
CSS-VM: A Centralized and Semi-automatic System
for VLAN Management

Fuliang Li
The Institute of Cyberspace and Network Science

Tsinghua National Laboratory for Information

Science and Technology(TNList)

Beijing, China

Email: lfl09@mails.tsinghua.edu.cn

Jiahai Yang, Changqing An, Jianping Wu,
Siyang Wang, Ning Jiang

The Institute of Cyberspace and Network Science

Tsinghua National Laboratory for Information

Science and Technology(TNList)

Beijing, China

Email: {yang, jianping, acq}@cernet.edu.cn

xialanxuan1015@163.com, jiangning85@126.com

Abstract—VLANs (virtual local area networks) are widely
used in many enterprises, campus, and data-center networks.
Although VLANs can restrict broadcast domains and contain
hosts in one or separate networks, the management of VLANs
is an ad-hoc and error-prone work. In this paper, we design and
implement a centralized and semi-automatic system for VLAN
management (CSS-VM). Based on the physical network topology
and user group (Examples groups are engineering, student cluster,
faculty cluster, etc.) information, CSS-VM can decide the number
of VLANs that each user group would be partitioned into and
how to configure VLAN information on devices automatically. In
addition, CSS-VM is able to calculate an optimal spanning tree
for each VLAN and monitor the operating status of devices and
links. Therefor, it does not need to enable the STP (Spanning Tree
Protocol) on devices but still has the ability of avoiding bridging
loops and quickly converging from device or link failure. We
have evaluated CSS-VM on the topology and VLANs partition
data of an operational enterprise network. Our results show that
CSS-VM can obviously keep the broadcast traffic cost reasonable,
efficiently partition and configure VLANs, quickly converge from
link and device failures and intelligently make a balanced use of
links.
Keywords: Network management; VLAN; centralized; configu-
ration;

I. INTRODUCTION

VLANs play an important role in many enterprises, cam-
pus, and data-center networks. Enterprise or campus network
operators often group the users based on the roles they are
playing. Users in a user group are in the same broadcast
domain and have the same access permission, which will
simplify administration and security tasks. Theoretically, we
can create one VLAN for a whole user group. However, if
one user group has too many users, the broadcast domain of
this VLAN will be relatively large, and a mass of broadcast
packets will occupy the bandwidth and therefore influence
the network performance. In order to control the broadcast
domain in a reasonable scope, further partition of such user
group is needed. Obviously, the more VLANs a user group
is partitioned, the smaller the broadcast domain is. However,
limited by the hardware capacity, the total number of VLANs
has an upper bound. Thus, it is important for the operators to
seek the tradeoff between the hardware capacity and network
performance.

Currently, both the ad-hoc fashion in VLAN design and

the complicated configuration in VLAN implementation lead
to a poor performance network. In the design phase, operators
choose strategies in an ad-hoc fashion without systematic
calculation and the results in an approach which may lead to
much broadcast traffic, none-usage of some high performance
links, and over-load of other links, which is often far from
optimal designs. In the implementation phase, operators enable
the parameters by manually inputting many commands. For a
network which may be composed of many devices produced
by different manufacturers, operators must configure the trunk
links for VLANs prudentially.

In addition, in the enterprise networks, redundant and
hierarchical network design is usually adopted to guarantee
high availability of the network (as depicted in Fig.1). But such
deployment may introduce bridging loops, which will cause
the broadcast storms. So the STP (Spanning Tree Protocol) is
enabled on the devices to avoid bridging loops. However, under
the circumstance of large network with VLAN overlapping, the
utilization of STP is not a good choice because of the overhead
of running STP instances, especially when the number of
VLANs is large.

In this paper, we design and implement a centralized and
semi-automatic system for VLAN management. According to
the physical network topology and user group information, our
CSS-VM can calculate out how to partition the VLANs and
configure VLAN information on each switch automatically.
With the help of the monitoring mechanism, CSS-VM can
not only quickly react to link and device failures, but also re-
configure the affected VLANs automatically. Moreover, CSS-
VM will calculate one of the optimal spanning trees (based
on our methodology of VLANs partition depicted in section
III.A) for each VLAN and monitor the operating status of
devices and links, so it does not need to enable the STP and
still has the ability of avoiding bridging loops and quickly
converging from device or link failures. We have evaluated
our CSS-VM on the topology and VLANs partition data of an
operational enterprise network. The results show that CSS-VM
can obviously keep the broadcast cost reasonable, efficiently
partition and configure VLANs, quickly converge from link
and device failures and intelligently make a balanced use of
links.

The remainder of this paper is organized as follows. Firstly,

623978-3-901882-50-0 c©2013 IFIP

the related work is presented in Section II. Then we describe
our methodology of VLANs partition and automatic configu-
ration in Section III. Our monitoring mechanisms and adaptive
adjusting algorithms for VLANs changing are described in
section IV. The evaluation of CSS-VM is presented in section
V. Finally our conclusion and future remarks are presented in
section VI.

II. RELATED WORK

Spanning tree protocol can not only block the redundant
links to eliminate bridging loops, but also can make the layer-
2 network load balance. In addition, when an interface breaks
down, the protocol can activate the blocked interfaces and
recalculate another optimal tree for each influenced VLAN.
With the demand of network development, many kinds of
spanning tree protocol have been proposed [1-3]. STP is
an initialization for VLAN management, but limited by the
convergence speed and the possibility of temporary bridging
loops. RSTP (Rapid Spanning Tree Protocol) has accelerated
the convergence speed. However, the whole layer-2 network
can only have one spanning tree, which can be considerably
influenced by the topological variation. MISTP/MSTP (Multi-
instance/Multiple Spanning Tree Protocol) can reduce the
communication cost and computing resources and achieve the
goal of load balance. But it still requests devices to make
intelligent decisions, which are non-compliance to the current
design concept of devices, i.e., making the device as simple as
possible. One of the benefits from CSS-VM is that we do
not enable STP protocol on devices, which will obviously
reduce the load of devices. Therefore, devices can provide
more resources to forward data flows. We have evaluated the
performance of CSS-VM, and the results illustrate that, without
running STP instance, CSS-VM can also avoid bridging loops
and quickly react to link and device failures within a tolerant
time interval but with with a light load.

Since VLAN is widely used, many researchers have inves-
tigated the VLAN usage in enterprise and campus networks
[4-8]. These works have revealed the traffic patterns of VLANs
and frequent mistakes when configuring the trunk links. They
also mine the dependencies hidden in VLANs. The most
relevant work to this paper has shown the strategies and criteria
of VLAN designing [9, 10]. But these works do not concern
about the capacity of links, as well as the influence of exiting
VLANs on links, which are not beneficial to load balance
of links. CSS-VM consideres both the influence of existing
VLANs on links and the capacity of links, which allows links
to be averagely utilized.

Network configuration is a complicated and error-prine job,
which brings burden on operators. Template-driven approaches
for configuration are commonly used in ISP networks [11,
12]. L. Vanbever, et al. utilize programs to extract parameters
from provisioning databases and then generate configuration
snippets[13]. A. Greenberg, etc. propose a reverse engineering
method to build provisioning databases from existing network
configuration. X. Chen, et al. take advantage of database to
abstract configuration information and declarative language to
describe domain knowledge (domian knowledge is defined
as dependencies and restrictions among network components)
[15, 16]. Considering the good scalability of this approach,

we integrate it in CSS-VM to automatically configure VLAN
information on devices.

CSS-VM adopts a centralized mechanism to design, config-
ure, maintain and adjust the VLANs. It is the first approach that
integrates high-level decision making, middle-level adaptive
adjusting and low-level configuration commands, which to-
wards the top-down and systematic management of enterprise
networks.

III. METHODOLOGY OF VLANS PARTITION AND

AUTOMATIC CONFIGURATION

There are two prerequisites for centralized and semi-
automatic VLAN management. For one thing, each switch
should be configured with a management IP address. So
our CSS-VM can configure the switches through SSH (Se-
cure Shell) or other remote access ways. For another thing,
some management VLANs should be created to manage the
switches. Therefore, if a link breaks down, the reconfiguration
commands calculated by CSS-VM can be sent to the influenced
switches through the redundant links.

In addition, we reference the idea of DÉCOR which
uses database to abstract configuration information [16]. There
are three types of tables in the database: a) Regular ta-
bles store the basic information of devices(management IP,
password, etc.), interfaces(interface description, group identi-
fier,etc.), links(source interface description, destination inter-
face description, basic link cost), current link cost, and etc.)
Configuration tables store the configuration information for
VLANs. When CSS-VM inserts records into the configuration
tables,related CLI commands encapsulated in the scrips will
be triggered and executed automatically on switches. c) Status
tables store the status of devices and links. similarly with
configuration tables, once a record is inserted into the status
table, related query scrip will be triggered to check the status
of device or link.

A. Methodology of VLANs partition

CSS-VM partitions each user group into one or more
VLANs and calculates out the spanning tree for each VLAN
based on the following information. First of all, network
operators need to manually import the information of the
physical network to the regular tables, including phy network
table (information about the subnets), phy device table (infor-
mation about the devices), phy interface table (information
about the interfaces attached to the devices) and phy link
table (information about the links connecting one device with
another). CSS-VM will check whether the physical network
topology is a connecting graph or not, and only if it is, the
topology will be eventually preserved in the regular tables.
Secondly, operators should classify the users based on the roles
they are playing in the organization. The same kind of users
will be divided into a user group. Users in the same user group
may be scattered around different buildings, but due to their
communication needs, operators must place them into a single
logical subnet.

According to the network topology and user group infor-
mation, CSS-VM will decide how to partition each user group.
The partitioning job must comply with the correctness crite-
rion, feasibility criterion and performance and cost criteria,

624 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

i.e. users in different user groups must be scheduled in different
VLANs, users in a VLAN are limited by the size of the IP
block and the broadcast traffic coat of each VLAN need be
kept in a reasonable value [9, 10].

Without running STP instances (except management
VLANs), CSS-VM builds spanning tree for each VLAN to
realize load balance of links, as well as to avoid bridging
loops. For a typical enterprise network topology (shown in Fig.
1) with several user groups and VLANs overlapping, several
partition programs exist but with different effects. The question
for CSS-VM is how to build optimal spanning trees for VLANs
and achieve an optimal network performance in global, i.e.,
links with high capacity will be selected with high priority,
links that have been used by other VLANs will be selected
with low priority to avoid over loaded links, and the tree should
generate least broadcast traffic.

We assume that each user group depicted in Fig.1 needs to
be partitioned into two VLANs. The spanning trees shown in
Fig. 2 are one of the optimal partitions, which can distribute
traffic load to different links. As the centralized management
center, CSS-VM can take full advantage of information of the
whole network to pursue the partition program with the best
performance.

CSS-VM adopts the broadcast traffic cost model, i.e., the
broadcast cost of a VLAN is defined as B = H ∗ A ∗ W
[9]. H denotes the number of hosts in the VLAN, A denotes
the average broadcast traffic (in pkt/s) generated by a host
and W denotes the sum of links of the spanning tree. Note
that this model does not consider the differences of physical
links in capacity, so it is not reasonable in evaluating the
broadcast traffic cost of VLANs (the reason depicted bellow).
We redefine the broadcast traffic cost B of a VLAN as depicted
in equation (1).

H ∗A ∗ C (1)

Here, H and A are given the same definition and we assume
that broadcast traffic is generated at 2.12 packet/second/source
[9], i.e., A=2.12. C denotes the sum of link cost. For the same
broadcast traffic, links with higher bandwidth and devices with
higher performance are less influenced compared with links
with lower bandwidth and devices with lower performance.
Therefor, we define C as the sum of the link cost and strictly
choose the device from core layer as the root of the spanning
tree rather than choosing the access layer device. In addition,
for the link with the same capacity, a link which has carried
one or more VLANs is much more influenced by broadcast
traffic compared with the link which has not carried any or less
VLANs. CSS-VM considers the influence of existing VLANs
on current links. So the link cost in CSS-VM is composed
of basic link cost and current link cost.We adopt the value
of the link cost suggested by the STP as the basic link cost.
For example, if the bandwidth of a link is 1 Gbps, the basic
link cost of the link is 4, and if the bandwidth of a link is
100 Mbps, the basic link cost of the link is 19. We define the
current link cost as shown in formula (2).

li.cur cost = (1 + pi ∗ β) ∗ li.basic cost (2)

If a link has been carrying some VLANs, when we cal-
culate the broadcast traffic cost of a new VLAN which also
contains this link, we should consider the influence of prior

Fig. 1. A typical enterprise network topology with redundant links.

Fig. 2. An optimal VLAN partition for topology depicted in Figure 1.

VLANs on this link, i.e., the link will be more influenced by
the broadcast traffic. CSS-VM utilizes equation (2) to calculate
current link cost for each link. β denotes the tuning parameter
(suggested value is 0.35 and details are stated in section V.E)
and pi denotes the number of VLANs that have been allowed
on the link(i). Intuitively, when a link is added to a new VLAN,
the cost of the link will increase percentage β ∗pi of the basic
link cost.

Based on the redefined broadcast traffic cost model and
two types of link cost, we propose a revised partition algo-
rithms [10]. We omit the details of the algorithms for space
reasons. We finally get the set (S) of VLANs for each user
group. For each VLAN V in the set S, V.Setaccess device

and V.Setcore device store the devices related to the VLAN
V, V.Setaccess interface stores all the access interfaces of
VLAN V, V.Setcore interface stores all the trunk interfaces
and V.Setspan tree stores all the trunk links of VLAN V. The
information of each VLAN provides a foundation to configure
devices automatically.

B. Methodology of Automatic Configuration

All the VLAN information calculated in III.A will be
inserted into configuration tables. The ER diagram of the
configuration tables is shown in Fig 3.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 625

Fig. 3. The ER Diagram of configuration tables

We set a trigger in the device table and interface table.
Once a record is inserted into the device table or interface
table, a trigger will invoke a thread from the thread pooling.
The thread calls a shell program to extract configuration
parameters from related tables. Then it connects to the device
and executes the configuration commands.

We take the device of Catalyst3750 (Cisco IOS Release
12.2(58) SE) as an example to illustrate. When we insert a
record into the device table, a trigger will invoke a thread to
call a shell program to extract vlan num from the network
table, the management address and password of the device
from the phy network table. Then CSS-VM connects the
device and executes the following commands.

vlan vlan id

Similarly, when we fill the mode field of the interface
table with the value of access or trunk, relevant configura-
tion commands will also be executed automatically. Once a
connection with a device is created, CSS-VM will keep the
connecting state for a period, which will save time for the
next configuration task.

IV. ADJUSTING ALGORITHMS FOR VLAN CHANGES

When a network is in the operating phase, operators need
to constantly adjust the network for three reasons. First of all,
physical links in the network may break down. This may be
caused by upgrading the system of the devices, by devices
outage or interfaces disabled. In summary, both interface
failure and device failure result in link failure. Secondly,
adding a user into a user group, or removing a user from a
user group. Finally, adding a user group into the network, or
moving a user group from one building to another. All these
changes can be adjusted by CSS-VM. For space reasons, we
only take the link failure as an example to illustrate.

Without enabling STP, when a physical link is out of order,
devices cannot maintain spanning trees for influenced VLANs.
CSS-VM must have the ability of monitoring and discovering
failures, in addition, recalculating the new spanning tree for
each influenced VLAN and updating related configuration

automatically. The problem has been resolved by CSS-VM.
For one thing, CSS-VM adopts both polling and asynchronous
notification mechanisms to acquire the running state of physi-
cal links. For another thing, once CSS-VM receives a message
about the link failure, it can make the devices ongoing work
in a tolerant time interval.

A. Mechanism for Monitoring Link Failures

The polling mechanism needs CSS-VM actively and
periodically to check the status of physical links. In or-
der to achieve the goal above, CSS-VM will query the
link status field of the link status table, which will
trigger inquiring scrip to check the status of interfaces. The
inquiring scrip can be construed in two ways. First of all,
the SNMP (Simple Network Management Protocol) request
encapsulated in the scrip can be sent to get the value of
ifOperStatus[17]. If the value of ifOperStatus is not up(1), the
status field of the physical link connecting to this interface
will be set to linkdown and a link failure warning will be
reported to CSS-VM. Secondly, CLI commands packaged in
the scrip can be used to directly check the status of interfaces.
Taking switch of Catalyst3750 (Cisco IOS Release 12.2(58)
SE) as an example, the command of [show interfaces type
module/number status] can reveal the status of interfaces
(connected or not connect), through which we also can gain
the status of physical links.

The asynchronous notification mechanism needs
switches to support SNMP trap. We use MIB (Management
Information Base) to define the trap message about an
interface failure. When an interface breaks down, the switch
will actively inform a trap message to CSS-VM. CSS-VM
will translate the trap message and identity whether it is a
warning on interface failure or not. If it is, CSS-VM will
find out the physical link that the interface attached to and
mark another interface of the physical link broken down. No
matter which mechanism is chosen, when CSS-VM identifies
an interface failure, it will recalculate spanning trees for all
the influenced VLANs. But in view of occupying computing
resources, the asynchronous notification mechanism is better
than the polling mechanism.

Additionally, if an SNMP request or CLI command is
executed without a response within the tolerant trials, it can
be considered that the switch is broken down, and all the
interfaces and physical links attached to this switch will be
changed to linkdown.

B. Algorithms of Adjusting Influenced VLANs

When CSS-VM identifies a link failure, it must adjust
the influenced VLANs as soon as possible. So when CSS-
VM calculates the shortest path between any two devices, it
utilizes the basic link cost rather than current link cost. This
can simplify the procedure of recalculating the spanning tree
for each influenced VLAN. Details of this algorithm are omited
for space reasons. .

V. EVALUATION

We evaluate CSS-VM on the topology and VLANs parti-
tion data of an operational enterprise network with redundant
links to guarantee high availability. The network is composed

626 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

Fig. 4. The Maximum and Median Broadcast Traffic Costs of All User
Groups.

of 2 routers, 6 layer-3 switches, 660 layer-2 switches and
13200 hosts partitioned into 78 VLANs. As the head office, the
company owns 3 buildings and 23 departments. About 78% of
the user groups span only one building, and 74% of them only
span one floor. The largest user group spans three buildings
and five floors.

A. Keeping the Broadcast Traffic reasonable

One of the performance criteria is the broadcast traffic
cost. As depicted in Fig.4, the rangeability of the maximum
and median broadcast traffic costs produced by CSS-VM in
each user group is less than current approache. Note that
the variance of the broadcast traffic costs mainly depend on
the number of users in each user group (referring Fig.5).
CSS-VM authentically partitions some large user groups into
several small VLANs with reasonable broadcast traffic costs.
For example, the 1st user group with 2200 hosts is partitioned
into 9 VLANs by current approach, with the largest and
smallest broadcast traffic cost of 28828 pkt/s and 9000 pkt/s
respectively, while CSS-VM partitions this user group into 10
VLANs, the largest broadcast traffic cost is 23232 pkt/s and
the smallest is 19360 pkt/s. The median broadcast traffic cost
of the 1st user group generated by CSS-VM is 19404 pkt/s,
while current approach is 23022 pkt/s, which is obvious that
the broadcast traffic costs produced by CSS-VM are closer to
the median value than current approach. One may notice that
CSS-VM also produces some broadcast traffic costs greater
than current approach. Through our deep analysis, some small
VLANs in a user group are merged by CSS-VM. For example,
the 18th user group with 220 hosts is partitioned into two
VLANs by current approach, and the broadcast traffic cost
of each VLAN is 10100 pkt/s and 10000 pkt/s respectively.
In contrast, CSS-VM merges these two small VLANs into a
single VLAN with broadcast traffic cost of 19360 pkt/s.

B. Decreasing the Number of VLANs

Another performance criterion is the number of VLANs.
CSS-VM allows devices to operate without running STP
instance, so we do not have to care about the number of
VLANs. But actually, too many VLANs will also increase

Fig. 5. The Number of Users and VLANs of All User Groups.

the memory and processing requirement of CSS-VM. So the
number of VLANs also need to be controlled within a certain
value. As a result, CSS-VM creates 62 VLANs in total, while
current approach partitions 71 VLANs. CSS-VM creates fewer
VLANs than current approach. As depicted in Fig.5, some
small user groups, which don’t need to be partitioned into two
or more VLANs, are partitioned into one or fewer VLANs by
CSS-VM. In fact, most user groups are partitioned into VLANs
in an unbalanced and unreasonable way by current approach,
which make the broadcast traffic of each VLAN sometimes
heavy and sometimes light (referring Fig.4). While CSS-VM
can partition large VLANs into several small VLANs, but at
the same time, it also merges small VLANs into bigger VLANs
under the constraint of threshold. As a result, the number of
VLANs shows lower variance. The results reveal that CSS-VM
partitions the user groups in a more balanced and reasonable
way than current approach does.

C. The Efficiency of Partitioning and Configuring VLANs

One of the most important performance criteria of CSS-
VM is the efficiency of partitioning user groups and config-
uring VLANs. We deploy CSS-VM on a Linux server with
Intel (R) Core (TM) i7 CPU and 4GB Memory. As depicted
in Fig.6, CSS-VM spends 10 seconds partitioning the largest
user group with 2200 users and utilizes about 111 seconds to
configure VLAN information on devices automatically. While
for the smallest user group with 110 users, it costs 0.98 second
and 10 seconds for partition and configuration respectively. In
order to reduce the configuration time, CSS-VM maintains a
thread pooling for all the devices, so many configuration tasks
can be executed synchronously on different devices. The thread
pooling serves the user group one by one to avoid configuring
the same device by two user group at the same time. We have
made an interview with the enterprise network operators. For
the largest user group, they will spend more than 3 hours
accomplishing the configuration task. Automatic configuration
can not only reduce the configuring time, but also liberate oper-
ators from the complicated and lousy configuration commands,
which can also decrease the possibility of misconfiguration.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 627

Fig. 6. The Number of Users and VLANs of All User Groups.

TABLE I. REACION TO INTERFACE FAILURE

type
Number of Influenced VLANs

1 3 5 7 9 12
Overhead(second) 2.49 2.5 2.61 2.82 2.97 3.2

TABLE II. REACION TO DEVICE FAILURE

type
Number of Influenced VLANs

1 3 5 7 9 12
Overhead(second) 2.55 2.64 2.71 2.95 3.16 3.4

TABLE III. OVERHEAD OF ADDING A USER TO A USER GROUP

type
Number of Existing VLANs in the User Group
1 2 4 6 8 10

Overhead (millisecond) 2812 2835 2859 2891 2997 3309

D. Reaction to Failures without Running STP Instances

CSS-VM maintains the spanning tree for each VLAN and
has the ability of monitoring the status of interfaces and
devices, so the devices do not need to enable STP, which will
reduce the load generated by STP instances running on the
devices. When an interface or a device failure is discovered,
CSS-VM will react to it instantly. The converging speed is
critical to evaluate the performance of CSS-VM. Both interface
and device failures are deliberately designed to validate the
convergence of CSS-VM. As shown in Table I, if an interface
failure influences only one VLAN, it spends 2.49 seconds
recovering the influenced VLAN, and when the number of
influenced VLANs increases to 12, the overhead is up to 3.2
seconds. While if an interface failure influences 12 VLANs,
which are all maintained by STP instances, BPDU packets will
increase sharply and all the related devices will take part in
recalculating spanning trees for the influenced VLANs, which
will occupy vast bandwidth of links and bring in heavy load to
devices. Consequently, BPDU packets may be dropped because
of the network congestion, which may cause a long-period
convergence. In addition, the normal data flow may also be
dropped. Compared with running STP instances, CSS-VM can
react to an interface failure within a tolerant time interval but
with a lighter load.

Table II shows the overhead of reaction to the device
failure. Device failure means all links directly connected to it
are disabled, so it is a bit more complicated than link failure.
We also evaluate the convergence of VLANs changes. Table
III shows the overhead of adding a user to a user group.

TABLE IV. OVERHEAD OF ADDING A USER TO A USER GROUP

core links
Number of VLANs allowed on the core lniks

β = 0 β = 0.1 β = 0.3 β = 0.35 β = 0.5 β = 1
L-1 0 1 3 4 4 4
L-2 6 6 5 4 4 4
L-3 7 6 5 5 5 5
L-4 0 1 2 2 2 2
L-5 0 0 1 2 2 2

E. Sensitivity to Parameters

We firstly observe the sensitivity of our algorithms to
the N and Bmax parameters. With large N values, CSS-VM
creates more VLANs and decreases the broadcast traffic costs,
while with large Bmax values, the results are opposite. Our
results also illustrate that CSS-VM can make the tradeoff that
reduce the broadcast traffic cost and decrease the number
of VLANs [12]. We pay more attention on the sensitivity
to the β parameter. If a trunk link is allowed one or more
VLANs, CSS-VM will use β to increase the cost of the trunk
link. So the redundant links with low cost will be chosen
to construct spanning trees for new VLANs, which will be
beneficial to load balance of links. The load balance of links is
an important and troublesome issue when network environment
is complicated. We assume that there are 13 small user groups
in the same floor sharing 5 core links. The operators require
that users in each user group are grouped into a single VLAN.
The topology is depicted in Fig.1. As depicted in IV, when
β is set to no less than 0.35, the utilization of the links is
most balanced comparatively. So we regard 0.35 as the optimal
tuning value of β in this network environment. In CSS-VM,
through adjusting the value of β, the core links utilization can
achieve the most reasonable status under any network topology,
which we believe, is crucial to load balance of links.

VI. CONCLUSION

Due to the requirements of administration and security
consideration, VLAN is widely used in enterprise, campus and
data-center networks. But traditional methods of VLAN design
and configuration are ad-hoc and error-prone. In this paper,
we design and implement a centralized and semi-automatic
system for VLAN management (CSS-VM). We have evaluated
CSS-VM on the topology and VLANs partition data of an
operational enterprise network. CSS-VM partitions each use
group into one or more VLANs with reasonable broadcast
traffic costs. It also keeps the number of VLANs in a smaller
value than current approach. The efficiency of partitioning
and automatically configuring VLANs is satisfying. Without
running STP instance, CSS-VM still has the ability of avoiding
bridging loops and quickly converging from network failure,
which decreases the load of devices and make devices provide
more resources for forwarding data flows.

ACKNOWLEDGMENT

This work is supported by the National Basic Research
Program of China under Grant No. 2009CB320505, the Nat-
ural Science Foundation of China (NSFC) under Grant No.
61170211, the National Science and Technology Supporting
Plan of China under Grant No. 2008BAH37B05, Specialized
Research Fund for the Doctoral Program of Higher Education
(SRFDP) under Grant No. 20110002110056.

628 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

REFERENCES

[1] IEEE Standard 802.1D, “Information technology-Telecommunications
and information exchange between systems-Local and metropolitan
area networks-Common specifications-Part 3: Media Access Control
(MAC)Bridges”, 1998.

[2] IEEE Standard 802.1W, “Rapid spanning tree configuration”, 2001.

[3] IEEE Standard 802.1S, “Virtual Bridged Local Area Networks - Amend-
ment3: Multiple Spanning Trees”, 2002

[4] P. Garimella, Y. E. Sung, N. Zhang, and S. G. Rao, “Characterizing vlan
usage in an operational network”, in Proc. of ACM SIGCOMM workshop
on Internet network management (INM), 2007.

[5] M. B. Tariq, A. Mansy and N. Feamster, and M. Ammar, “Measuring
VLAN-induced sharing in a campus network”, in Proc. of the 9th ACM
SIGCOMM conference on Internet measurement conference (IMC), 2009.

[6] Y. E. Sung, S. G. Rao, S. Sen, and S. Leggett, “Extracting networkwide
correlated changes from longitudinal configuration data”, in Proc.of
Passive and Active Measurement Conference (PAM), 2009.

[7] K. Sripanidkulchai, C. Issariyapat, and K. Meesublak, “Inference of
network-wide vlan usage in small enterprise networks”, in Proc. of
INFOCOM Workshop on Automated Network Management (ANM), 2008.

[8] M. Yu, J. Rexford, X. Sun, S. Rao, and N. Feamster, “A survey of virtual
LAN usage in campus networks”, in IEEE Communication Magazine,
2011, Vol.49, pp.98-103.

[9] Y. E. Sung X. Sun, S. G. Rao, G. G. Xie, and D. A. Maltz, “Towards
systematic design of enterprise networks”, in IEEE/ACM Transactions
on Networking (TON), 2011,Vol.19, pp.695-708.

[10] X. Sun, Y. W. Sung, S. D. Krothapalli, and S. G. Rao, “A systematic
approach for evolving VLAN designs”, in Proc. of the 29th conference of
the IEEE Computer and Communications Societies (INFOCOM), 2010.

[11] J. Gottlieb, A.Greenberg, J. Rexford, J. Wang, “Automated provisioning
of BGP customers”, in IEEE Network Mag, 2003, Vol.17, pp.44-55.

[12] W. Enck, P. Mcdaniel, A. Greenberg, S. Sen, P. Sebos, S. Spoerel, S.
Rao, “Configuration management at massive scale: system design and
experience”, in Proc of USENIX Annual Technical ConferenceUSENIX,
2007.

[13] L. Vanbever, G. Pardoen, and O. Bonaventure, “Towards Validated
Network Configurations with NCGuard”, In Proc. of Internet network
managemet (INM) Workshop, 2008.

[14] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “The cutting EDGE of IP router configuration”, in ACM
SIGCOMM Computer Communication Review, 2004, Vol.34, pp.21-26.

[15] X. Chen, Y. Mao, ZM. Mao, and J. Van der Merwe, “Declarative
configuration management for complex and dynamic networks”, in Proc.
of the conference on Emerging networking experiments and technologies
(CoNext), 2010.

[16] X. Chen, Y. Mao, ZM. Mao, J. Van der Merwe, “DECOR: DEClarative
network management and OpeRation”, in ACM SIGCOMM Computer
Communication Review, 2010,Vol.40, pp.61-66.

[17] K. McCloghrie, and F. Kastenholz, “The Interfaces Group MIB”, June
2000.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 629

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

