. We start by solving the

relaxed LP (Eq. 4.3). Let m̄, ȳ denote the optimum fractional

solution of the LP. We define a bipartite graph G = (H̄∪V̄ , E)

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 11

where H̄ and V̄ are the PMs and VMs vertices respectfully.

Edge e = (i, j) ∈ E is defined if mi,j > 0, and it’s weight is

set to mi,j . The weight of a host node i is set to yi.
The algorithm consists of the following four main steps:

1) Transforming the Solution: We create two new bipartition

graphs: 1) a “light” G1 graph in which all nodes and

edges are bound by some factor yi

γ . This make it easy

to omit certain edges in G1 (in the Cycle Breaking step)

and to solve the recovery assignment by looking at a

collection of induced trees. 2) a “heavier” G2 graph in

which all nodes and edges have a minimal weight of yi

γ .

Thus we can focus on reducing the cost of recovery since

a γ bound is guaranteed in terms of capacity. To create the

graph partition we iteratively consider the graph G1 and

removing edges and/or vertices from it, and optionally

placing them in G2. During this entire phase, only the

edges’ weights change while the PM nodes’ weights

remain fixed.

2) Cycle Breaking: Manipulating every induced graph Gr
1

(which will be described later) to a forest. This is done

by either forcing or banning certain VM recoveries to

selected PMs.

3) Rounding: In order to produce a discrete approximation

we separate VM nodes from either G1 or G2, thus forcing

each node to appear in only one of the graphs. We

then exploit the characteristics of each of the graphs and

perform the final rounding on each of them separately

to come up with the VM assignments and machine

activation vectors.

4) Activation Schema: The last phase forces a decision

between “active” and “inactive” representations of backup

PMs. This finalizes the recovery plan and activation

schema.

Next, we elaborate on each of these steps.

A. Transforming the Solution

In this step we construct two new graphs, G1 and G2 based

on G, and iteratively change the weights of edges in G1 and

move (or remove) edges and nodes to G2. Initially, V (G1) =
V (G) = H ∪ V,E(G1) = E(G), V (G2) = H , and E(G2) =
∅. Throughout this process we maintain the set of the following

invariants (similar to these presented in [18]):

(I) ∀(i, j) ∈ E(G1), and ∀h : mh
i,j ∈ (0, yi

γ) ∧ pi,j > 0

(II) ∀r, i ∈ H , and ∀h :
∑

j or,jm
h
i,jpi,j ≤ yi

(III) ∀(i, j) ∈ E(G2), and ∀h : yi

γ ≤ mh
i,j ≤ 1

(IV) Once a variable is rounded to 0 or 1, it remains constant

Here mh
i,j denotes the weight of the edge (i, j) at the end of

the hth iteration, and γ is a constant (to be determined later).

After the initialization we continue by following Algorithm

4.1, which is based on two intertwined operations: FixGraphs
and RandStep.

• FixGraphs removes edges or VM nodes from G1 and

optionally place them in G2 in order to maintain the

above invariants. We start by removing all host vertices

of weight yi = 0 from both graphs, and mark those hosts

with yi = 1. For edges that have mh
i,j = 1 we assign VM

j to host i in the recovery plan and remove j from G1. In

case mh
i,j = 0 we simply remove the (i, j) edge from G1.

For all remaining edges of weight mh
i,j ≥ yi

γ we remove

them from G1 and place them in G2, adding VM node j
to G2 in case it is not already there. For all (i, j) which

have pi,j = 0 we can simply set mi,j =
yi

γ and move the

edge to G2. It is easy to verify that following these steps

maintains all of the above invariants.

Since edge weights in G2 do not change, we denote an

edge weight in G2 by wi,j . After fixing G1 and G2 we

can induce a new linear system as shown in Figure 1,

which formulates the assignment and capacity constraints

on G1 edges at the h+1 iteration, based on the weights

of edges in G1 at the h iteration and the edges of G2. H ′

and V ′ denote the set of host and VM nodes with degree

at least 1, at the beginning of the h+ 1 iteration.

• RandStep changes the weights of edges in G1 while

forcing at least one edge weight mi,j to be in {0, yi

γ }
thus having it removed from G1 and optionally moved

to G2 after the next FixGraphs step. While the linear

system Am = b remains undetermined, it is possible to

efficiently find a matrix r so that Ar = 0. Next, it is

simple to find a strictly positive constraint parameters: α
and β, so that mi,j + αri,j and mi,j − βri,j belong to

[0, yi

γ] for all (i, j) and for at least one (i, j) at least

one of them belong to {0, yi

γ }. Finaly, this procedure

returns m + αr with probability β
α+β , and m − βr

with probability α
α+β . As shown in [19] the solution

guarantees that E[mh+1
i,j |mh

i,j] = mh
i,j and in particular

E[mh+1
i,j] = mi,j . Thus, after each RandStep the expected

cost remains optimal at
∑

(i,j) mi,jci,j +
∑

i yiai.

Note that after each call to FixGraphs the number of equations

does not increase and the number of variables (i.e., edges in

G1) actually decreases thus we achieve progress after each

step and finish after at most M ·N iterations.

Algorithm 4.1 Transformation Phase

m ← m̄
LS ← FixGraphs(m)
while LS(m) is underdetermined do

m ← RandStep(A,m, b)
LS ← FixGraphs(m)

end while

B. Cycle Breaking

Let Gr
1 be the induce graph of G1 with V (Gr

1) = H̄ ∪ V̄ r

for every Ur ∈ U at the end of the transformation step.

Lemma IV.1. After the end of the transformation step the
number of edges in every connected component c in Gr

1 is
smaller than the number of vertices. That is |E(C)| ≤ |V (C)|.

Proof: Assume there is a connected component C in an

induced graph Gr
1 where |E(C)| > |V (C)|. Let LSr be the

12 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

∀j ∈ V ′,
∑
i∈H′,

(i,j)∈E(G1)

mi,j = 1−
∑
i∈H′,

(i,j)∈E(G2)

wi,j (4.4)

∀i, r ∈ H ′,
∑
j∈V ′,

(i,j)∈E(G1)

or,jpi,jmi,j =
∑
j∈V ′

or,jpi,jm
h
i,j −

∑
j∈V ′,

(i,j)∈E(G2)

or,jpi,jwi,j (4.5)

Fig. 1: FixGraphs output linear system

sub-linear system of the last LS from the previous step which

includes Eq. 4.4 for all j ∈ V̄ r and Eq. 4.5 for r. Since

∀Ur, Ur′ ∈ U , if r �= r′ ⇒ Ur ∩Ur′ = ∅ it is easy to see that

LSr is independent from LSr′ and that
⋃

r LSr = LS. Having

|E(C)| > |V (C)| means that LSr is undetermined. Since LS
includes an independent undetermined linear system, it is in

itself undetermined as well, and the condition in the while

loop in Alg. 4.1 is true.

Corollary IV.2. Every connected component in an induced
graph Gr

1 contains at most one cycle.

For every r and a cycle C in Gr
1, we choose one edge (i′, j)

in C at random. If mi′,j ≥ 1
2 then we assign VM j to host i′

in the recovery plan (and remove it from G1). This increases

the total VM assignments costs and load on PM i′ by at most

a factor of 2 since VM j was already partially assigned to it by

at least a value of 1
2 . The same is true for the activation costs

of PM i′ since PM i′ was already partially open with a value

of at least 1
2 . Note that by the term “load” of host i we actually

mean the maximum load of VMs in i originating from different

VCs, or formally maxr{
∑

j∈V̄ r pi,jmi,j}. This is done due to

the fact that assignment of VMs originating from different VCs

to the same target does not mean aggregated capacities in the

load calculation. For the same reason we can conclude that the

order of which we choose r is unimportant. In case mi′,j <
1
2

we remove (i′, j) from the graph and scale up every (i, j) by

a factor of 2. This means that the total assignment value of

every VM remains at least 1, while the total costs associated

with it (assignment and activation) is increased by at most a

factor of 2.

C. Rounding

We would like to partition the VM nodes between the two

graphs, G1 and G2 in the following way:

For every VM node j in G2:

• If
∑

i:(i,j)∈E(G2)
mi,j < 1

δ remove every (i, j) edge

and VM node j from G2. Since we guaranteed that

the total assignment of each VM is at least 1, we get∑
i:(i,j)∈E(G1)

mi,j ≥ 1− 1
δ .

• Otherwise, if
∑

i:(i,j)∈E(G2)
mi,j ≥ 1

δ remove every

(i, j) edge and VM node j from G1.

Next we round separately the values in G1 and in G2:

1) Rounding G2: Since the weight of each (i, j) edge

in G2 is at least yi

γ , every feasible recovery plan in G2

is a γ−approximation of the optimal solution in terms of

capacity, thus we focus on minimizing the recovery costs.

This problem is also known as the non-metric uncapacitated
facility location problem, where the goal is to find a minimum

cost assignment scheme of clients to facilities in which both

the cost of assignments and the facility activation costs are

fixed. By employing the approximation algorithm described

in [20] we can find a recovery plan bounded by a factor of

O(log n+m
OPT +1) from the optimal solution (here n = |V (G2)|

and m = |E(G2)|).
2) Rounding G1: The rounding process on G1 consists

of |U | phases of rounding. One for each Gr
1. Since VM

assignments in different induced graphs are independent of

each other, the order of this rounding is unimportant. For each

Ur ∈ U , we traverse the Gr
1 tree in a bottom-up order, and

for every VM node j which is a child of PM node i: 1) If

mi,j < 1/η, we remove the edge from G1. Since all VM nodes

in G1 initially maintain
∑

i∈H mi,j ≥ 1 − 1/δ, after these

edges were removed we have
∑

i∈H mi,j ≥ 1−1/δ−1/η for

every VM node j in G1; 2) In case mi,j ≥ 1/η we mark PM

i (yi = 1) and assign j to i in the recovery plan. This causes

the capacity and costs associate with PM i to increase by at

most a factor of η.

After the first phase of the rounding in G1, for each Ur ∈ U
and VM node j in Gr

1 that has not been assigned yet, we look

at the disjoint star Sj , with j at it’s center. For every PM i
that has been marked in Sj we define an activation cost of 0.

We assign j to the PM il in Sj with the minimum total cost

ail+cil,j . Since only one VM will be assign to il in Gr
1 at this

phase, and because pil,j ≤ 1, the assignment increases the load

on il by an additive 1 at most. Let i1, i2, . . . , ilj be the PM

nodes in Sj . The contribution of every VM j to the costs in

the optimal fractional solution is bounded by
∑lj

k=1 yikaik +
mik,jcik,j . Since yi ≥ mi,j for every (i, j) and due to the fact

that for every VM node in G1,
∑lj

k=1 mik,j ≥ 1− 1/δ − 1/η
we can induce the following:

∑lj
k=1 yikaik +mik,jcik,j ≥∑lj

k=1 mik,jaik +mik,jcik,j ≥∑lj
k=1 mik(ail + cil,j) ≥

(1− 1/δ − 1/η)(al + cil,j)

(4.6)

Thus the total cost is within a factor of 1
1−1/δ−1/η from the

optimum.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 13

D. Activation Schema

Following the rounding step, every VM j is assigned to

some host i. However, the activation schema is still not

determined since some VMs can be assign to an “active”

representation of the PM (i ∈ H) while other VMs will be

assign to its “inactive” representation (i ∈ Hoff). The final

phase will determine which PM will be activated and which

PM will not.
We activate every PM i ∈ H that has been marked. For

every such PM i that has been activated if there’s an “inactive”

representation of it, i′ ∈ Hoff that has also been marked,

assign all the VMs that were assigned to it, to the activate

PM i. The load on PM i is increased by a factor of 2 at most,

since i and i′ have the same initial capacity. Since we assumed

Cost-Vi,j(1) ≤ Cost-Vi,j(0) and because the activation cost

of PM i has already been paid for, there’s no increase in costs.

The remaining PMs from Hoff or those from H that were not

marked for activation will remain inactive.
We can now prove our main theoretical result.

Theorem IV.3. The algorithm for the VM recovery with host
activation costs problem has a total cost of O(log n+m

OPT +
1))OPT , with a PM load bound of (6 + ε).

Proof: By combining all the above steps we can conclude

a 2 ·
(
max(η, 1

1−1/δ−1/η) +O(log n+m
OPT + 1)

)
cost approxi-

mation, and a 2 · (max(2γ, 2η + 1)) capacity approximation.

By setting γ and η to be γ = η = 1 + ε
4 for any ε > 0, and

1/η = 1− 1/δ− 1/δ(log n+m
OPT +1) we can get a total cost of

O(log n+m
OPT + 1))OPT , with a PM load bound of (6 + ε).

V. A PRACTICAL APPROACH

In the previous section we described a bicriteria approxi-

mation algorithm for the VM recovery problem. While this

algorithm has guarantied upper bounds on cost and load, it is

somewhat complex. Next we present a simple and effective

greedy algorithm, named Greedy Active (GA) that while not

having guarantied bounds, performs well under simulations

based on real data-center data. The concept behind this heuris-

tic is that if we had known which PMs are active and which

are not we could calculate, using existing methods, a good

approximation of the VMs recovery plan. Thus, the only thing

left to decide is which PMs to activate and which will remain

inactive.

A. Greedy Active Algorithm

At every iteration GA searches for the next inactive host that

if activated will minimize the total cost of the recovery plan.

Once found, the PM is activated and GA continues to search

for the next PM to activate among the rest of the inactive

PMs. The algorithm stops when it is no longer beneficial (due

to active PMs costs) to activate any additional PM, or when

all PMs have been activated.
Given the current PMs Activation Schema it is possible to

find a recovery plan by iteratively solving the minimization

version of the Generalized Assignment Problem (GAP), for

each of the failing VCs. For each item i and a bin j, the

Host Capacity [GB] Count [%] Active State Cost [$]
Small 30 22 2900

Medium 62 68 3860
Large 126 8 5780

X-Large 254 2 9620

TABLE I: Physical hosts’ configurations

VM Demand [GB] Count [%] Annual Cost [$]
Small 1 10 276

Medium 2 37 552
Large 6 53 1104

TABLE II: Virtual machines’ configurations

item size Si,j and cost Ci,j is defined. In Min-GAP the goal

is to pack the set of items into bins so that the total cost

of the packed items is minimized, and all items are packed

under the bins capacity constraints. Both Min-GAP and it’s

counterpart Max-GAP (Where the goal is to pack a subset

of items of maximum profit) have been thoroughly studied

in the literature and constant approximation algorithms have

been presented [21]–[23]. In the Greedy Active algorithm,

virtual machines originating from the same VC are assigned

to available backup PMs, considering the appropriate recovery

costs and normalized size. By combining the GAP packing

among all VCs we can generate a valid VM recovery plan.

Shmoys and Tardos presented an algorithm in [21] that

achieved an optimal cost packing with a 2-approximation in

bin load. This can be transformed into a feasible solution by re-

allocating excess items to secondary bins at the cost of higher

VM recovery. A second option, is to use a Max-GAP transfor-

mation where items costs are transformed into profits (where

an item i profit in bin j is Pij = Maxv∈V {Cv,j} − Ci,j)

and a simple Max-GAP approximation is used (e.g., [23]).

While none of these options maintains any approximation

ratio (the latter also does not guaranty a feasible packing), we

have found that when simulated using real data-center data,

where the number of bins and items configurations is small,

these techniques produced a near-optimal feasible packing.

Thus, they may be considered “good enough” for any practical

scenario.

B. Performance Analysis

In order to assess the performance of the GA algorithm we

have used a snapshot of a medium size IBM research cloud

that contained a few hundreds physical hosts of 4 different

configurations and a few thousands VMs of 3 different con-

figuration (Table I and II list the exact PM and VM config-

urations). The PMs memory capacity was considered as the

only resource capacity and the same was assumed regarding

to the VMs requirements. All simulations were conducted on

an Intel i3 CPU at 2.53GHz, 4GB RAM machine.

We compared our heuristic against two naive opposite

approaches. The Active approach recovers VMs to only pow-

ered machines, thus while VM recovery is cheap, powering

backup PMs increases costs considerably. The opposite Inac-
tive approach does not power new PMs. While it may still

14 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

Availability [%] SLA Fine [%] SLA Fine [$]
Small Medium Large

99.999 - < 99.9999 10 27.6 55.2 110.4
99.99 - < 9.999 15 41.4 82.8 165.6
99.95 - < 99.99 20 55.2 110.4 220.8

< 99.95 50 138 276 552

TABLE III: VM Service-Level Agreement

Fig. 2: Heuristic Total Costs Comparison

recover VMs to currently active PMs, using their residual

capacity, backup PMs that are used in the recovery process

remain inactive. While this approach saves costs in machine

maintenance, recovery may be slow and thus expensive.

As the pricing model we used a SLA policy that is based

on AWS EC2 SLA policy [24] and was modified to reflect

higher availability guaranties at higher prices (Tables II and

III). For example, the Small VM type has an annual cost of

276$ which is 4x the upfront cost of it’s AWS EC2 counterpart.

A downtime of 5 minutes would cost the cloud provider 10%

of the annual VM cost, or in the case of the Small VM 27.6$.

As mentioned in Section II, this scheme is based on common

commercial offerings. The cost of active machines is in a range

of 4000-12000$ (Table I) according to the PM size, following

the typical costs presented in [5].

Figure 2 shows a comparison between our heuristic and

the two approaches for different faulty unit sizes (in terms of

number of hosts). For example, when considering faults of a

single PM, the local search heuristics activated only several of

the cheapest hosts, and designated only the most expensive-

to-recover VMs to these PMs. Thus achieving a 28% savings

in costs versus having no active backup machines. On the

other hand, when considering a fault of extreme proportions

(i.e. the entire set of currently active machines) the local

search heuristic converges to the same solution as the inactive

approach of using a large set of inactive backup machines. In

this scenario, the savings in recovery of the entire region to

active hosts is negligible versus the cost of powering an entire

backup region.

A closer look at the distribution of costs between the VM

recovery costs and the active hosts costs reveals the reason the

“Active” and “Inactive” heuristics performs differently under

different faulty unit sizes and why GA performs better through

the entire range. Since the “Active” heuristic always recover

VMs to active PMs, the VM recovery costs portion slowly

become overshadowed by the increased cost of machines’

activation as more machines are needed to handle larger

failures (Figure 3). In contrast to the “Active” heuristic GA

manages to balance between the VM recovery costs and the

active PM costs (Figure 4).

Fig. 3: Active Cost Partitioning

Fig. 4: Greedy Active Cost Partitioning

In order to assess the affect different SLA prices impose

upon the recovery results of GA, two scenarios were consid-

ered. The first used a collection of low-end Small hosts (see

Table I) as backup, while the second used higher-end Large
hosts. Figure 5 and Figure 6 show the number of active and

inactive hosts used for recovery of the same VM placement

with each type of backup hosts, as a function of the normalized

ratio between VM SLA costs and active PM costs. Here one

is the original VM SLA and active PM costs as described in

Tables I and II (i.e., a ratio of 2 used the original VM SLA

costs but half the cost of having a powered PM).
While the total number of backup hosts used for recovery

depends solely on the backup hosts configuration, the number

of hosts GA chooses to activate depends on the cost ratio. The

results show that GA allows some variance in this ratio before

more or less active hosts are used for recovery. This allows

cloud providers the ability to host more expensive-to-recover

VMs or use cheaper backup machines while still maintaining

similar levels of recovery costs.

VI. VM PLACEMENT

An important aspect of cost aware VM recovery that was not

addressed so far is the original placement of VMs according to

their recovery costs. In this section we show that considering

the VM recovery costs as part of the VM placement may

reduce the ultimate recovery costs and number of active

machines needed for recovery.
As mentioned in Section III, VMs originating from different

VCs can be designated to the same backup host when assum-

ing only one VC fails at-a-time. A backup host is more likely

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 15

Fig. 5: Recovery using Small Backup Hosts

Fig. 6: Recovery using Large Backup Hosts

to be activated if more VMs can benefit from it’s activation,

raising the probability the recovery savings will pay for the

host’s activation. Also, the more recovery-expensive VMs are

handled by the same active PM, the higher the chances that less

extra active PMs will be needed for VM recovery, as cheaper

to recover VMs will be assigned to inactive PMs. Thus, a

distribution of VMs that may benefit more from an active

backup host, across multiple VCs may reduce the number of

active backup PMs in case of failures.

Figure 7 illustrates how a consolidation of costly VMs in

a single host may result in a pricey recovery plan. The left

scenario shows two hosts h1 and h2 assigned with two types

of VMs each. Host h1 holds 4 expensive-to-recover VMs (solid

color) that will benefit most from recovery to an active host

(b1) in case h1 fails. Host h2 holds 4 VMs that are less

susceptible to failures. These VMs will not benefit much from

active host recovery, but since b1 is already active it will be

chosen for recovery. At the right hand scenario both VM types

are evenly distributed among h1 and h2. Thus it is possible to

recover the expensive VMs to a smaller, cheaper to maintain

active host (h3) and use an inactive host (h2) to recover the

remaining VMs.

Fig. 7: Heuristic Total Costs Comparison

To validate this we have compared between two placement

scenarios that were simulated using real IBM data center data

(as described in Section V). In both scenarios the data center

was partitioned into 10 VCs of equal size and both used

the same set of small hosts as backup candidates. The first

scenario (named Compact) defines two VCs as 5 times more

“expensive” to recover. This means that the cost of recovery

for all guest VMs was increased to 5 times their original

recovery costs. The second placement scenario (named Dis-
tributed) scattered the previous expensive VMs throughout

all VCs uniformly at random. Both Compact and Distributed

placements used the same number of PMs achieving the same

high levels of hardware utilization. Using the Greedy Active

algorithm (Section V) a VM recovery plan and an activation

schema were calculated for each of the two placement sce-

narios. While using the same number of backup PMs for the

recovery plan in both scenarios Greedy Active managed to

reduce the number of active backup machines by 60%. This

experiment demonstrate how a distribution of expensive-to-

recover VMs across several VCs may help to better utilize

activated backup hosts as recovery targets.

VII. CONCLUSION AND FUTURE WORK

In this paper we studied ways to maintain high availability

of cloud services at a reasonable cost. Realizing that faults are

prone to happen, we focused on the trade-off between main-

tenance cost and high availability. We presented two possible

solutions for this optimization problem. The first is a bi-criteria

approximation algorithm with proven worst case bounds, and

the second is a much more practical greedy heuristic that

performs very well in realistic scenarios compared to two naive

alternatives. Our simulation results, over real data from an

operational data center, indicate that our solution manages to

balance between rapid VM recovery and machine activation

costs, for the full spectrum of failure unit sizes.

As explained in Section III, this work mainly assumes faults

due to machine failures. Thus, it would be interesting to refine

the model by addressing failures according to their distinct at-

tributes, like software problems or missconfigurations. Another

interesting research direction is continuing along the lines of

Section VI and developing a comprehensive VM placement

solution that consider recovery costs as one of its optimization

objectives.

VIII. ACKNOWLEDGMENT

We want to thank IBM Research - Haifa for the data-centers

data.

REFERENCES

[1] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan, “Lever-
aging virtualization to optimize high-availability system configurations,”
IBM Syst. J., pp. 591–604, Oct. 2008.

[2] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: high availability via asynchronous virtual ma-
chine replication,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, 2008, pp. 161–174.

[3] Protecting Mission-Critical Workloads with VMware Fault Toler-
ance, http://www.vmware.com/files/pdf/resources/ft virtualization wp.
pdf, 2009.

16 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

[4] Kemari Fault Tolerance in QEMU, http://wiki.qemu.org/Features/
FaultTolerance, February 2011.

[5] L. A. Barroso and U. Holzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synthesis
Lectures on Computer Architecture, 2009.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM symposium on Operating systems
principles, 2003.

[7] I. Habib, “Virtualization with kvm,” Linux J., no. 166, February 2008.
[8] C. A. Waldspurger, “Memory resource management in vmware esx

server,” SIGOPS Operating Systems Review, 2002.
[9] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,

“Entropy: a consolidation manager for clusters,” in Proceedings of the
5th international conference on Virtual execution environments, 2009.

[10] “Rackspace service license agreement,” http://www.rackspace.com/
managed hosting/support/servicelevels/managedsla/, August 2012.

[11] “Hosting.com service license agreement,” http://www.hosting.com/
terms-conditions/sla, August 2012.

[12] “Terremark service license agreement,” https://community.
vcloudexpress.terremark.com/en-us/product docs/w/wiki/
service-level-agreement.aspx, August 2009.

[13] B. Addis, D. Ardagna, B. Panicucci, and L. Zhang, “Autonomic manage-
ment of cloud service centers with availability guarantees,” in Proceed-
ings of the IEEE 3rd International Conference on Cloud Computing,
2010.

[14] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King, “FTCloud: A component
ranking framework for fault-tolerant cloud applications,” in Proceedings
of the 21st IEEE International Symposium on Software Reliability
Engineering, 2010.

[15] J. Duell, “The design and implementation of berkeley labs linux check-
point/restart,” Tech. Rep., 2003.

[16] W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li, and Y. Zeng, “Multi-level
selective deduplication for vm snapshots in cloud storage,” Proceedings
of the IEEE 5th International Conference on Cloud Computing, 2012.

[17] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
fault tolerance for HPC with xen virtualization,” in Proceedings of the
21st annual international conference on Supercomputing, 2007.

[18] S. Khuller, J. Li, and B. Saha, “Energy efficient scheduling via partial
shutdown,” in Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms, 2010.

[19] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan,
“Approximation algorithms for scheduling on multiple machines,” in
Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, 2005.

[20] A. Srinivasan, “Improved approximation guarantees for packing and
covering integer programs,” SIAM Journal on Computing, 1999.

[21] D. B. Shmoys and v. Tardos, “An approximation algorithm for the
generalized assignment problem,” Mathematical Programming, 1993.

[22] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in Proceedings of the 17th annual ACM-SIAM symposium on Discrete
algorithms, 2006.

[23] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the
generalized assignment problem,” Inf. Process. Lett., 2006.

[24] “Amazon ec2 service level agreement,” http://aws.amazon.com/ec2-sla/,
October 2008.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

