
Towards Automatic Network Fault Localization in
Real Time using Probabilistic Inference

Andreas Johnsson and Catalin Meirosu
Research Area Packet Technologies

Ericsson Research
Kista, Sweden

Abstract—This paper describes the foundation of a novel network
fault localization algorithm based on active network
measurements and probabilistic inference. A fault condition
could be an unacceptable large delay or packet loss rate.

The solution is computationally efficient, autonomic in nature
and provides the operator with a probability mass distribution
that indicates the fault location. The probabilistic inference is
based on a discrete state-space particle filter.

We present results from a first feasibility study performed in a
simulated environment. The precise location of single faults is
determined rapidly when measurement paths are partly
overlapping.

Keywords—Autonomous network management, IP networks,
Distributed network measurements, Discrete state-space particle
filters

I. INTRODUCTION
Network planning, provisioning, monitoring and fault
diagnosis are traditional network management tasks often
carried out by highly skilled personnel in network operation
centres. The tasks are complex and involve many hours of
manual labour. For this reason vendors and operators in the
data- and telecommunications industry focus the research and
developing resources on automating tasks and workflows in
order to reduce OPEX.

One particularly time consuming task, which is addressed
in this paper, is to find the cause of performance issues and
other faults in the network. First, the fault or performance
degradation has to be observed. This is done either by a
network user or by the network management administrator.
Trouble tickets are filled in, registered and put in a queue. Then
precise localization of the problem is carried out based on
combinations of ping and traceroute and similar functionality
for Ethernet and MPLS. Anecdotal evidence indicates that this
can take hours or days to resolve [1].

Several measurement frameworks have been proposed in
the academic literature to tackle the challenges discussed
above. Section II.B reviews examples of systems related to this
paper. Potential widespread deployment of such measurement
and monitoring frameworks, at least when operated in pro-
active modes, will generate significant amounts of data.
Significant management efforts are needed for tool

configuration, as well as collecting, storing and interpreting the
data. Further, real-time aspects are most often not even
considered. Several methods and architectures based on
probabilistic modeling and inference have been proposed to
overcome some but not all of these problems.

This paper describes the basic principles for a network fault
localization algorithm based on active network measurements,
real-time probabilistic inference and modelling of the network
state. The algorithm is autonomic in nature and provides the
operator with a fault location probability mass function that
indicates the location of the fault. The required measurements
can be performed by random scheduling thus reducing the
efforts in measurement planning. The analysis itself is based on
a discrete state-space particle filter, sometimes referred to as a
histogram filter. The filter also performs an online computation
with no need for storing results from previous measurements.
The filtering analysis is lightweight from a computational
perspective and does not need detailed knowledge about the
network technology being measured. The paper also presents
initial evaluation results obtained in a simulated environment.

The rest of this paper is organized as follows; Section II
reviews recent advancements on network measurements,
measurement frameworks and network fault localization;
Section III provides the research problems targeted by this
paper; Section IV reviews definitions; Section V describes the
algorithm in detail; in Section VI the algorithm is evaluated in
various scenarios; Section VII discusses the evaluation results
as well as how the research problems are addressed by the
solution; Conclusions are located in Section VIII.

II. RELATED WORK

A. Active network measurements
Active measurements (aka active probing) have long been an
accepted method for determining performance parameters of
packet-switched networks. The basic concept is to transmit
probe packets from a sender towards a receiver. Each probe
packet is time stamped on both sides.

The measurement endpoint (MEP) and measurement
intermediate point (MIP) functionality and capabilities depends
on the network technology deployed. For an IP network, the
MEP functionality can be based on IETF TWAMP [2] [3] or
IETF ICMP [4]. For Ethernet and MPLS networks, the
functionality can be based on ITU-T Y.1731 [6]. For MPLS-

1393978-3-901882-50-0 c©2013 IFIP

TP, MIP and MEP functionality may also be based on IETF
RFC 6371 [23].

These technologies are capable of measuring performance
metrics such as one-way delay, round-trip time, loss, jitter and
available path capacity as defined in ITU-T Y.1540 [5].

B. Measurement frameworks and probabilistic modelling
Several measurement frameworks have been proposed in the
academic literature including examples such as Ripe Atlas
[22], Blanton et al [10] and Boote et al [11]. Building the
particular set of measurements to be triggered at a given
moment in time is not presented in the above articles.
Anecdotic evidence regarding the use of for example the
PerfSONAR framework [11] leads us to believe that designing
a particular set of measurements is a manual process performed
by the network administrator. Also, interpreting the results and
identifying the fault location is usually a manual process where
the administrator is heavily involved.

Varga and Moldován [14] describe a fault management
framework for service-level monitoring in Ethernet services,
based on recommended performance metrics defined in e.g.
ITU-T Y.1731. The framework is split in modules taking care
of connectivity fault management, performance monitoring,
service-level monitoring, and security. The performance
monitoring is based on measurements of delays and drop. The
fault localization is assumed to be performed using manual or
semi-automated checks and processes.

One heavily explored approach for automatically finding
the fault location is network tomography, see Castro et al [18]
for an overview and [17] for a specific example. These
techniques require summations of parameters of interest over
all possible paths throughout a network. Such techniques have
non-linear computational complexity. It is well known that, in
general, network tomography techniques scale badly with the
size of the network. Fast detection and localization of failures
is very difficult when limited resources are available.

Lee et al. [12] present a method for choosing, in a tree
topology, a set of candidate nodes and performing fault
localization using this set of candidate nodes. The complexity
of the heuristic algorithm that returns the minimum subset of
candidate nodes for a tree is O(|N3|), N is the number of nodes.

Fraiwan and Manimaran [13] formulate the finding of
network fault locations as a generalized weighted bipartite
matching problem. The aim is to select a set of overlay
measurements for characterizing a given underlay fault. The
problem is solved with a maximum flow algorithm such as
Ford-Fulkerson. Before starting the analysis, a complete set of
suspect links had to be generated by a network management
system.

Probabilistic management techniques [16] are solutions that
are probabilistic in one or several aspects. For example, the
network state can be represented by a probabilistic model; the
output can be provided in terms of probability density
functions; and the network observations can be based on
sampling rather than deterministic information. These
techniques have been applied to fault localization based on
real-time measurements. For example, Steinert and Gillblad

[15] describe a way of applying overlapping estimators for
latency modeling based on measurements performed between
neighboring nodes. The idea is to use the model for identifying
latency shifts. The problem with this solution is that it only
applies to a path and not a meshed network.

Several methods for network diagnosis and fault
localization based on graph modeling, decision trees and
Bayesian reasoning have been proposed in academic literature.
Examples include the work presented in [19] [20]. In [21] a
decision tree model is used for analyzing latency shifts and
their root cause.

In contrast to the approaches reviewed in this section we
present a solution with low computational complexity and real-
time properties. The solution is designed for mesh and tree
topologies.

III. RESEARCH CHALLENGES
The overarching challenge targeted by this paper is related to
difficulties in localizing faults and performance degradations in
real time in packet-switched networks. The difficulty is further
increased by the fact that there might be multiple packet layers
(Ethernet, MPLS and IP) having overlay topologies controlled
by different independent protocols. In addition, not all MIPs
support performance measurements, and sometimes traffic
related to fault management is filtered out or not responded by
intermediary nodes. A solution must address the following
aspects:

1. Automatically find fault and performance degradation
locations in real time with low-complexity and scalable
calculations

2. Hide complexity introduced by multi-technology and
multi-layer networking

3. Reduce storage requirements for measurement data (i.e.
store as little data as possible)

4. Relax requirements on intelligent measurement scheduling

This paper describes a novel algorithm pursuing all four
aspects. The following sections provide the basic building
blocks and an evaluation to show the algorithm feasibility.

IV. DEFINITIONS
A network is for the purpose of this paper modeled as an
undirected graph G. For simplicity, the graph only allows
maximum one edge between any pair of nodes. (The method
described in this paper is not limited to these simple graphs.)
The network can be any type of packet-switched network based
on technologies such as MPLS, Ethernet and/or IP.

A path between two nodes is defined as an ordered
sequence of edges. The path can be found by deploying
Dijkstra’s shortest path algorithm. It can also be defined by
traffic engineering using network protocols such as RSVP-TE
[8].

Some of the nodes in G have active measurement
capabilities; such nodes are called Measurement Endpoints
(MEPs). Two MEPs exchange test packets from which it is

1394 IFIP/IEEE IM2013 Workshop: 6th Intl Workshop on Distributed Autonomous Network Management Systems (DANMS)

possible to determine performance metrics such as delay, jitter
and packet loss.

Each path between two edge nodes in G is associated with a
service-level agreement (SLA). The SLA is a contract between
the network operator and the network user that defines
performance metrics and their associated threshold values. An
SLA violation occurs if, for example, measurements of delay
are higher than what the SLA dictates.

V. NETWORK FAULT LOCALIZATION ALGORITHM
This section describes the network fault localization algorithm.
We begin with an overview, while the following subsections
discuss detailed aspects of the algorithm, including the
measurement model, the filter and classification mechanisms
for interpreting filter outcome.

A. Algorithm overview
The process of localizing a fault is depicted in Figure 1. Active
edge-to-edge measurements of for example jitter, delay or loss
are performed between MEPs. This is illustrated in the left part
of the figure. The measurements are then fed into the network
management system (NMS) where the network fault
localization algorithm operates. The algorithm infers the
location of a fault as illustrated in the right part of the figure.

Figure 1: Overview of the network fault localization algorithm. Blue lines
correspond to edge-to-edge measurements and the red line is the pinpointed
faulty segment after filter analysis.

The network fault localization algorithm itself operates on a
probability mass distribution which is implemented as a vector
mapping network segment identifiers to probability mass
distribution values (referred herein as weights). The weights
are either increased or decreased, depending on the outcome of
the measurements.

Each measurement result is compared to an agreed SLA for
the path between the two MEPs. The algorithm increases all
weights corresponding to the edges of a path where an SLA
violation is detected. All other edge weights are always
decreased. After each modification of the weights the vector is
normalized. The weights in the vector must sum up to one, in
order to make the weights correspond to probabilities.

All edge probabilities will be fairly equal – and
proportional to the number of edges in G if there is no SLA
violation or fault in the network. If, on the other hand, there is
an edge in the network not meeting the SLA requirements, the

probability associated with that edge will increase over time.
That edge can then be identified by classification of the edge
vector.

B. Network measurement model
The network fault localization problem is modeled using a
discrete state-space particle filter. The basic concept behind
filter-based estimation in general is to track a system state by
repeated sampling [9].

The model for particle filters assumes that the system state
can be modeled as a first order Markov process such that

kkk aga ω+= −)(1 (1)

where ak is system state at time k, k is noise with some
probability density function and g(.) is an arbitrary function.

It is also assumed that consecutive measurements zk of the
system state ak are independent of each other. Further,
measurement of zk shall only depend on ak such that

kkk vahz +=)((2)

where ak is the system state at time k and vk is noise with
some probability density function.

In this paper the system state space is discrete and
corresponds to the set of edge identifiers. Hence the noise term
in (1) will be zero. The fault location (i.e. an edge in G) is
modeled as the system state ak. If there are no faults in the
network the state ak points to a virtual null state. Observe that
there are no general constraints on the functions g(.) and h(.).

Further, a measurement z is defined by a vector <mi, me, P,
b> where mi is the ingress MEP, me the egress MEP, P is the
path between mi and me and b is a Boolean which is either true
or false such that

=
OKSLAfalse

OKnotSLAtrue
b (3)

The interpretation of (3) is the following; if there is an SLA
violation for the given metric then b = true, otherwise b =
false. The elements of z are denoted zmi, zme, zP and zb. Observe
that zP is a sequence of edges between zmi and zme.

The measurements zk corresponds to active measurements
of metrics such as delay, jitter or loss between two MEPs over
a path P. The measurements are independent, as required by
the model, under the assumption that two measurement packets
does not co-exist on the same edge or node at the same time. In
a practical scenario this is the case due to the low measurement
overhead.

C. Particle filter for network fault localization
The particle filter in the solution uses a discrete state space and
evolves in discrete time [9]. Such filters are sometimes referred
to as histogram filters. The algorithm operates on a probability
mass distribution where each discrete state-space point
corresponds to exactly one particle. This paper does not
provide a thorough description of the mathematical foundation

IFIP/IEEE IM2013 Workshop: 6th Intl Workshop on Distributed Autonomous Network Management Systems (DANMS) 1395

of filters; instead the focus is on applicability to network fault
localization.

The basic principle of the particle filter is to construct a
discrete sample based representation of the probability function
for the tracked system state. In a traditional particle filter
multiple copies, particles, of the system state are used. Each
particle is associated with a weight that corresponds to the
probability of that specific particle. The system state estimate is
obtained by calculating the weighted average of all particles. A
new estimate is obtained for each sample.

The solution in this paper contrasts from the traditional use
of particle filters by discretizing the system state space by
assigning each particle to exactly one such discrete point in the
state space (i.e. one edge from the set of edges). The weight of
each particle is updated according to the measurement model;
observe that the particle position is not changed. This is a key
differentiator and is necessary for the purpose of this paper.
The system state ak is determined by classifying the probability
mass function. This step is discussed in Section V.D.

Particle filters are iterative in their nature and operates in
two phases; the prediction and the update phase. In the
prediction phase each particle is updated according to a model
known to govern the system state, if such a model exists.
Further, the update phase recalculates the particle weight based
on measurements, or samples, of the system.

In this paper, a particle x is represented by a vector <e, w>
where e is the edge identifier and w is the particle weight which
is a normalized probability. The elements of x are denoted xe
and xw. Each particle x belongs to the particle set S and the
number of particles in that set is denoted |G| – that is the
number of edges in the graph G.

The prediction phase is modeled as ak = ak-1 for simplicity.
That is, the method does not try to predict where a fault might
occur in the future. Hence there are no requirements on
specifying g(.) in (1). The update phase is based on the
measurement samples from active measurements. The pseudo
code for the algorithm is shown below.
1. Construct initial set S of |G| particles with

equal weight 1/|G|

2. S’ = {0}, i.e. S’ is the empty set

3. For i = 1, …, |G|

a) Set x’i = xi

b) Calculate the new weight w’i = p(z, x’i)
for particle x’i from the set S given
sample z, add Gaussian noise to w’i

c) Update the new particle set S’, S’ =
union(S’, {x’i})

4. Normalize w’i for i = 1, …, |G| (i.e. (w’i) must
be 1 since w’i corresponds to probabilities)

5. If the probability w’i is higher than a threshold
value T, the edge corresponding to x’i is
considered the fault edge

6. S = S’

The algorithm iterates (step 2 – 6) for each new
measurement z. Gaussian noise is added to the weight
component of a particle x’ in order to increase the efficiency of

the algorithm [9]. The mean and standard deviation of the noise
are configurable parameters.

The key to finding the edge causing SLA violation using
particle filters is to define the sample z (as done above) and to
define a weight update function p(z, x). In this paper the weight
is updated according to

),(1 xzpww i
k

i
k −= (4)

where

∈∧=
=

otherwise
zxtruez

xzp Peb

γ
δ)()(

),((5)

where > . The function is used, in combination with the
normalization step, to either increase or decrease the current
weight of a particle. This means that if edge xe is on the path P
where an SLA violation was detected (i.e. zb = true) then the
weight xw increases. Otherwise the particle weight decreases.

D. Filter classification mechanism
There is a need to define a strategy for determining the system
state ak based on the particle filter. That is, determining that a
specific edge (or several edges) is the root of an SLA violation.
Traditionally, ak at time k is estimated by a weighted average
calculation considering all particles in the filter. This is not
practical when the state space is discrete. Further, there is no
linear relation between two edges. Also, consider the fact that
particle filters by definition are multimodal meaning that there
can be several peaks in the probability function.

This paper utilizes a simple classification strategy based on
selecting a hard threshold value for the particle weights. If the
weight of a specific particle crosses this threshold, and stays
there for a defined period of time, that particle is selected as the
fault location and hence ak is assigned that edge identifier
value.

For multimodal solutions several edges can be determined
to be the cause of a fault according to the above classification.
In such case ak will be a vector of edge identifiers. This is
briefly discussed in the next section on evaluation.

VI. EVALUATION
This paper presents a proof-of-concept evaluation using a
simple discrete event simulator implemented in Java and
MATLAB. It is based on simulations and only targets the
scenario with no more than one simultaneous fault.

A. Evaluation setup
The network topology, which is illustrated in Figure 2, is
represented by an adjacency matrix of Boolean values. The
network contains 8 MEPs, 25 nodes with switching/routing
capabilities and 44 edges. The mesh network topology is
similar to parts of a mobile backhaul aggregation network.
Dijkstra’s algorithm is used to calculate the path between two
MEPs. Further, the measurements are simulated by random
choice of two MEPs (M0 – M7), then that MEP pair is
associated with a delay measurement that is either below or

1396 IFIP/IEEE IM2013 Workshop: 6th Intl Workshop on Distributed Autonomous Network Management Systems (DANMS)

above a threshold predefined in an SLA. The simulation
repeats the measurements 1000 times.

Two scenarios are studied in this evaluation. For scenario 1
there is no performance degradation in the network during time
intervals (0, 199), (400, 599) and (800, 1000). Performance
degradation, in terms of increased delay, occurs in the
complementary time intervals (200, 399) and (600, 799) on
edges E19 and E7 in Figure 2, respectively.

For scenario 2 the network is fault free except in the time
interval (400, 600). In this case the performance degradation is
located on edge E12.

Figure 2: Simulated network topology. R0 – R24 are nodes with
routing/switch capabilities while M0 – M7 have measurement capabilities.

The particle filter parameters and are set to 5.0 and
0.975 respectively. These values are chosen based on
experience from experimenting with the algorithm. However,
future work will provide a thorough tuning study. A hard
threshold for classification of the filter is set to 0.25.
Automation of threshold-based detection is also subject to
further study.

B. Evaluation results
Figure 3 shows 6 snapshots of the probability mass

distribution as it varies over time for scenario 1. In this case the
performance degradation is located at edge E19 between time
200 and 400. At time 200 the probability mass function is, as
expected, approximately uniformly distributed. A spike
corresponding to Edge E19 is clearly visible already at time
250. The intensity increases over time and stays above 0.5. The
performance degradation disappears at time 400 and the spike
is almost gone after 50 additional measurement cycles. Based
on the detection threshold the fault is localized at time 250.

Performance degradation also occurs between times 600
and 800 for scenario 1 as described in Section VI.A. Figure 4
shows 6 similar snapshots of the probability mass distribution
function and how it varies over this new time interval. In this
case the degradation is located at edge E7 instead of E19.
There is a clearly identifiable spike at time 650 and hence the
fault is localized.

Figure 5 shows six snapshots corresponding to scenario 2.
In this case the fault is located on edge E12 in Figure 2.

Observe that three peaks are visible in the probability mass
distribution after adding the fault. That is, the solution is
multimodal in this case. The peaks correspond to edges E30,
E19 and E12. We need to determine whether such distribution
reflects real problems on those segments or is an artifact of the
fault localization method itself.

Figure 3: The probability mass distribution snapshots for scenario 1 at times
spanning from 200 – 450.

Figure 4: The probability mass distribution snapshots for scenario 1 at times
spanning from 600 – 800.

Figure 5: The probability mass distribution snapshots for scenario 2 at times
spanning from 400 – 650.

IFIP/IEEE IM2013 Workshop: 6th Intl Workshop on Distributed Autonomous Network Management Systems (DANMS) 1397

The explanation for the multimodal solution in this case is
that the subpath E30:E19:E12 does not overlap in a desirable
way with other path between the MEPs in the topology. In
other words there are no measurement samples that can
decrease the weights corresponding to E30 and E19 (knowing
that the fault is located on E12). As such, the multi-modal
distribution is due to the combination of scheduling strategy
and the way of building the particle filter. Observe that the
algorithm still indicates the part of the network where the fault
happened.

VII. DISCUSSION
This section briefly walks through the advantages of the
network fault localization algorithm in the light of desired
properties briefly introduced in Section III and the evaluation
results in Section VI.

The algorithm does find the location of faults and
performance degradations in real time as shown in the previous
section. That is, property 1 in Section III is covered.

The algorithm is technology agnostic which makes it
suitable for multi-layer fault localization. The edges in the filter
may represent adjacencies at different network layers using
different technologies. Some edges in the filter could represent
Ethernet links while others could correspond to IP/MPLS links.
This relates to property 2 in Section III and we plan to further
investigate this in the future.

The algorithm only requires storage for the elements of the
filter. That is, the model parameters are stored instead of all
measurement data collected over a period of time. Memory
requirements are thus linearly dependent on the number of
edges in the network graph. This targets property 3 in Section
III.

The current scheduling of measurements between MEPs is
trivial; it is randomized thus targeting property 4. However, the
time to find the location of the fault depends on various
parameters such as MEP placement and the outcome of the
random measurement scheduling process.

Further, the algorithm is simple to implement, effective and
also computationally efficient. The computational complexity
of the algorithm actually increases linearly with the number of
edges in the network. That is, the number of floating point
operations per filter update is (|G|). This complexity is lower
than what traditional network tomography solutions propose.

VIII. CONCLUSIONS AND FUTURE WORK
This paper presented the foundations for a novel automatic
network fault localization algorithm based on probabilistic
inference using particle filtering and distributed active
measurements. Key aspects of the algorithm include real time
analysis of data, technology-agnostic operations and
computational scalability. This paper also presented a first
small-scale evaluation of the network fault localization
algorithm. The results show promise.

For future work, we are considering in-depth assessments
with additional scenarios and topologies, including multi-layer.
Further, it is also crucial to develop an enhanced method for

filter classification and automatic handling of multimodal
solutions. This includes algorithms for determining whether the
multimodal solution originates from one fault (i.e. non-
overlapping path problem) or several faults.

REFERENCES
[1] Ari Banerjee. “Assurance of Real-Time Cloud Services Requires

Insights From Correlated Content, Sessions & IP Topology Planes”.
White paper from Heavy Reading, August 2012.

[2] K. Hedayat et al. “A Two-Way Active Measurement Protocol
(TWAMP)”. IETF RFC 5357, October 2008.

[3] S. Baillargeon et al. “Ericsson TWAMP Value added octets”. IETF RFC
6802, November 2012.

[4] J. Postel. “Internet Control Message Protocol”. IETF RFC 792,
September 2001.

[5] International Telecommunication Union (ITU-T) Recommendation
Y.1540, March 2011.

[6] International Telecommunication Union (ITU-T) Recommendation
Y.1731, July 2011.

[7] R. Braden et al. “Resource Reservation Protocol (RSVP)”, IETF RFC
2205, September 1997.

[8] D. Awduche et al. “RSVP-TE: Extensions to RSVP for LSP tunnels”.
IETF RFC 3209, December 2001.

[9] A. Doucet, A. M. Johansen. ”A Tutorial on Particle Filtering and
smoothing: fifteen years later”. Technical report, Department of
Statistics, University of British Columbia, December 2008.

[10] E. Blanton, S. Fahmy, S. Banerjee. “A Framework for an On-Demand
Measurement Service”. Technical report at University of Purdue
University, USA.

[11] B. Tierney, J. Boote, E. Boyd, A. Brown, M. Grigoriev, J. Metzger, M.
Swany, M. Zekauskas, Y. Li, and J. Zurawski. “Instantiating a Global
Network Measurement Framework”. LBNL Technical Report LBNL-
1452E, January 2009.

[12] P. Lee, V. Misra, D. Rubenstein. ”Toward Optimal Network Fault
Correction via End-to-End Inference”. In proceeding of INFOCOM,
USA, May 2007.

[13] M. Fraiwan, G. Manimaran. "Localization of IP Links Faults Using
Overlay Measurements," IEEE International Conference on
Communications, May 2008.

[14] P. Varga and I. Moldován. “Integration of Service-Level Monitoring
with Fault Management for End-to-End Multi-Provider Ethernet
Services”. In IEEE Transactions on Network and Service Management,
2007.

[15] R. Steinert, D. Gillblad. “Long-term adaptation and distributed detection
of local network changes”. In Proceedings of IEEE GLOBECOM, USA.
2010.

[16] A. G. Prieto, D. Gillblad, R. Steinert, A. Miron. ”Towards Decentralized
Probabilistic Management”. In IEEE Communications Magazine, July
2011.

[17] T. Rizzo et al. “High quality queuing information from accelerated
active network tomography”. In Proceedings of the 4th International
Conference on Testbeds and research infrastructures for the
development of networks & communities (TridentCom '08), 2008.

[18] R. Castro, M. Coates, G. Liang, R. Nowak and B. Yu, “Network
Tomography: Recent developments". In Statistical Science, 2004.

[19] G. J. Lee, “CAPRI: A Common Architecture for Distributed
Probabilistic Internet Fault Diagnosis”, Ph. D. dissertation, CSAIL-MIT,
Cambridge, MA, USA, 2007.

[20] F. J. Garcia-Algarra, P. Arozarena-Llopis, S. Garcia-Gomez, and A.
Carrera-Barroso, "A Lightweight Approach to Distributed Network
Diagnosis under Uncertainty", In Proceedings of Intelligent Networking
and Collaborative Systems, Nov 2009.

[21] Y. Zhu, B. Helsley, J. Rexford, A. Siganporia, and S. Srinivasan,
“LatLong: Diagnosing Wide-Area Latency Changes for CDNs”. In IEEE
Transactions on Network and Service Management, September 2012.

[22] RIPE Atlas, URL (October 20, 2012) https://atlas.ripe.net/
[23] I. Busi et al. “Operations, Administration, and Maintenance Framework

for MPLS-Based Transport Networks”. IETF RFC 6371, Sep 2011.

1398 IFIP/IEEE IM2013 Workshop: 6th Intl Workshop on Distributed Autonomous Network Management Systems (DANMS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

