Image Transfer Optimization for Agile Development

Alexei Karve, Andrzej Kochut
IBM T.J. Watson Research Center
1101 Kitchawan Road, Route 134, Yorktown Heights, N.Y. 10598
{karve,akochut} @us.ibm.com

Abstract—Cloud computing is becoming a common delivery
model for IT services. Development and testing of applications
and services is usually conducted on a development cloud envi-
ronment often within customer premises and deployed in stages to
a production cloud. Agile development process integrates devel-
opment and deployment of IT systems and requires frequent and
low cost synchronization between development and deployment
cloud environments. This article proposes and evaluates virtual
machine transfer algorithm based on image redundancy that
allows to reduce bandwidth and time required to transfer specific
images from development to production sites. It also explores
how a typical image library, including public and private images,
evolves over time and what impact it has on potential gain from
the proposed algorithm. An analytical model is also proposed
that allows to quantify degree of saving from using the algorithm.
Evaluation shows up to 80% reduction in terms of transfer time
and network bandwidth usage.

I. INTRODUCTION

Recent years brought the emergence of a new IT deliv-
ery model called Cloud Computing. It is projected [10] to
significantly grow throughout next decade becoming one of
the key IT delivery models. Customers utilize various types
of services offered by specialized providers [12], [2], [16]
ranging from Infrastructure-as-a-Service (IaaS), which offers
remote access to computing resources such as virtual machines
(VMs) and storage, to Software-as-a-Service (SaaS) which
offers fully managed software functionality. Sharing the labor
costs along with hardware, software and system management
is expected to lead to significant reduction in compute cost
both for individual users and enterprises. Compute Cloud also
offers possibility to create new generation of IT services that
can be easier integrated and delivered. It extensively leverages
both virtualization technology [6], [11], [21], [1], [25], [5] and
broad scale automation to minimize the delivery costs while
keeping high quality of service.

At the same time, adoption of agile or iterative devel-
opment model (e.g., Agile [23], DevOps [24]) means each
service release causes a smaller change but occurs more
often. This creates a smooth rate of progressive application
changes requiring fast virtual machine image transfer between
development and production sites for each release. Therefore,
streamlining transfer of VM images between development and
production cloud becomes critical to efficiency of the agile
development process.

Both our studies [14] and those of other authors [13]
show that there is significant degree of similarity across
images in virtual machine libraries. It is due to sharing
of software packages, such as operating system libraries,

978-3-901882-50-0 (©2013 IFIP

software packages, configuration settings, as well as, in many
cases, user data that can be replicated in multiple images.

Motivated by the findings mentioned above, this paper
proposes an efficient approach for transferring images
between development and production sites that significantly
reduces amount of network bandwidth consumed and also,
as a consequence, reduces the time required to perform
a transfer. The approach uses content similarity in image
libraries to avoid transferring redundant data. We propose
a set of algorithms that identify image similarity and allow
efficient computation of the similarity matrices that are later
used in deciding which data need to be transferred and
which can be reused from other images already present at
the target site. We have implemented the system agents as
well as transmission manager tracking the state of the system
in terms of how the images overlap and which images are
present at each of the sites. The system reconstitutes images
at production site by copying locally available image blocks
and obtaining the remaining data from the development
site. Moreover, we have formulated an analytical model that
allows to quantify the degree of gain from the proposed
algorithm and illustrate how it varies as a function of key
system parameters, such as similarity of images within one
development phase and across the phases, relative popularity
of images (in terms of likelihood of transfer), and also
fraction of images transferred in each development phase.

The remainder of this article is organized as follows.
Section II introduces the architecture of the system as well
as content de-duplication and image transfer algorithms. Sec-
tion III presents results of the image library evolution study.
Section IV formulates, validates, and explores analytical model
of the system. Section V presents related work. Finally,
Section VI concludes.

II. SYSTEM ARCHITECTURE AND ALGORITHMS

Fig. 1 shows the system architecture with development data
center and the production data center. The development data
center shows n images Iy to [, and the production data
center shows a subset m of these images I; to I,,. The
Logical Image Library represents the complete set of images in
development and production data centers. Each distinct image
in the library is identified by an uuid. Each data center has a
subset of images from the Logical Image Library accessible
locally. An image from this subset can be quickly instantiated
on hypervisors within the data center. Images that need to

554

| Logical Image Library]

Dev. Image Library] Prod. Image Library |

Development Production

| | I I L L] '

1 2 pen n
Tracker
ImagelList, ClusterList

Agent
ImageAvailabilityList
|

[J

Fig. 1. Virtual machine image transfer system architecture.

be instantiated in production but are not locally available in
production data center need to be copied from development
data center(s). The development data center has an Agent
that is used for communication and transferring blocks of
data between development and production data centers. The
agent has direct access to the image library subset on it’s
data center. The Agent in production data center takes on the
role of Tracker. It maintains the list of images, the overlap of
blocks between images (clusters) and the status of images on
development and production data centers.

As the transfer between development and production sites
progresses, the image status can be: Available, InProgress,
Complete, Verified or Reconstitutable. The association
of images to data centers on which an image is Available
is maintained by the Tracker. Available status implies the
entire image content is present in the data center and can
be used to create virtual machine instances and also to
reconstitute other images in that data center. InProgress,
Complete and Verified are intermediate states before an
image becomes Awailable. Reconstitutable means that the
image can by reconstituted using images present locally in the
target data center. Image verification is done by maintaining an
xor of non-zero block checksums computed as the blocks are
received by the target data center in non-sequential manner.
This eliminates the need to wait for the image to become
Available to start verifying it.

Cluster Representation

Clusters are meta-data representing sets of blocks that
are common across a subset of images where each block
is represented by its hash value. Images are decomposed
into clusters. We represent clusters with a similarity matrix.
TABLE 1 shows an example of a similarity matrix for a
library consisting of 10 images and 20 clusters. The images
are numbered Image-0 to Image-9. The similarity matrix has
been divided into two sections: the upper part is the set of
10 unique clusters CL-01 to CL-10 (each containing blocks
present in only one of the images) while the lower part is that
for shared clusters. The rightmost column shows cluster sizes
(in MB). For example, Image-9 consists of clusters CL-01, CL-
11, CL-14 and CL-20. In order to compute the size (in terms
of unique blocks) of the image cluster sizes are added (since
they are non-overlapping). The total size of unique blocks

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

Cluster Image index Cluster

Id 9 8 7 6 5 4 3 2 1 0 size MB
CL-01 1 0 0 0 0 0 0 0 0 0 238
CL-02 0 1 0 0 0 0 0 0 0 0 314
CL-03 0 0 1 0 0 0 0 0 0 0 182
CL-04 0 0 0 1 0 0 0 0 0 0 256
CL-05 0 0 0 0 1 0 0 0 0 0 476
CL-06 0 0 0 0 0 1 0 0 0 0 458
CL-07 0 0 0 0 0 0 1 0 0 0 317
CL-08 0 0 0 0 0 0 0 1 0 0 358
CL-09 0 0 0 0 0 0 0 0 1 0 70
CL-10 0 0 0 0 0 0 0 0 0 1 303
CL-11 1 0 0 0 1 0 0 0 0 0 419
CL-12 0 0 0 1 0 0 0 0 1 0 141
CL-13 0 0 0 1 0 0 1 0 0 0 174
CL-14 1 1 0 1 0 0 0 0 0 0 187
CL-15 0 0 0 0 1 0 1 0 0 0 319
CL-16 0 0 0 0 0 0 1 0 1 0 294
CL-17 0 1 0 0 0 0 0 0 1 0 440
CL-18 0 0 0 1 0 1 0 0 0 0 84
CL-19 0 0 1 1 0 0 0 0 0 0 116
CL-20 1 0 0 0 0 0 0 0 1 0 260

TABLE I

EXAMPLE IMAGE SIMILARITY MATRIX.

to reconstitute Image-9 is 238M B + 419M B + 187TM B +
260M B 4 444M B = 1548 M B. Actual reconstituted size of
the image may be larger because of internal redundancy, i.e.
the blocks with same hash occur multiple times within the
image.

For simplicity, we refer to each cluster uniquely with a bitset
of its constituent images. For example the CL-14 is referred to
as cluster 7701000000 (implementation uses uuid). The least
significant bit in the cluster bitset is for Image-0 on the right
and the most significant /mage-9 on the left. The cardinality of
this cluster is 3 because three of the bits in this cluster are 1.
Thus Image-6, Image-8, and Image-9 share the blocks present
in this cluster. The number of times the blocks appear in the
image could be different and the block positions may also be
different within the images. Each block in the cluster must be
present at least once in each of the three images.

When an image is added, the cluster name is extended with
the most significant bit on the left. When an image is removed,
the higher image indexes are shifted to the right. A cluster does
not store or copy the actual data from the image. Instead it
only contains the shal hashes and references to block numbers
within the image.

Each cluster is persisted using a cluster blocks meta file
ClusterFile consisting of records containing block numbers
of distinct shals shared by images. Each image may contain
one or more blocks with the same shal in different positions
within the image. Each record can have different number of
blocks depending on how many blocks have same shal in the
image file. We store the total number of blocks, optional image
indexes to reference the start position of the blocks and lastly
the actual list of block numbers in the corresponding images.

Key Algorithms

The main algorithms for cluster maintenance on Tracker are
the clusterize_image and declusterize_image that update
the similarity matrix that is persisted in the cluster_list. The
add_image is used to add an image to a data center. When a
new image is added, add_image calls the clusterize_image
that updates the clusters. The remove_image is used to
remove an image from a data center. When a particular image

555

is removed from all data centers, it is declusterized. The
make_reconstitutable creates Cluster Images on source data
centers for clusters not available on target data center and
copies them to the target data center for later reconstitution.
The reconstitute_image is used to reconstitute the target
image from locally available images and can be invoked on
the data center where the image status is Reconstitutable.
Create Content Digest Each data block is identified by
its fingerprint computed from a collision resistant hash of
the content of the data block. The method content_digest
computes the shal hash for each block in the new virtual image
and creates the block list sorted in ascending order of shal
codes. We could use the sha-256 or sha-512 as stronger hash at
the expense of higher storage. We create the content digest for
every Image added to the Logical Image Library. Each record
contains the shal, number of blocks with this shal in the image
and the list of block numbers. The number of blocks specifies
the internal redundancy of a block, i.e. the number of times the
same block appears within the image. The block numbers are
the block positions in the image. The create_cluster creates a
singleton cluster block file containing all the blocks positions
for the single image.
Clusterize Image The method clusterize_image in Fig. 2 is
used to add a new image to the cluster meta-information. It
splits existing clusters, adds new block positions to existing
clusters to include the image being added and creates a new
singleton cluster. We compare the list of shals of blocks in
image being added (returned by content_digest) with the
shals in each cluster in current cluster list stored on Tracker.
If no blocks from the image are present in a cluster,
then we update the cluster to 0Cluster, where O signifies
image position in Cluster BitSet. Value of 0 means none of
the blocks from the 0Cluster are present in the Image. If
there are 1 or more blocks in common with the cluster, it
results in splitting each cluster ¢ into two smaller clusters,
first 1Cluster is a subset of blocks from the image that are
present in the cluster (returned by intersect_cluster) and the
second 0Cluster remaining blocks in the cluster (returned by
remove_cluster that removed from c the shals belonging to
the 1Cluster). When the 1Cluster is created, the image id
and block numbers from the content_digest of the image
are added to the 1Cluster for the shal present in the image
and cluster c¢. We add the remaining shals from cluster to the
0C'luster. It is possible that all blocks in cluster are present
in the image in which case only the 1Cluster is created. We
remove the shals belonging to the 1Cluster from the shals
of the image being added nc and continue the process until
all clusters are handled. We create a new singleton cluster for
remaining shals in nc.
Declusterize Image The method declusterize_image in
Fig. 3 removes a given image from the library and results in
combining clusters. We delete the singleton cluster if present.
Then consider three checks for the clusters using the bit
position of the Image to be deleted. First step, we look for
cluster_pair(c0,cl) - pairs of clusters containing exactly
the same images except the image index being deleted. We

556

combine these two clusters into a single cluster by merging
the shals using declusterize_merge. We remove the imageld
and blocks of the image being deleted from the new Cluster
with new bitset with Imageld removed. Second step, if the
cluster_pair is not found, then we look for the clusters con-
taining the image. For every such cluster, we remove the block
numbers of the image being deleted and create a new cluster
with image index removed using the declusterize_image.
Third step is the rest of the clusters that do not contain the
image being deleted. For these clusters, only the image index
is deleted using declusterize_imageindex, there are no shals
for blocks to remove because none were present in these
clusters. At the end of these three conditions we now have
the list of clusters with the Imageld removed.

Make an Image Reconstitutable The make_reconstitutable
in Fig. 4 extracts required clusters. It transfers the cluster im-
ages to target data center and updates the similarity matrix with
the added cluster image information using clusterize_image.
The select_image allows cluster image data to be selected
from production data center if available, else from develop-
ment data center. If there is internal redundancy within the
cluster, the blocks are copied only once over the wire.
Reconstitute an image The reconstitute_image in Fig. 4
generates the target Image file of correct size. The image over-
lap meta-data is used to determine mappings of blocks from
source image to those in the target image being reconstituted. It
retrieves the source block data from Cluster Image or Standard
Image and writes the data to the target block number. The
reads and writes all happen on the target data center because
the make_reconstitutable has already saved required data to
target data center in the form of Cluster Images. We have two
ways to reconstitute the target image. In one case, it produces
a sparse file where we seek and write only the blocks on the
target image. In other case we sort the blocks are write them
out into a stream filling holes with zeroes.

Empirical Evaluation

We have implemented the algorithms in C++ and Java
and performed extensive experiments with transferring images
between two data centers in IBM SmartCloud Enterprise [12]
(Raleigh, USA acting as production site and Ehningen, Ger-
many serving as development site). Experiments used subsets
of images from two commercial libraries: VMWare Market-
place [22] containing 77 images and the IBM SmartCoud En-
terprise [12] containing 90 images. The image sizes range from
800MB to 100GB and contain Linux and Windows operating
systems and wide range of software packages. In case of IBM
these were IBM Rational tools, Information Management tools
(e.g., DB2 versions), Websphere Application Server, etc. In
case of VMWare Marketplace we have used free open source
software stacks from Bitnami [3] and Turnkey [20].

We have performed over 2000 image transfers and reconsti-
tutions across the two data centers and verified the correctness
and performance of the algorithms. For the SmartCloud Enter-
prise Image library with 100 images with size 1.75TB, a block
size of 4KB and SHA1 with 20 bytes as the hash code, the

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

let newlImg be the Image being clusterized
let oldC'L represent the list of clusters for
the current set of images in the library

function clusterize_image(newImg,oldC' L)
let newCL=0);
// Create new cluster representing
/I image being added
let nc=content_digest(newImg);
for each ¢ in oldCL do
/I Cluster with intersecting content
let 1Cluster=intersect_cluster(c,nc);
newCL.add(1Cluster);

// Cluster with non-intersecting content
let 0C'luster=remove_cluster(c,1Cluster);
newCL.add(OCluster);

// Remove processed content

nc = remove_cluster(nc,1Cluster);
end for;
/I Add singleton cluster representing
// content unique to the new image
newCL.add(nc);
return newCL;

let image be Image to be declusterized
let oldC L represent the list of clusters for
the current set of images in the library

function declusterize_image(image,oldC' L)
Delete the singletonCluster for the image;
let newCL=();
for each cluster_pair(cO,cl) in oldCL do
oldCL.remove(cl);
oldCL.remove(c0);
let newc=declusterize_merge(c0,c1)
newCL.add(newc);

end for;

for each c in oldCL where image € ¢ do
oldCL.remove(c);
let newc=declusterize_image(c,image);
newCL.add(newc);

end for;

for each ¢ in oldCL where image ¢ ¢ do
oldCL.remove(c);

let ¢ be identifier of the image
let S be Similarity Matrix
let dc be target Data center
procedure make_reconstitutable(t, .S, dc)
for each cluster ¢ in S* do
let sourcelmage=select_image(dc,c);
if sourcelmage is not present on dc then
extract ClusterImage from Sourcelmage;
transfer ClusterImage to dc;
clusterize_image(sourcelmage);
end if;
end for;
end procedure;
procedure reconstitute_image(t, S, dc)
let f=create(t);
for each cluster ¢ in S* do
let srcImg=select_image(locDC,c);
cf = open(srcImg);
for each target block b in c,srcImg do
cf.seek(b.srcBlockNr);cf.read(blockData);
f.seek(b.trgtBlockNr);f.write(blockData);

let newc=declusterize_imageidx(c,image); end for;

newCL.add(newc); close(cf);
end for; end for;
return newCL; close(f);

end function; end function;

end procedure;

Fig. 2. Image clusterization algorithm. Fig. 3.

meta-data storage size is 6.45GB. Thus the storage overhead is
less than 0.4%. We have measured the overlap across images
in terms of unique versus total of 4KB blocks. IBM library
has 13% of unique blocks, while VM Ware Marketplace library
25% of unique blocks therefore giving significant opportunity
for optimization. The measured gain (versus standard rsync-
based transfer) in terms of network bandwidth consumption
and transfer time is typically on the order of 50% and can be
as high as 80%.

III. IMAGE LIBRARY EVOLUTION IN DEVOPS PROCESS

In order to perform a comprehensive analysis of poten-
tial gain from using the proposed algorithms, and also to
guide the development of the analytical model presented
in Section IV, we have explored (based on IBM Research
Compute Cloud [7]) how the development libraries evolve over
time. The library content evolution has significant effect on
efficiency of redundancy based optimization. Image libraries
evolve over time for two reasons: 1) changes to public (cata-
log) images, and 2) changes to private (user created) images.
The remainder of this section discusses the latter since it
is the primary source of image variation in a development
environment context.

Fig. 5 shows an example image evolution depicting the
iterations of base and development images. We show three
base images: Redhat, Suse and AIX each with few itera-
tions where updates were installed on the images. We study
evolution of images in IBM Research Compute Cloud [7]
over a 2 year period where total of 11,801 images were
created. Out of these 670 images were were shared for use
on production data center. We found 264 unique paths starting
from base (root) images and diverging later. The longest path
had 30 iterations. For illustration, the figure shows two paths
of development images called App-A showing 16 iterations
and App-B showing 24 iterations. Both these paths have 7

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

Image declusterization algorithm.

Fig. 4. Image reconstitution algorithms.
Image Iterations
RHEL | 120 | 121 | 122 | 1-23 |
SLES | 130 [131 [132 [133 [34 |
AIX 1-40 | 1-41 |
Ao 120 | 1-385 | 1-387 | 1-1507 | 1-2068 | 1-2701 | 1-2746 | 1-2747
e 1-2748 | 1-2750 | 1-2752 | 1-2759 | 1-2796 | 1-2801 | 1-9397 | 1-9636
1-20 | 1-21 [1-1479 [1-2067 | 1-2098 | I1-2106 | 1-2133 | 1-2206
App-B | 1-2239 | 1-2262 | 1-2350 | 1-2354 | 1-2360 | I-2361 | 1-2362 | 1-2363
1-3132 | 1-3136 | I1-4152 | 1-4376 | 1-4551 | 1-4911 | 1-5330 | I-8858

Images made public for production use
Base images and images used for development and testing

Fig. 5. Image Evolution.
[Tmage [Tter-1 [Tter-2 [Tter-3 [Tter-4 | Tter-5 [Tter-6 [Tter-7 |

App-A [1-2068 | I-2701 | I-2746 | I-2752 | 1-2759 | 1-2796 | 1-2801
Date 06/25 10/08 10/14 10/14 10/15 10/19 10/20
2010 2010 2010 2010 2010 2010 2010

Size GB 4.1 6.6 6.9 7.0 8.2 8.2 8.2
Overlap 93.8 96.3 96.3 96.2 96.3 96.6
New 73.5 8.7 3.7 14.9 34 3.7
App-B [1-2067 | 1-2262 | I-2363 | I-3136 | I-4551 | I-4911 | I-5330
Date 06/25 08/04 08/16 12/02 03/22 04/11 05/03
2010 2010 2010 2010 2011 2011 2011

Size GB 4.1 45.0 46.0 46.0 49.0 50.0 56.0
Overlap 89.3 98.6 97.4 98.4 97.8 97.0
New 1471.4 1.5 3.6 4.5 2.1 4.6

Fig. 6. Image Timeline for App-A and App-B public iterations.

images made public shown in Fig. 6 that also shows the sparse
image size in GB. Full size for each image was 72GB. We
computed the clusters required to separately represent each
path. For App-A image, number of Unique Blocks in clusters
= 1,466,251 with 5.59GB distinct image data is sufficient to
represent this library requiring S9MB overhead. Top 12 cluster
sizes in GB were 1.36, 1.24, 0.54, 0.31, 0.31, 0.31, 0.31,
0.30, 0.29, 0.29, 0.11, 0.01. For App-B image, Number of

557

Parameter Description
L Number of image types in the library
P Number of phases
T Number of image transfers in one phase
oaf Image provisioning frequency for image type 4 in phase p
St Image similarity matrix for image type ¢
Ff ¢ Random variable representing fraction of image available
at the production site upon image 4 transfer
assuming it is transfer ¢ in phase p

TABLE 11
MODEL’S PARAMETERS.

Unique Blocks in clusters = 6,807,062 with 25.97GB distinct
image data sufficient to represent this library requiring 308MB
overhead. Top 15 cluster sizes in GB were 14.15, 3.17, 1.38,
0.93, 0.89, 0.82, 0.79, 0.79, 0.68, 0.47, 0.37, 0.29, 0.27, 0.18,
0.11. Fig. 6 shows the date when the image was created, image
size in GB, common blocks and new blocks as percentage
change for each iteration. This shows greater than 96 percent
overlap of clusters with previous iterations. New data results
in new clusters that are carried forward in remaining iterations.
The App-B also has large internal redundancy when the size
grows from 4.1GB to 45GB in Iter-2. Most of this data is
represented by the 14.15GB cluster.

IV. ANALYTICAL MODEL

The objective of analytical modeling is to find out what
fraction of content required to reconstitute an image at the
production site can be obtained locally based on the content
of other images present at that site. There are several factors
affecting this quantity, but the key one is how rapidly is
the set of images evolving in terms of its content similarity.
Intuitively, if the library changes very frequently, i.e., new
images are being added or existing images are being updated
with significant fraction of new content, then the gain from
using the proposed transfer scheme will diminish. On the other
hand, if the library image set is more stable, and the number
of transfers between the development site and the production
site is high, the potential gain will increase.

Our prior work [14] focused on modeling potential gain
from using image de-duplication while provisioning virtual
machine instances. In that case the image library was assumed
to be static, therefore the system was in steady-state from the
perspective of image content overlap and also provisioning
frequencies. Our current analysis extends that model for case
of libraries that evolve over time. We use the extended
model to quantify the potential gain from redundancy-based
synchronization of development and production sites. The key
parameters and variables used in the model are presented
in TABLE II. Consider a set of virtual machine images in
existence throughout a longer development/deployment cycle,
for example, 1 year. Denote the number of such images as L.
Divide the time into development phases, usually related to
a one or two week “sprint” delivering specific functionality.
Of course, at any particular time not all of the images are
in existence - for example, at the beginning of the develop-
ment cycle only some initial images are available. The set
of available images grow throughout the cycle. We model

558

this behavior as a time-varying image popularity probability
vector. Precisely, denote transfer probabilities of an image type
0,...,L during phase p by of. Note that for a given
phase p Zle af = 1. However, as the time evolves, the
probabilities change reflecting increased demand for newly
added images and updated images, while decreasing demand
for the older ones that are no longer used in the development
cycle.

Similarly as in our prior model [14], an image ¢ consists of
n; non-overlapping clusters si for k =1,...,n;. In addition,
for each image i we have a similarity matrix S° of size n;xL
such that:

Si, = {

Denote by FP' € [0, 1] fraction of blocks required to rebuild
image ¢ that are available in the production site assuming it
is transfer number ¢ in phase p. We are interested in expected
value of F?'*, denoted by E[FP"]. Let A;”" denote the event
that upon request to transfer image of type ¢, assuming it is
transfer ¢ in phase p, the production site contains cluster si.
Then:

o~ Ikl P(AR™)
E[Fipi]zz L [|ki (2
el 1=1 |81

’L’:

1 s} is part of image [
0 otherwise

ey

with |s| being size of cluster s. _

The conditional availability P(A}”") can be computed
as complement of not choosing a given image in all prior
transfers (therefore it is not available in production) for images
that overlap with image being transferred. Precisely:

L p—1
P =1 [[t =) [T —a)"
B
Spa=1

3)
Model Validation

We have validated the model by comparing the results
with discrete event simulator. The simulator is implemented
in C++ and simulates image transfers between development
site and the production site. It keeps track of which images
have been transferred so far, randomly selects next image
to be transferred based on image popularity in the current
phase, and outputs fraction of the image overlapping with other
images that are already in production site. The parameters
tested included varying degrees of similarity across images,
number of images transferred within a phase ranging from
1 to the number of images added in this phase, and varying
degrees of image popularity evolution.

Empirical Evaluation and Conclusions from the Model

We have examined the effect of key parameters on the
fraction of available content in production site when image
transfer is requested. Fig. 7a shows effect of ratio of shared
to unique content in the library for five different levels of
image transfer fractions. Content availability at the production

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

0.8

" Similarity within 0.29, across 0.02 ———

Similarity within 0.23, across 0.08
Similarity within 0.17, across 0.14

Similarity within 0.14, across 0.17
Similarity within 0.12, across 0.19

0.6

0.4

0.2

Expected fraction available locally

- " Fraction iﬁwages transferred 0.20 —— = " Fréciion‘imagés transferred: 0.0 ——
® Fraction images transferred 0.4 T Fraction images transferred: 0.40 -
8 1 Fraction images transferred 0.60 8 08| Fraction images transferred: 0.60 -
o Fraction images transferred 0.80 - © y Fraction images transferred: 0.80 -
= 08 Fraction images transferred 1.0) Fraction images transferred: 1.00 -
K T 06
© ©
s 06 5
B T 04t
£ o4 . £
3 3
o S 02¢F
2 02 1 g
b3 =
w w

0 0

0 0.5 1 1.5 2 25 3 35 4 0 1 2 3 4

Ratio of shared to unique content

(a) Effect of unique fraction

Fig. 7.
effect of number of transfers within a phase (c).

site grows with the degree of content sharing across the
library. It also grows with the number of image transfers
per development phase. The more the transfers, the more
of the content becomes available for reconstitution. Fig. 7b
depicts effect of ratio of similarity within a phase to similarity
across phases. The more shared across the phases, the more
opportunity to find local content. This reflects the difference
between the situation when newly added images have a lot or
little in common with images created in previous development
phases. Content availability is strongly affected by number of
images transferred. Finally, Fig. 7c shows effect of fraction
of images transferred in each phase (among the ones added
in that phase). That has primary impact on the availability of
content. Intuitively, frequent transfers reap increased benefits
because the odds of finding required content in production
increase.

V. RELATED WORK

The important area of related work is redundancy detection
allowing to identify parts of virtual machine images that are
shared between multiple images in the library. A very good
example of such approach is Mirage system [18]. Exploiting
image similarity to enable version control for Virtual Machine
snapshots is explored in [19]. A very good discussion of the
redundancy elimination can be found in [8]. Other interesting
sources on this topic are [9], [4]. The proposed approach uses
block level content de-duplication and focuses on mechanisms
to optimize the representation of image redundancy for effi-
cient transfers. It also focuses on studying the efficiency of
the virtual machine transfer rather than de-duplication itself.
VMTorrent [17] uses unmodified BitTorrent technology to
improve virtual appliance distribution. It allows downloading
of the content from peers that already have it therefore
reducing download time and also load on the systems of virtual
appliance publisher. However, VMTorrent does not leverage
similarity across images. Therefore, in common case of sig-
nificantly redundant virtual images, it provides much smaller
gain in terms of both download time and consumed bandwidth
than the approach proposed in this paper. LiveDFS [15] is a
live deduplication file-system that reduces the storage space
by removing redundant data copies.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

Ratio of similarity within a phase to across phases

(b) Effect of in-phase similarity

0
5 6 7 8 9 01 02 03 04 05 06 07 08 09 1

Fraction of images transferred

(c) Effect of number of transfers

Analytical model insights: effect of fraction of unique content (a), effect of similarity among images within a phase versus across phases (b), and

VI. CONCLUSIONS AND FUTURE WORK

We have presented and evaluated a virtual machine transfer
system that uses similarity across virtual machine images to
minimize amount of data that has to be transmitted between
development and production site during DevOps agile develop-
ment cycle. The clusterization and declusterization algorithms
are validated. The key parameters affecting the performance
are degree of similarity among the virtual machines, within and
across development phases, the fraction of VMs transferred
within each phase, and relative popularity of images (in terms
of likelihood of transfer). The system is implemented in a
testbed and also an analytical model is formulated, validated
and explored. We have also studied image libraries to explore
the similarity levels as well as typical time dynamics of how
libraries evolve. Plans for future research include exploring the
integration of the proposed algorithm with DevOps planning
processes to further optimize development productivity.

REFERENCES

[1] Kernel Virtual Machines. Online. http://sourceforge.net/projects/kvm.
[2] Amazon Inc. Amazon Elastic Compute Cloud. Online, 2009. http:
/laws.amazon.com/ec2/.
[3] Bitnami. Bitnami. http://bitnami.org/, 2012.
[4] J. Bonwick. ZFS Deduplication. Online, 2009. http://blogs.sun.com/
bonwick/entry/zfs_dedup.
[5] Microsoft Corp. Microsoft Virtualization. Online, 2011. http://www.
microsoft.com/virtualization/.
[6] R. Creasy. The Origin of the VM/370 Time-Sharing System. IBM
Journal of Research and Development, 1981.
[7] Jim Doran, Frank Franco, Dilma M. Da Silva, and Alexei Karve et al.
Rc2 a living lab for cloud computing. IBM Research Report, 2010.
[8] Fred Douglis, Jason Lavoie, John M. Tracey, Purushottam Kulkarni, and
Purushottam Kulkarni. Redundancy elimination within large collections
of files. In USENIX Annual Technical Conference, General Track, 2004.
[91 EMC. Data Domain Replicator Software, Network-efficient replication
for backup and archive data. Online, 201 1. http://www.datadomain.com/
pdf/DataDomain-Rep-Datasheet.pdf.
[10] Gartner Inc. Special Report on Cloud Computing. Online, 2011. http:
/Iwww.gartner.com/technology/research/cloud-computing/.
[11] R. Goldberg. Survey of Virtual Machine Research. in IEEE Computer
Magazine, 1974.
[12] IBM. IBM SmartCloud.
cloud-computing/us/en/.
[13] K. R. Jayaram, Chunyi Peng, Zhe Zhang, Minkyong Kim, Han Chen,
and Hui Lei. An empirical analysis of similarity in virtual machine
images. Middleware, 2011.
[14] A. Kochut and Alexei Karve. Leveraging local image redundancy for
efficient virtual machine provisioning. IEEE Network Operations and
Management Symposium, 2012.

Online, 2011. http://www.ibm.com/

559

[15]

[16]
[17]

[18]

[19]

560

Chun-Ho Ng, Mingcao Ma, Tsz-YeungWong, Patrick P. C. Lee, and
John C. S. Lui. Live deduplication storage of virtual machine images
in an open-source cloud. Middleware, 2011.

Rackspace. Rackspace Cloud. http://www.rackspace.com/cloud/, 2011.
Joshua Reich and Oren Laadan et. al. Vmtorrent: Virtual appliances
on-demand. ACM Sigcomm, 2010.

D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and
V. Bala. Opening black boxes: Using semantic information to combat
virtual machine image sprawl. in Proc. of USENIX Virtual Execution
Environments Workshop, 2008.

Chung Pan Tang, Tsz Yeung Wong, and Patrick P. C. Lee. Cloudvs:
Enabling version control for virtual machines in an open-source cloud

[20]
[21]
(22]
[23]
[24]

[25]

under commodity settings. /EEE NOMS, 2012.

Turnkey. Turnkey. http://www.turnkeylinux.org/, 2012.

VMware. Online. http://www.vmware.com.

VMware Inc. VMware Virtual Appliance Marketplace. Online, 2011.
http://www.vmware.com/appliances/.

Wikipedia. Agile software development.
http://en.wikipedia.org/wiki/Agile-software-development, 2012.
Wikipedia. DevOps Agile Development Process.

http://en.wikipedia.org/wiki/DevOps, 2012.
Xen. Online. http://www.xensource.com.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

