
Detecting Software Aging in a Cloud Computing
Framework by Comparing Development Versions

Felix Langner

Heidelberg University, Germany

Email: felix.langner@uni-heidelberg.de

Artur Andrzejak

Heidelberg University, Germany

Email: artur@uni-hd.de

Abstract—Software aging, i.e. degradation of software perfor-
mance or functionality caused by resource depletion is usually
discovered only in the production scenario. This incurs large costs
and delays of defect removal and requires provisional solutions
such as rejuvenation (controlled restarts). We propose a method
for detecting aging problems shortly after their introduction by
runtime comparisons of different development versions of the
same software. Possible aging issues are discovered by analyzing
the differences in runtime traces of selected metrics. The re-
quired comparisons are workload-independent which minimizes
the additional effort of dedicated stress tests. Consequently,
the method requires only minimal changes to the traditional
development and testing process. This paves the way to detecting
such problems before public releases, greatly reducing the cost
of defect fixing. Our study focuses on the memory leaks of
Eucalyptus, a popular open source framework for managing
cloud computing environments.

Index Terms—Software Aging, Software Development, Cloud
Computing

I. INTRODUCTION

Software aging is defined as progressive performance or

functionality degradation in software systems [1]. The typical

causes are exhaustion of resources due to memory-leaks,

unreleased locks, non-terminated threads, or storage fragmen-

tation. Figure 1 shows the cause-effect chain culminating in a

system failure due to software aging. Faulty code repeatedly

activates software malfunction which (after a certain progress

of execution) leads to performance degradation and finally to

a failure.
Contrary to the “traditional” software defects which trigger

conspicuous and direct failures, aging manifests itself with

large latency, usually from hours to weeks. This property

complicates severely detection of aging problems during soft-

ware development and testing, leading to the situation that

most of them are discovered during productive deployment.

Consequently, the primary technique to combat software aging

are controlled restarts known as software rejuvenation [2]. The

majority of research in the last two decades was targeting mod-

eling of the degradation process and optimizing rejuvenation

schedules [3], [4], [5], [6] (see also Sec. IV).

developer's
mistake

software
defect

software
malfunction

software
aging

system
failure

Figure 1. A cause-effect chain culminating in a system failure

Aging issues are likely to be found in any type of software

with enough complexity, but it is particularly troublesome

in long-running applications. Examples include telecommuni-

cation systems, web-servers, web-service middleware [6], or

cloud computing infrastructure [7].

In this work we investigate how aging issues can be detected

already during the software development and testing phase.

The key idea is to compare the behavior of suitable runtime

metrics across several versions created in the development

process. Anomalous behavior of some metrics in the latest

version is a likely indication of a new problem. Its detection

should trigger more detailed investigation and tests. An essen-

tial advantage of this approach is that it can be integrated in

the traditional software development process with a relatively

small additional effort. This is mostly due to the property

that the method is workload-independent and can likely reuse

existing unit or performance tests.

Contributions of this work are the following ones:

• We propose an approach for discovering software aging

problems via comparisons of runtime metrics between

related development builds.

• We suggests a hierarchical method for identifying rele-

vant runtime metrics.

• We evaluate our technique on Eucalyptus, a popular

framework for managing cloud computing infrastructures.

We show that (i) our approach is able to detect a real

(i.e. non fault-injected) aging problem, (ii) it is indeed

workload-independent, and (iii) the relevant metrics are

correctly identified.

II. DIFFERENTIAL DETECTION METHOD

This section outlines the proposed approach. The key el-

ement is to exploit information obtained via comparisons of

runtime behavior of software versions to detect possible aging

issues.

A. Assumptions and Approach

We assume a typical scenario where software is developed

in a series of minor versions (revisions), each producing an

executable build. For each of these, integration and possibly

performance tests are performed. Furthermore, it is possible

to instrument the project code and/or testing harness in order

to collect runtime metrics during the tests.

A software aging defect might be introduced in such a

development process. This is likely to change the runtime

896978-3-901882-50-0 c©2013 IFIP

behavior of the latest built. In order to notice this anomaly,

we collect at each build’s unit or performance test traces of

selected runtime metrics m1, . . . ,mk. Such metrics can be

CPU usage, heap usage in a JVM, and others (see Sec. III-B).

We speculate that if the latest build B has a newly intro-

duced aging problem, the characteristics of at least one of

the collected metrics, say mi, will change. Such a change

can be noticed by comparing traces mi,B of metric mi on B
against traces mi,G1 of mi on some previous build, say G1.

A difference function D = D(mi,B ,mi,G1) shall quantify this

change. It is specific to the metric and the system; for example,

D can be correlation between traces or the relative difference

of the test-final metric values (see Sec. III-C).

To understand which value of D is indeed anomalous we

need the traces from yet another build, say G2. Both G1 and

G2 are assumed to be free of aging defects (“good”), or at least

to have very similar behavior. For each metric mi we compare

the difference D(mi,B ,mi,G1) (or D(mi,B ,mi,G2)) against

D(mi,G1,mi,G2). Only if D(mi,B ,mi,G1) is significantly

larger, we consider this as an indication of a potential aging

problem in B. This case (for any of the metrics) shall trigger an

“alert” leading to further in-depth tests. Note that the (usually

small) source code differences between B and G1 or G2 can

give further hints about the location of the defects (see future

work).

B. Metric Selection

The above process can be optimized by pre-selecting metrics

which are most likely to give meaningful results. For example,

some metrics such as CPU usage can be strongly influenced by

stochastic “noise” and behavior of other processes while other

metrics (e.g. number of open files) might not be influenced by

aging issues at all.

We can filter out metrics with high level of noise via the

following hierarchical approach. The first, automated step is to

compute the pairwise correlations between mi,G1 and mi,G2

(for two builds G1, G2 assumed to be aging-free and each i =
1, . . . , k) and remove all metrics whose correlation is below

a certain threshold. The remaining metrics are then compared

and selected visually as illustrated in Sec. III-B.

It is more involved to eliminate metrics which do not

respond to the aging issues. The most reliable approach has

turned out to contrast them visually on three builds: both

“good” ones G1, G2 and a build B′ known to contain an

aging problem. If a considered metric shows similar values for

D(mi,B′ ,mi,G1) as for D(mi,G1,mi,G2), it can be eliminated.

This approach requires a prior knowledge of an aging issue,

but the metric selection is performed only once. Furthermore,

B′ can be created by fault injection. Another option is to keep

all metrics (without “noise”) as already only one correctly

working metric will indicate a problem.

C. Workload-Independence

The selection approach retains only metrics without stochas-

tic “noise”. This implies that such metrics show similar

response to the same workload patterns across various runs and

various “good” builds G1, G2. Consequently, the difference

function D is likely to yield similar values independently of

the (non-trivial) workload pattern. This conjecture is indeed

confirmed for the Eucalyptus scenario (Sec. III-D).

This workload-independence greatly facilitates low-effort

integration of the proposed method into traditional software

testing processes. Essentially, existing integration/unit tests

shall be sufficient to collect meaningful traces, without need

for dedicated stress tests. The most time-consuming part of

implementing the method are the instrumentation of the built

and test harness for metric collection and the creation of

system-specific evaluation scripts.

III. EXPERIMENTAL EVALUATION

The evaluation of our method has been conducted on an

older version the Eucalyptus framework which is known to

have software aging issues [7]. The specific problem was

the memory depletion of the node controller (NC), one of

Eucalyptus’ services.

A. System under Study

The experiments were executed on a single virtual machine

running Ubuntu 10.10 with kernel 2.6.35.10 using 2 GB RAM

main memory and two cores of an Intel i7 CPU.

Three different versions of Eucalyptus were prepared for

the experiments. They are based on the changesets (retrieved

by us from the project repository) prior to and of the release

version 1.6.1. This release corresponds to the revision r946 in

which the problem reported in [7] has been fixed. Specifically,

we prepared the following versions:

B: This is the youngest revision (r944) before the fix

(i.e. a version “with the bug”).

G1: This is the first bug-free version (r946) with fixes

introduced in revisions r945 and r946.

G2: This is an older revision (r940) on which we applied

the fixes of r945 and r946. This synthetically created

version serves as a second version without bug.

We used three different workloads during our experiments.

Each lasted about 30 minutes and consisted of basic Eucalyp-

tus commands (start, reboot and kill of a VM):

W1: Accelerated version of the workload from [7] that

waits 10 seconds instead of 10 minutes between each

function call for one virtual machine (5 iterations, i.e.

5 start-kill cycles).

W2: A workload that consists of 10 start-kill cycles, fol-

lowed by 1000 consecutively executed reboot calls.

W3: A random workload that consists of start-kill, reboot
and idle phases, created by a pseudo-random gener-

ator. The probability distribution for the occurrence

and the duration of each phase was set as the

following: P (idle) = 11/16 , P (reboot) = 1/4,

P (start-kill) = 1/16.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper 897

Table I
CORRELATIONS � OF EACH OF THE SIX METRICS FOR ALL VERSION PAIRS

(WORKLOAD W1)

Metric / Correlation �(B,G1) �(B,G2) �(G1,G2)

CPU usage 0.39 0.27 0.24

Disk space 0.97 0.99 0.96

Number of open files 0.40 0.30 0.34

Number of threads 0.96 0.95 0.95

Allocated main memory 0.41 0.39 0.52

NC RSS 0.99 0.98 0.98

0

100

200
CPU usage (%)

0

100

200

0

50

100

0

2

4
x 106 Disk space (kB)

0

2

4
x 106

0

2

4
x 106

1000

1200

1400
Open files (#)

1000

1200

1400

1000

1200

1400

100

200

300
Threads (#)

100

200

300

100

200

300

4

6

8
x 105 Main memory (kB)

4

6

8
x 105

4

6

8
x 105

3.9

4

4.1

4.2

4.3

4.4

4.5
x 104 NC RSS (kB)

B
G1
G2

Figure 2. Comparison of the runtime metrics for versions B, G1, G2

B. Runtime Metrics

We implemented a Python-based framework to collect val-

ues of six metrics during each run of an experiment. The

metrics represent system resources that typically become af-

fected by resource depletion and are available via basic POSIX

system services. The metrics are:

• CPU usage (in percent) filtered for all running Eucalyptus

processes (acquired via top).

• Disk space usage for all directories that are known to

contain files of Eucalyptus (measured with du).

• Number of open files for all running Eucalyptus processes

(collected via lsof).

• Number of threads in all Eucalyptus processes (retrieved

via ps).

• Amount of allocated main memory calculated from the

resident memory reported by ps and memory allocated

by the JVM (queried with JMX API).

• NC RSS, the resident set (memory) size of the node

controller (NC) of Eucalyptus only (measured via ps).

Together with the values of the metrics we recorded the

corresponding progress of the workload; we synchronized

them according to this progress. This was needed as the

execution times of Eucalyptus commands vary considerably.

B

G2D = 0.17%G1

Figure 3. Relative differences D of averaged test-final values of NC RSS
between Eucalyptus versions B, G1 and G2 (workload W1)

D(B,G1) D(B,G2) D(G1,G2)0

2

4

6

W1

re
la

tiv
e

di
ff

er
en

ce
 (%

)

D(B,G1) D(B,G2) D(G1,G2)0

2

4

6

W2

D(B,G1) D(B,G2) D(G1,G2)0

2

4

6

W3

Figure 4. Box plots of the difference value D between versions B, G1, G2
for workloads W1, W2, W3

Table I and Figure 2 illustrate the hierarchical metric selec-

tion described in Sec. II. The correlations in Table I have been

computed as Pearson product-moment correlation coefficients

�. They show that CPU usage, number open files and allocated
main memory have large stochastic “noise”. Consequently,

they are considered as not significant (“filtered out”).
Figure 2 shows traces of all metrics for the software versions

G1, G2 and B (workload W1, after alignment). A visual

inspection of the (still significant) metrics indicates that NC
RSS is the most suitable candidate for detection of aging.

C. Aging Detection

To quantify difference in traces of the metric NC RSS we

define as the difference function D (Sec. II-A) the relative

difference of the last measured NC RSS of the traces. That is

D(V, V ′) = D(rssV , rssV ′) =

∣
∣
∣
∣

rssV − rssV ′

rssV

∣
∣
∣
∣
,

where rssmV and rssV ′ are the “test-final” (last) values of

the metric NC RSS in software version V and V ′, respectively.

To reduce randomness, we have averaged rssmV and rssV ′

over five experiment executions.
Figure 3 shows the resulting relative differences for work-

load W1 (averaged over 5 runs). Values of D(B,G1) and

D(B,G2) are very similar and about 20 times larger than

D(G1, G2). This shows that behavior of NC RSS is anomalous

in B and indicates a potential aging problem. Also, low value

of D(G1, G2) confirms our prior knowledge that both versions

behave similarly.

D. Workload-Independence

For each version we run five experiments and computed

all 25 combinations for each type of relative difference (i.e.

D(B,G1), D(B,G2) and D(G1, G2)). This was repeated for

each workload W1, W2, W3. Figure 4 shows the result-

ing box plots. The conclusion for workloads W2 and W3
is identical as for workload W1 (analyzed in Sec. III-C):

while D(G1, G2) remain low, relative differences between B

898 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper

and each of G1, G2 is much higher. This confirms that in

case of Eucalyptus our aging detection method is workload-

independent.

IV. RELATED WORK

Most literature on software aging is devoted to modeling

performance degradation of software and scheduling rejuvena-

tion actions (i.e. system or service restarts). More recent work

focuses on reduction or elimination of availability outages

caused by rejuvenation. [8] gives a critical overview of the

last 16 years of research in this domain.

Modeling performance can be done via analytic-based and

measurement-based approaches. In the former one, various

system parameters such as workload and distributions of fail-

ure are used to obtain Markov-type models [2], semi-Markov

models, and others. The measurement-based approaches use

data sampled from the system and creates a performance

model via curve-fitting [6], machine learning [9], or time-

series analysis [10]. Some works consider combination of both

approaches [5].

Eliminating aging via restarts has been first proposed in [2].

Works in this area focus primarily on adaptive rejuvenation.

Here time to the complete resource depletion is estimated

by above-mentioned models and the schedule of rejuvenation

actions is optimized. Consequently, literature is closely related

to the modeling [3], [4], [5].

Since restarts cause temporary non-availability, techniques

such as recursive (partial) rejuvenation have been developed

to shorten the recovery time [11]. Other works use replication

of services coupled with virtualization to eliminate the non-

availability completely [12], [13].

Detecting and eliminating software aging during devel-

opment is closely related to debugging and testing. Most

mature work here is on tools for identifying memory leaks,

for example LeakBot [14] or Memprofiler [15]. Yet aging

requires prolonged tests and performance monitoring just to

discover problems; only then tools such as LeakBot can be

used. A recent work [16] studies how discovery of aging can

be accelerated via identifying aging factors and stress testing.

To our knowledge there is no prior work which exploits

differences between software versions to detecting aging phe-

nomena. However, this idea has been used to detect traditional

software defects, e.g. by analyzing version control commits

and corresponding error tickets [17].

V. CONCLUSION

We have proposed an approach for detecting aging issues

by comparing runtime behavior of development versions of

software. Experimental evaluation on Eucalyptus framework

shows that the method is capable to discover aging issues

and it works in a load-independent way. This facilitates

implementation of this approach in an existing development

and testing process.

Despite of these promising results the approach relies on

statistical assumptions and therefore depends on the accuracy

and the specificity of the collected measurements. If an aging

issue has been introduced prior to any of the “good” versions

G1, G2, such problem will not be discovered. Furthermore,

it is not known a priori which metrics can capture aging

problems and which are useless. This can cause unnecessary

instrumentation and overhead of metrics collection or can

lead to omitting relevant metrics. Even false-positives can

be induced by differences in the comparison of the runtime

behavior of two aging-free versions.

In our future work we will study whether comparing the

source code of anomalous software version with previous

can help to locate the source of a problem instead of only

indicating it. Furthermore, combining our approach with the

aging factors and accelerated tests proposed in [16] promises

to improve efficiency of discovering aging problems already

in the development process.

REFERENCES

[1] D. L. Parnas, “Software aging,” in Proc. 16th Inter. Conf. on Software
Engineering (ICSE ’94), pp. 279–287, May 1994.

[2] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software rejuvenation:
Analysis, module and applications,” in Proceedings of Fault-Tolerant
Computing Symposium FTCS-25, June 1995.

[3] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, “A method-
ology for detection and estimation of software aging,” in Proc. 9th Int’l
Symposium on Software Reliability Engineering, pp. 282–292, 1998.

[4] K. Vaidyanathan and K. S. Trivedi, “A measurement-based model for
estimation of resource exhaustion in operational software systems,” in
Proceedings of 10th IEEE Int’l Symposium on Software Reliability
Engineering, pp. 84–93, November 1999.

[5] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for soft-
ware rejuvenation,” IEEE Trans. Dependanble and Secure Computing,
vol. 2, pp. 1–14, April-June 2005.

[6] A. Andrzejak and L. Silva, “Deterministic models of software aging
and optimal rejuvenation schedules,” in 10th IFIP/IEEE Symposium on
Integrated Management (IM 2007), (Munich, Germany), May 2007.

[7] J. Araujo, R. Matos, P. Maciel, and R. Matias, “Software aging issues
on the eucalyptus cloud computing infrastructure,” in Proc. IEEE Int
Systems, Man, and Cybernetics (SMC) Conf, pp. 1411–1416, 2011.

[8] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software aging
and rejuvenation: Where we are and where we are going,” in WoSAR,
pp. 1 –6, Dec 2011.

[9] A. Andrzejak and L. Silva, “Using machine learning for non-intrusive
modeling and prediction of software aging,” in IEEE/IFIP NOMS,
(Salvador de Bahia, Brazil), Apr 7–11 2008.

[10] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for estimation of
software aging in a web-server,” in ISESE’02, pp. 91–102, 2002.

[11] G. Candea and A. Fox, “Recursive restartability: Turning the reboot
sledgehammer into a scalpel,” in HotOS, pp. 125–130, IEEE Computer
Society, 2001.

[12] L. M. Silva, J. Alonso, P. Silva, J. Torres, and A. Andrzejak, “Using
virtualization to improve software rejuvenation,” in IEEE International
Symposium on Network Computing and Applications (IEEE-NCA),
(Cambridge, MA, USA), July 2007.

[13] A. Andrzejak, M. Moser, and L. Silva, “Managing performance of aging
applications via synchronized replica rejuvenation,” in DSOM 2007,
(Silicon Valley, CA, USA), October 2007.

[14] N. Mitchell and G. Sevitsky, “LeakBot: An automated and lightweight
tool for diagnosing memory leaks in large Java applications,” in 17th
ECOOP, vol. 2743 of Lecture Notes in Computer Science, (Darmstadt,
Germany), pp. 351–377, Springer-Verlag, June 2003.

[15] Scitech Software, Memprofiler – .NET Memory Profiler.
[16] R. Matias, P. A. Barbetta, K. S. Trivedi, and P. J. de Freitas Filho,

“Accelerated degradation tests applied to software aging experiments,”
IEEE Transactions on Reliability, vol. 59, no. 1, pp. 102–114, 2010.

[17] S. Kim, E. J. W. Jr., and Y. Zhang, “Classifying software changes: Clean
or buggy?,” IEEE Trans. Software Eng, vol. 34, no. 2, pp. 181–196, 2008.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper 899

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

