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Abstract—This paper describes the foundation of a novel network 
fault localization algorithm based on active network 
measurements and probabilistic inference. A fault condition 
could be an unacceptable large delay or packet loss rate.  

The solution is computationally efficient, autonomic in nature 
and provides the operator with a probability mass distribution 
that indicates the fault location. The probabilistic inference is 
based on a discrete state-space particle filter.  

We present results from a first feasibility study performed in a 
simulated environment. The precise location of single faults is 
determined rapidly when measurement paths are partly 
overlapping. 

Keywords—Autonomous network management, IP networks, 
Distributed network measurements, Discrete state-space particle 
filters  

I. INTRODUCTION 
Network planning, provisioning, monitoring and fault 
diagnosis are traditional network management tasks often 
carried out by highly skilled personnel in network operation 
centres. The tasks are complex and involve many hours of 
manual labour. For this reason vendors and operators in the 
data- and telecommunications industry focus the research and 
developing resources on automating tasks and workflows in 
order to reduce OPEX. 

One particularly time consuming task, which is addressed 
in this paper, is to find the cause of performance issues and 
other faults in the network. First, the fault or performance 
degradation has to be observed. This is done either by a 
network user or by the network management administrator. 
Trouble tickets are filled in, registered and put in a queue. Then 
precise localization of the problem is carried out based on 
combinations of ping and traceroute and similar functionality 
for Ethernet and MPLS. Anecdotal evidence indicates that this 
can take hours or days to resolve [1].  

Several measurement frameworks have been proposed in 
the academic literature to tackle the challenges discussed 
above. Section II.B reviews examples of systems related to this 
paper. Potential widespread deployment of such measurement 
and monitoring frameworks, at least when operated in pro-
active modes, will generate significant amounts of data. 
Significant management efforts are needed for tool 

configuration, as well as collecting, storing and interpreting the 
data. Further, real-time aspects are most often not even 
considered. Several methods and architectures based on 
probabilistic modeling and inference have been proposed to 
overcome some but not all of these problems.  

This paper describes the basic principles for a network fault 
localization algorithm based on active network measurements, 
real-time probabilistic inference and modelling of the network 
state. The algorithm is autonomic in nature and provides the 
operator with a fault location probability mass function that 
indicates the location of the fault. The required measurements 
can be performed by random scheduling thus reducing the 
efforts in measurement planning. The analysis itself is based on 
a discrete state-space particle filter, sometimes referred to as a 
histogram filter. The filter also performs an online computation 
with no need for storing results from previous measurements. 
The filtering analysis is lightweight from a computational 
perspective and does not need detailed knowledge about the 
network technology being measured. The paper also presents 
initial evaluation results obtained in a simulated environment.  

The rest of this paper is organized as follows; Section II 
reviews recent advancements on network measurements, 
measurement frameworks and network fault localization; 
Section III provides the research problems targeted by this 
paper; Section IV reviews definitions; Section V describes the 
algorithm in detail; in Section VI the algorithm is evaluated in 
various scenarios; Section VII discusses the evaluation results 
as well as how the research problems are addressed by the 
solution; Conclusions are located in Section VIII. 

II. RELATED WORK 

A. Active network measurements 
Active measurements (aka active probing) have long been an 
accepted method for determining performance parameters of 
packet-switched networks. The basic concept is to transmit 
probe packets from a sender towards a receiver. Each probe 
packet is time stamped on both sides. 

The measurement endpoint (MEP) and measurement 
intermediate point (MIP) functionality and capabilities depends 
on the network technology deployed. For an IP network, the 
MEP functionality can be based on IETF TWAMP [2] [3] or 
IETF ICMP [4]. For Ethernet and MPLS networks, the 
functionality can be based on ITU-T Y.1731 [6]. For MPLS-
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TP, MIP and MEP functionality may also be based on IETF 
RFC 6371 [23].  

These technologies are capable of measuring performance 
metrics such as one-way delay, round-trip time, loss, jitter and 
available path capacity as defined in ITU-T Y.1540 [5].  

B. Measurement frameworks and probabilistic modelling 
Several measurement frameworks have been proposed in the 
academic literature including examples such as Ripe Atlas 
[22], Blanton et al [10] and Boote et al [11]. Building the 
particular set of measurements to be triggered at a given 
moment in time is not presented in the above articles. 
Anecdotic evidence regarding the use of for example the 
PerfSONAR framework [11] leads us to believe that designing 
a particular set of measurements is a manual process performed 
by the network administrator. Also, interpreting the results and 
identifying the fault location is usually a manual process where 
the administrator is heavily involved.  

Varga and Moldován [14] describe a fault management 
framework for service-level monitoring in Ethernet services, 
based on recommended performance metrics defined in e.g. 
ITU-T Y.1731. The framework is split in modules taking care 
of connectivity fault management, performance monitoring, 
service-level monitoring, and security. The performance 
monitoring is based on measurements of delays and drop. The 
fault localization is assumed to be performed using manual or 
semi-automated checks and processes.  

One heavily explored approach for automatically finding 
the fault location is network tomography, see Castro et al [18] 
for an overview and [17] for a specific example. These 
techniques require summations of parameters of interest over 
all possible paths throughout a network. Such techniques have 
non-linear computational complexity. It is well known that, in 
general, network tomography techniques scale badly with the 
size of the network. Fast detection and localization of failures 
is very difficult when limited resources are available. 

Lee et al. [12] present a method for choosing, in a tree 
topology, a set of candidate nodes and performing fault 
localization using this set of candidate nodes. The complexity 
of the heuristic algorithm that returns the minimum subset of 
candidate nodes for a tree is O(|N3|), N is the number of nodes.   

Fraiwan and Manimaran [13] formulate the finding of 
network fault locations as a generalized weighted bipartite 
matching problem. The aim is to select a set of overlay 
measurements for characterizing a given underlay fault. The 
problem is solved with a maximum flow algorithm such as 
Ford-Fulkerson. Before starting the analysis, a complete set of 
suspect links had to be generated by a network management 
system.   

Probabilistic management techniques [16] are solutions that 
are probabilistic in one or several aspects. For example, the 
network state can be represented by a probabilistic model; the 
output can be provided in terms of probability density 
functions; and the network observations can be based on 
sampling rather than deterministic information. These 
techniques have been applied to fault localization based on 
real-time measurements. For example, Steinert and Gillblad 

[15] describe a way of applying overlapping estimators for 
latency modeling based on measurements performed between 
neighboring nodes. The idea is to use the model for identifying 
latency shifts. The problem with this solution is that it only 
applies to a path and not a meshed network.  

Several methods for network diagnosis and fault 
localization based on graph modeling, decision trees and 
Bayesian reasoning have been proposed in academic literature. 
Examples include the work presented in [19] [20]. In [21] a 
decision tree model is used for analyzing latency shifts and 
their root cause.  

In contrast to the approaches reviewed in this section we 
present a solution with low computational complexity and real- 
time properties. The solution is designed for mesh and tree 
topologies.  

III. RESEARCH CHALLENGES 
The overarching challenge targeted by this paper is related to 
difficulties in localizing faults and performance degradations in 
real time in packet-switched networks. The difficulty is further 
increased by the fact that there might be multiple packet layers 
(Ethernet, MPLS and IP) having overlay topologies controlled 
by different independent protocols. In addition, not all MIPs 
support performance measurements, and sometimes traffic 
related to fault management is filtered out or not responded by 
intermediary nodes. A solution must address the following 
aspects: 

1. Automatically find fault and performance degradation 
locations in real time with low-complexity and scalable 
calculations  

2. Hide complexity introduced by multi-technology and 
multi-layer networking 

3. Reduce storage requirements for measurement data (i.e. 
store as little data as possible) 

4. Relax requirements on intelligent measurement scheduling 

This paper describes a novel algorithm pursuing all four 
aspects. The following sections provide the basic building 
blocks and an evaluation to show the algorithm feasibility.  

IV. DEFINITIONS 
A network is for the purpose of this paper modeled as an 
undirected graph G. For simplicity, the graph only allows 
maximum one edge between any pair of nodes. (The method 
described in this paper is not limited to these simple graphs.) 
The network can be any type of packet-switched network based 
on technologies such as MPLS, Ethernet and/or IP.  

A path between two nodes is defined as an ordered 
sequence of edges. The path can be found by deploying 
Dijkstra’s shortest path algorithm. It can also be defined by 
traffic engineering using network protocols such as RSVP-TE 
[8]. 

Some of the nodes in G have active measurement 
capabilities; such nodes are called Measurement Endpoints 
(MEPs). Two MEPs exchange test packets from which it is 
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possible to determine performance metrics such as delay, jitter 
and packet loss.  

Each path between two edge nodes in G is associated with a 
service-level agreement (SLA). The SLA is a contract between 
the network operator and the network user that defines 
performance metrics and their associated threshold values. An 
SLA violation occurs if, for example, measurements of delay 
are higher than what the SLA dictates.  

V. NETWORK FAULT LOCALIZATION ALGORITHM 
This section describes the network fault localization algorithm. 
We begin with an overview, while the following subsections 
discuss detailed aspects of the algorithm, including the 
measurement model, the filter and classification mechanisms 
for interpreting filter outcome.  

A. Algorithm overview 
The process of localizing a fault is depicted in Figure 1. Active 
edge-to-edge measurements of for example jitter, delay or loss 
are performed between MEPs. This is illustrated in the left part 
of the figure. The measurements are then fed into the network 
management system (NMS) where the network fault 
localization algorithm operates. The algorithm infers the 
location of a fault as illustrated in the right part of the figure.  

 
Figure 1: Overview of the network fault localization algorithm. Blue lines 
correspond to edge-to-edge measurements and the red line is the pinpointed 
faulty segment after filter analysis.  
 

The network fault localization algorithm itself operates on a 
probability mass distribution which is implemented as a vector 
mapping network segment identifiers to probability mass 
distribution values (referred herein as weights). The weights 
are either increased or decreased, depending on the outcome of 
the measurements.  

Each measurement result is compared to an agreed SLA for 
the path between the two MEPs. The algorithm increases all 
weights corresponding to the edges of a path where an SLA 
violation is detected. All other edge weights are always 
decreased. After each modification of the weights the vector is 
normalized. The weights in the vector must sum up to one, in 
order to make the weights correspond to probabilities. 

All edge probabilities will be fairly equal – and 
proportional to the number of edges in G if there is no SLA 
violation or fault in the network. If, on the other hand, there is 
an edge in the network not meeting the SLA requirements, the 

probability associated with that edge will increase over time. 
That edge can then be identified by classification of the edge 
vector.  

B. Network measurement model 
The network fault localization problem is modeled using a 
discrete state-space particle filter. The basic concept behind 
filter-based estimation in general is to track a system state by 
repeated sampling [9].  

The model for particle filters assumes that the system state 
can be modeled as a first order Markov process such that 

kkk aga ω+= − )( 1     (1) 

where ak is system state at time k, k is noise with some 
probability density function and g(.) is an arbitrary function.  

It is also assumed that consecutive measurements zk of the 
system state ak are independent of each other. Further, 
measurement of zk shall only depend on ak such that  

kkk vahz += )(     (2) 

where ak is the system state at time k and vk is noise with 
some probability density function.  

In this paper the system state space is discrete and 
corresponds to the set of edge identifiers. Hence the noise term 
in (1) will be zero. The fault location (i.e. an edge in G) is 
modeled as the system state ak. If there are no faults in the 
network the state ak points to a virtual null state. Observe that 
there are no general constraints on the functions g(.) and h(.).  

Further, a measurement z is defined by a vector <mi, me, P, 
b> where mi is the ingress MEP, me the egress MEP, P is the 
path between mi and me and b is a Boolean which is either true 
or false such that 

=
OKSLAfalse

OKnotSLAtrue
b    (3) 

The interpretation of (3) is the following; if there is an SLA 
violation for the given metric then b = true, otherwise b = 
false. The elements of z are denoted zmi, zme, zP and zb. Observe 
that zP is a sequence of edges between zmi and zme. 

The measurements zk corresponds to active measurements 
of metrics such as delay, jitter or loss between two MEPs over 
a path P. The measurements are independent, as required by 
the model, under the assumption that two measurement packets 
does not co-exist on the same edge or node at the same time. In 
a practical scenario this is the case due to the low measurement 
overhead.  

C. Particle filter for network fault localization 
The particle filter in the solution uses a discrete state space and 
evolves in discrete time [9]. Such filters are sometimes referred 
to as histogram filters. The algorithm operates on a probability 
mass distribution where each discrete state-space point 
corresponds to exactly one particle. This paper does not 
provide a thorough description of the mathematical foundation 
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of filters; instead the focus is on applicability to network fault 
localization.  

The basic principle of the particle filter is to construct a 
discrete sample based representation of the probability function 
for the tracked system state. In a traditional particle filter 
multiple copies, particles, of the system state are used. Each 
particle is associated with a weight that corresponds to the 
probability of that specific particle. The system state estimate is 
obtained by calculating the weighted average of all particles. A 
new estimate is obtained for each sample.  

The solution in this paper contrasts from the traditional use 
of particle filters by discretizing the system state space by 
assigning each particle to exactly one such discrete point in the 
state space (i.e. one edge from the set of edges). The weight of 
each particle is updated according to the measurement model; 
observe that the particle position is not changed. This is a key 
differentiator and is necessary for the purpose of this paper. 
The system state ak is determined by classifying the probability 
mass function. This step is discussed in Section V.D.  

Particle filters are iterative in their nature and operates in 
two phases; the prediction and the update phase. In the 
prediction phase each particle is updated according to a model 
known to govern the system state, if such a model exists. 
Further, the update phase recalculates the particle weight based 
on measurements, or samples, of the system.  

In this paper, a particle x is represented by a vector <e, w> 
where e is the edge identifier and w is the particle weight which 
is a normalized probability. The elements of x are denoted xe 
and xw. Each particle x belongs to the particle set S and the 
number of particles in that set is denoted |G| – that is the 
number of edges in the graph G.  

The prediction phase is modeled as ak = ak-1 for simplicity. 
That is, the method does not try to predict where a fault might 
occur in the future. Hence there are no requirements on 
specifying g(.) in (1). The update phase is based on the 
measurement samples from active measurements. The pseudo 
code for the algorithm is shown below.  
1. Construct initial set S of |G| particles with 

equal weight 1/|G| 

2. S’ = {0}, i.e. S’ is the empty set 

3. For i = 1, …, |G|  

a) Set x’i = xi 

b) Calculate the new weight w’i = p(z, x’i) 
for particle x’i from the set S given 
sample z, add Gaussian noise to w’i 

c) Update the new particle set S’, S’ = 
union(S’, {x’i}) 

4. Normalize w’i for i = 1, …, |G| (i.e. (w’i) must 
be 1 since w’i corresponds to probabilities) 

5. If the probability w’i is higher than a threshold 
value T, the edge corresponding to x’i is 
considered the fault edge 

6. S = S’ 

The algorithm iterates (step 2 – 6) for each new 
measurement z. Gaussian noise is added to the weight 
component of a particle x’ in order to increase the efficiency of 

the algorithm [9]. The mean and standard deviation of the noise 
are configurable parameters.  

The key to finding the edge causing SLA violation using 
particle filters is to define the sample z (as done above) and to 
define a weight update function p(z, x). In this paper the weight 
is updated according to  

),(1 xzpww i
k

i
k −=     (4) 

where  

∈∧=
=

otherwise
zxtruez

xzp Peb

γ
δ )()(

),(   (5)  

where  > . The function is used, in combination with the 
normalization step, to either increase or decrease the current 
weight of a particle. This means that if edge xe is on the path P 
where an SLA violation was detected (i.e. zb = true) then the 
weight xw increases. Otherwise the particle weight decreases.  

D. Filter classification mechanism 
There is a need to define a strategy for determining the system 
state ak based on the particle filter. That is, determining that a 
specific edge (or several edges) is the root of an SLA violation. 
Traditionally, ak at time k is estimated by a weighted average 
calculation considering all particles in the filter. This is not 
practical when the state space is discrete. Further, there is no 
linear relation between two edges. Also, consider the fact that 
particle filters by definition are multimodal meaning that there 
can be several peaks in the probability function.  

This paper utilizes a simple classification strategy based on 
selecting a hard threshold value for the particle weights. If the 
weight of a specific particle crosses this threshold, and stays 
there for a defined period of time, that particle is selected as the 
fault location and hence ak is assigned that edge identifier 
value.  

For multimodal solutions several edges can be determined 
to be the cause of a fault according to the above classification. 
In such case ak will be a vector of edge identifiers. This is 
briefly discussed in the next section on evaluation.  

VI. EVALUATION  
This paper presents a proof-of-concept evaluation using a 
simple discrete event simulator implemented in Java and 
MATLAB. It is based on simulations and only targets the 
scenario with no more than one simultaneous fault.  

A. Evaluation setup 
The network topology, which is illustrated in Figure 2, is 
represented by an adjacency matrix of Boolean values. The 
network contains 8 MEPs, 25 nodes with switching/routing 
capabilities and 44 edges. The mesh network topology is 
similar to parts of a mobile backhaul aggregation network. 
Dijkstra’s algorithm is used to calculate the path between two 
MEPs. Further, the measurements are simulated by random 
choice of two MEPs (M0 – M7), then that MEP pair is 
associated with a delay measurement that is either below or 
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above a threshold predefined in an SLA. The simulation 
repeats the measurements 1000 times. 

Two scenarios are studied in this evaluation. For scenario 1 
there is no performance degradation in the network during time 
intervals (0, 199), (400, 599) and (800, 1000). Performance 
degradation, in terms of increased delay, occurs in the 
complementary time intervals (200, 399) and (600, 799) on 
edges E19 and E7 in Figure 2, respectively. 

For scenario 2 the network is fault free except in the time 
interval (400, 600). In this case the performance degradation is 
located on edge E12.  

 

 
Figure 2: Simulated network topology. R0 – R24 are nodes with 
routing/switch capabilities while M0 – M7 have measurement capabilities. 

 

The particle filter parameters  and  are set to 5.0 and 
0.975 respectively. These values are chosen based on 
experience from experimenting with the algorithm. However, 
future work will provide a thorough tuning study. A hard 
threshold for classification of the filter is set to 0.25. 
Automation of threshold-based detection is also subject to 
further study. 

B. Evaluation results 
Figure 3 shows 6 snapshots of the probability mass 

distribution as it varies over time for scenario 1. In this case the 
performance degradation is located at edge E19 between time 
200 and 400. At time 200 the probability mass function is, as 
expected, approximately uniformly distributed. A spike 
corresponding to Edge E19 is clearly visible already at time 
250. The intensity increases over time and stays above 0.5. The 
performance degradation disappears at time 400 and the spike 
is almost gone after 50 additional measurement cycles. Based 
on the detection threshold the fault is localized at time 250.  

Performance degradation also occurs between times 600 
and 800 for scenario 1 as described in Section VI.A. Figure 4 
shows 6 similar snapshots of the probability mass distribution 
function and how it varies over this new time interval. In this 
case the degradation is located at edge E7 instead of E19. 
There is a clearly identifiable spike at time 650 and hence the 
fault is localized.   

Figure 5 shows six snapshots corresponding to scenario 2. 
In this case the fault is located on edge E12 in Figure 2. 

Observe that three peaks are visible in the probability mass 
distribution after adding the fault. That is, the solution is 
multimodal in this case. The peaks correspond to edges E30, 
E19 and E12. We need to determine whether such distribution 
reflects real problems on those segments or is an artifact of the 
fault localization method itself. 

Figure 3: The probability mass distribution snapshots for scenario 1 at times 
spanning from 200 – 450.  

Figure 4: The probability mass distribution snapshots for scenario 1 at times 
spanning from 600 – 800. 

Figure 5: The probability mass distribution snapshots for scenario 2 at times 
spanning from 400 – 650. 
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The explanation for the multimodal solution in this case is 
that the subpath E30:E19:E12 does not overlap in a desirable 
way with other path between the MEPs in the topology. In 
other words there are no measurement samples that can 
decrease the weights corresponding to E30 and E19 (knowing 
that the fault is located on E12). As such, the multi-modal 
distribution is due to the combination of scheduling strategy 
and the way of building the particle filter. Observe that the 
algorithm still indicates the part of the network where the fault 
happened. 

VII. DISCUSSION 
This section briefly walks through the advantages of the 
network fault localization algorithm in the light of desired 
properties briefly introduced in Section III and the evaluation 
results in Section VI. 

The algorithm does find the location of faults and 
performance degradations in real time as shown in the previous 
section. That is, property 1 in Section III is covered.  

The algorithm is technology agnostic which makes it 
suitable for multi-layer fault localization. The edges in the filter 
may represent adjacencies at different network layers using 
different technologies. Some edges in the filter could represent 
Ethernet links while others could correspond to IP/MPLS links. 
This relates to property 2 in Section III and we plan to further 
investigate this in the future.   

The algorithm only requires storage for the elements of the 
filter. That is, the model parameters are stored instead of all 
measurement data collected over a period of time. Memory 
requirements are thus linearly dependent on the number of 
edges in the network graph. This targets property 3 in Section 
III.  

The current scheduling of measurements between MEPs is 
trivial; it is randomized thus targeting property 4. However, the 
time to find the location of the fault depends on various 
parameters such as MEP placement and the outcome of the 
random measurement scheduling process.  

Further, the algorithm is simple to implement, effective and 
also computationally efficient. The computational complexity 
of the algorithm actually increases linearly with the number of 
edges in the network. That is, the number of floating point 
operations per filter update is (|G|). This complexity is lower 
than what traditional network tomography solutions propose.    

VIII. CONCLUSIONS AND FUTURE WORK 
This paper presented the foundations for a novel automatic 
network fault localization algorithm based on probabilistic 
inference using particle filtering and distributed active 
measurements. Key aspects of the algorithm include real time 
analysis of data, technology-agnostic operations and 
computational scalability. This paper also presented a first 
small-scale evaluation of the network fault localization 
algorithm. The results show promise.  

For future work, we are considering in-depth assessments 
with additional scenarios and topologies, including multi-layer. 
Further, it is also crucial to develop an enhanced method for 

filter classification and automatic handling of multimodal 
solutions. This includes algorithms for determining whether the 
multimodal solution originates from one fault (i.e. non-
overlapping path problem) or several faults.  
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