
Detecting Job Interference in Large Distributed
Multi-Agent Systems — A Formal Approach

Wenjie Lin∗, Michael McGrath∗, Ingy Ramzy∗, Ten-Hwang Lai∗ and David Lee†
∗The Ohio State University

linw@cse.ohio-state.edu, mcgrath.57@buckeyemail.osu.edu, {youssef, lai}@cse.ohio-state.edu
†HP Labs

david.lee10@hp.com

Abstract—This work is on formal modeling, analysis and
detection of job interference in large distributed multi-agent
systems. Such an analysis usually requires an examination of all
the global system states—often impossible due to the well-known
state space explosion. We obtain a sufficient condition so that job
interference can be detected by observations of individual system
component without the knowledge of global system states.

Given that the job interference can be detected locally, we pro-
pose a guided random walk algorithm for detecting interference.
We apply it to Kansei, a large and distributed wireless sensor
network system with multi-agents. Ten job interference traces
are identified; they have not been detected before by manual
analysis and system operations. We further diagnose the detected
interference for a correction of system design.

I. INTRODUCTION

In a general distributed multi-agent system, agents operate
together to provide functions for various jobs. Independent jobs
may coexist and operate asynchronously in a system with their
agents potentially residing on the same node. For example, a
wireless sensor network testbed is a multi-agent system where
multiple users’ experiments (i.e. jobs) can be scheduled on
a single node—consisting of one or more sensors. As the
logic of each individual job are designed independently—
lack of knowledge of other jobs while jobs may execute
simultaneously and asynchronously, interference among the
jobs may arise when they are hosted together.

Interference between independent jobs often lead to severe
anomalies in multi-agent systems1. In a large-scale wireless
sensor network testbed, a management job that controls system
time can cause experiment data to be overwritten when it inter-
feres with experiment jobs. This is observed in Kansei system
when daylight saving time starts [1]. In smart building systems,
false alarms are found, which are generated by interference
between the security job and the climate control job: the former
raises an alarm because of the window movement triggered by
the latter [2].

Detecting job interference is thus desired in multi-agent
systems. There are two general approaches: on-line detection
and off-line detection. Off-line detection is preferred when
interference needs to be detected before jobs execute, or when
resources are too limited to afford the on-line detection (e.g.
in real-time systems or in energy-limited wireless systems).

1Note that there are other anomalies not resulting from job interference.
We focus on job interference detection and do not attempt to address general
anomaly detection in this paper.

Even in the systems in which on-line monitors are deployed,
off-line checking in advance can reveal system design flaws,
thus simplifies the schemes of on-line detection and resolution.
However, it is far from easy to detect job interference in large
distributed multi-agent systems off line. The traditional model
checking approaches—seeking interference by generating a
global reachability graph from the system model—have a key
challenge: state explosion. Because the system state space
(in worst case the Cartesian product of states in each node)
exponentially expands as the number of nodes increases, auto-
mated model checking on large distributed multi-agent systems
can easily fail before any concrete results are obtained. Our
primitive attempt on running model checker SPIN [3] against
the Kansei model quickly runs out of memory. Although gen-
eral methods and heuristics—such as partial order reduction,
abstraction, symmetry [4], local variable reset [5], predicate
simplification [6], and minimized automaton encoding [3]—
can ease the state explosion due to the number of nodes, they
usually come with the cost of completeness.

A question is raised accordingly: for job interference
detection in distributed multi-agent systems, is there a way to
avoid state explosion generated by the large number of nodes?

In this paper, we focus on off-line interference detec-
tion among independent jobs in large distributed multi-agent
systems. We aim at a practical solution that scales when
the number of nodes grows. The following are our three
contributions.

First, for the off-line interference detection in distributed
multi-agent systems, we discover that, if the model is fine-
grained and the control & management components are well-
extended, local detection node-by-node is equivalent to global
detection with soundness (i.e. no false positive) and complete-
ness (i.e. no false negative).

Second, we propose a guided random walk algorithm to
obtain a job’s all local behaviors and thus detect local job
interference. Compared to the traditional reachability analysis,
memory cost of the algorithm is constant to the number of
nodes—no state explosion due to the large number of nodes
in distributed multi-agent systems.

Finally, we validate the theoretical results on a large
distributed sensor network system—Kansei. By applying the
theories, ten cases of job interference are detected in an
application scenario with two off-line sensing jobs executing
in Kansei system (composed of 96 nodes). All interference
turns out to be fatal anomalies that make one job overwrite

411978-3-901882-50-0 c©2013 IFIP

Job 1 agent on Node i Control & management agent on Node i

Fig. 1: An Abstract Model of Distributed Multi-Agent Systems

the other. We report our detection to Kansei team and help
them diagnose the design flaws.

The rest of the paper is organized as follows. In Section II,
the problem is formalized. In Section III, the theorem of
the local interference detection of global system operations
is derived. The guided random walk algorithm is described
in Section III-D. Our case study on Kansei is reported in
Section IV.

II. PROBLEM FORMALIZATION

In this section, we first introduce an abstract model of
distributed multi-agent systems (Section II-A), then we de-
fine concepts about job interference (Section II-B). Some
interesting properties of interference detection are shown in
Section II-C.

A. The Abstract Model of Distributed Multi-Agent Systems

The models of distributed multi-agent systems are based on
communicating extended finite state machines (CEFSMs)—
a collection of extended finite state machines (EFSMs) that
are interacting with each other [7] . Each EFSM can be
expressed as input symbols, output symbols, states, variables,
and transitions. In this work, we adopt weak fairness for
execution of CEFSMs, that is, if a transition is enabled it can
be taken with unbounded number of times.

Consider a multi-agent system with n nodes and m jobs
(Fig. 1). Each job runs on a subset of nodes. The jobs on
the same node are coordinated by the control & management
components in the system. The jobs and the control & man-
agement components are modeled by CEFSMs which we shall
describe next.

1) Control & Management Components: In practice, con-
trol & management components are often job schedulers,
resource managers, and data collectors. They can send and
receive messages to the job machines on the same nodes.
Also they can communicate with the control & management
machines on the other nodes. As a general model, the control
& management machines on each node does not need to be
identical.

2) Jobs: As we described previously, a job executes on a
subset of nodes in a multi-agent system. Similar to the control
& management components, job machines on two nodes can

be different. A job machine can send and receive messages
with other job machines regardless whether they are on the
same node and whether they are belong to the same job.

3) Variables: CEFSMs variables can be shared among
CEFSMs; they model the shared resources and the environ-
ment.

4) Channels & Messages: Channels between CEFSMs are
assumed to be flawless and synchronized. When CEFSMs
execute, they generate inputs and outputs—messages that can
be observed in a multi-agent system. We shall assume that the
messages transmitted in each channel are mutually exclusive.
(In practice, this is achieved by encoding each machine’s
identification into messages [8].) In this paper, we will use
the terms message and IO alternatively.

5) Job IOs (Messages): For a job, say Job i, there is a
set of IOs it is concerned about. Denote the set as IOi. In
practice, if Job i is to control a light in a room, IOi includes
IOs that set the light on/off. Note that IOi can be sent/received
by machines other than Job i machines. Job IOs are specified
by system designers before analysis of job interference.

B. Job Interference in Distributed Multi-Agent Systems

A single job is assumed to be well designed. We are curious
whether jobs simultaneously running in the same multi-agent
system would step upon each others.

Following we first briefly introduce the basic concepts of
execution traces and reachability graphs. After that, we show
how to project a trace over a single job, or over a single
node. Independency and interference are then formally defined.
Properties and possible misconceptions are presented finally.

1) Traces and Reachability Graphs: Given a set of CEF-
SMs, the Cartesian product of states in each CEFSMs forms
the set of possible global states. However not all of them are
reachable. If one takes transitions from the initial states, a
subset of states can be reached. The subset of states as well
as the interconnecting transitions generates the reachability
graph.

In an execution of the CEFSMs, we follow a path
from an initial state in the reachability graph and pro-
duce IOs as we move step by step. The sequence of IOs
is called an (execution) trace. For example, a trace may
look like “send job files, receive job files, submit results, re-
ceive results, job terminates”. We denote the set of traces in
a reachability graph R as L(R). For simplicity, in the rest of
the paper we will use R when we mean L(R).

2) Projection of Jobs: When we study job interferences, we
are interested in the behaviors of a single job when it executes
with other jobs. The following definition captures the idea.

Definition 1 (Projection of a trace over Job i: πi(·)):
The function πi(·) : a → b is defined over a trace
a = α1α2 . . . αt, such that b = πi(a) = β1β2 . . . βt, where

βj =

{
αj αj ∈ IOi

λ (the empty IO) αj �∈ IOi

Example: Job 1 controls lights and Job 2 controls fans.
They generate a trace “light on, fan off, light off”. In view of

412 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

the Job 1, the projected trace is “light on, light off”since the
status of fans is not what Job 1 is concerned of.

The definition can be easily extended to projection of a set
of traces over Job i and projection over a set of jobs (skipped
here).

3) Projection of Nodes: To capture all jobs’ behaviors on
a single node, we can project execution traces over a node.

Definition 2 (Projection over a node πNj
(·)): The

function πNj
(·) : a → b is defined over a trace

a = α1α2 . . . αt, such that b = πi(a) = β1β2 . . . βt,
where

βj =

{
αj the sender or receiver of αj on Node j
λ else

Example: Projecting the trace “send job to node1,
send job to node2, receive results from node1” over
Node 1 is “send job to node1, receive results from node1”.

Similarly the definition can be extended to projection over
a set of nodes.

The projection operations are commutative.

• Projection on Job i and Job j: πi ◦ πj(·) = πj ◦ πi(·);
• Projection on Node i and Node j: πNi ◦ πNj (·) =

πNj ◦ πNi(·);
• Projection on Job i and Node j: πi ◦ πNj

(·) = πNj
◦

πi(·).
4) Job Interference and Independency: Start from the sim-

plest case including only two jobs. Intuitively, we compare
Job 1’s behaviors when it executes alone and the behaviors
when Job 1 and Job 2 execute simultaneously. If they are
different, Job 1 has interference with Job 2; Otherwise, Job
1 is independent with Job 2.

Definition 3 (Independency): In a distributed multi-agent
system, Job J1 is independent with Job J2 (denoted as
ind(J1, J2)) if and only if

R({J1}) = π1 ◦R({J1, J2})
where R({J1}) are the traces when only J1 executes in the
system, and R({J1, J2}) are the traces when both J1 and J2
execute.

If there is such a trace l that makes Job 2 interact with
Job 1, we call l an interference trace. Our task is to detect
the interference traces with soundness and completeness, and
without state space explosion.

Extend the previous definition to more-than-two-job sce-
narios: a system is interference-free if and only if for every
job Ji in J = {J1, . . . , Jm}, Ji is independent with J.

C. Remarks

Before start detecting job interference, we would like to
clarify some possible misconceptions.

• Independency is not symmetric.
ind(J1, J2) � ind(J2, J1).

• Independency is not transitive.

◦ ind(J1, J2) ∧ ind(J2, J3) � ind(J1, J3)
◦ ind(J1, J2)∧ind(J1, J3) � ind(J1, {J2, J3})
◦ ind(J1, J3)∧ind(J2, J3) � ind({J1, J2}, J3)

• Interference raises an anomaly alarms in distributed
multi-agent systems, but it does not mean a definite
anomaly.
For example, if Job 2 generates a new IO “light off”
when the light is already off, it is interference, but not
an anomaly.

Interestingly, we find that interference analysis is scalable to
the incremental updates of a system. If a new job J ′ is added
to an interference-free system (with old jobs J), verifying
ind(J ′,J∪{J ′}) and ind(J,J∪{J ′}) can guarantee that the
new system is also interference-free (shown by Proposition 1).

Proposition 1: For two job sets J1 ⊆ J2,
ind(J1,J2) ∧ ind(J2,J3) =⇒ ind(J1,J2 ∪ J3).

III. DETECTING JOB INTERFERENCES

In this section, we derive the theorem of the local inter-
ference detection. A guided random walk algorithm is then
proposed for obtaining local observations.

A. State Explosion

Following the definition of dependence, one can detect
job interference by constructing two reachability graphs—one
with a single job executing and the other with multiple jobs
executing simultaneously—and comparing the behaviors of a
targeted job based on the global observations.

However, state explosion makes the straightforward ap-
proach infeasible in distributed multi-agent systems, which
usually comprise a large number of nodes. For example, a
reachability graph of a 100-node system with 10 states on each
node can reach 10100 states in worst case. In our case study
Kansei, a reachability graph including only 14 nodes already
runs out of the 512M Java Virtual Machine heap memory.

B. Can Local Interference Detection Replace the Global One?

Global observations generate the troubles. An intriguing
question is thus asked.

Question 1: Can we detect job interference locally, that is,
if we do not observe interference on any node, can we declare
that the whole system is interference free? Formally,

∀Nj , πNj
◦R({J1}) = πNj

◦ π1 ◦R({J1, J2})
⇐⇒ R({J1}) = π1 ◦R({J1, J2})?

The “⇐” direction is the soundness: whether a local detected
interference trace is a global one; The “⇒” direction is the
completeness: whether all job interference can be observed lo-
cally. Our study focuses on two-job scenario. The conclusions
can be extended to multi-job cases.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 413

1) Soundness: It is shown by Lemma 1.

Lemma 1: A local detected interference trace is a global
one.

For a distributed multi-agent system with Job J1 and Job
J2, if the projection of R({Ji})(i = 1, 2) over a node, say
Node j, is different from the projection of R({J1, J2}) over
Node j and Job Ji, then Ji has interference in the system. (For
space limitation, we skip the proof.)

2) Completeness: The completeness means that any global
interference can be detected locally. It includes two parts:

• Part 1: If a trace exists when two jobs execute simul-
taneously, but it does not exist when a job executes
alone, the trace can be detected locally (shown by
Lemma 2);

• Part 2: If a trace exists when a job executes alone, but
does not exist when two jobs execute simultaneously,
it can be detected locally.

Lemma 2: If a trace exists when two jobs execute simul-
taneously, but does not exist when a job executes alone, the
trace can be detected locally.

That is to say, if there is a trace l in the projection of
R({J1, J2}) on Job i, but not in R({Ji}), then there exists a
Node j, the projection of R({Ji}) on Node j is different from
the projection of R({J1, J2}) on Node j and Job Ji.

However, unlike Part 1, Part 2 is not always true. Following
is a counterexample: a system has two jobs (J1 and J2) and two
nodes (N1 and N2). A variable x (initial value 0) is shared by
the two jobs on N2. J1 has the logic: on N1 it always outputs
a, b, c; on N2 it outputs 1, 2, 3 if x = 0. When J1 executes
alone, the global observations include all interleaves of abc
and 123. J2 has the logic to change x to 1 at the beginning
and reset x = 0 if it sees all three outputs a, b, c. When J2 is
present and scheduled first, J1 can output 1, 2, 3 only if a, b, c
have been outputted—an interference, but neither of two nodes
can detect it locally.

The counterexample shows that completeness does not
always hold, as disappearance of traces may not be detected
locally. We thus ask Question 2.

Question 2: In what kinds of multi-agent systems, one can
locally detect the traces that exist when a job executes alone,
but not exist when two jobs execute simultaneously?

Lemma 3: For a distributed multi-agent system that does
not have shared variables or control & management compo-
nents, local detection can identify the traces existing when a
job executes alone, but not when two jobs execute simultane-
ously (see the proof in appendix).

That is to say, if there is an l in R({Ji}) and but not in the
projection of R({J1, J2}) on Job i, there exists Node j, such
that the projection of R({Ji}) on Node j is different from the
projection of R({J1, J2}) on Node j and Job i.

The systems satisfying the above conditions are limited,
as most multi-agent systems have control & management
components. Before we relax the restrictions, the concept of
well-extension is defined.

Definition 4: For a trace l in the system when Job Ji
executes alone, denote its projection on machine M as lM .
Among traces generated when two jobs execute, if any one
whose projection on M and Ji is a prefix of lM can be
extended to a trace whose projection is lM , then machine M
is well-extended for Job Ji.

Example: when Job 1 executes alone, it produces a trace
whose projection on machine M is “light on, light off”. When
Job 1 and Job 2 executes, project all the traces on M and Job
1. Consider the traces whose projection is “light on”. If any
of them has an extended trace whose projection is ‘light on,
light off”, then M is well-extended for Job 1.

Intuitively, the well-extended property states that, compar-
ing the projections of two reachability graphs—one generated
when a single job runs and the other generated when multiple
jobs run—on a specific job and a specific control & manage-
ment machine, the former is a subgraph of the latter.

We now extend the answer to Question 2.

Lemma 4: For a distributed multi-agent system without
shared variables, if all the control & management machines
are well-extended for every job, local detection can identify
the traces existing when a job executes alone, but not existing
when two jobs execute simultaneously (proved in appendix).

One may ask why the property is needed and whether
it is widely satisfied. Here are some insights. Intuitively, the
well-extended property says that, if a projected trace does not
happen in the multi-job scenario, it does not happen in the
single-job scenario. The well-extended property can rule out a
class of interference: a projected trace happens in a single-job
scenario, but not in the multi-job scenario. An interference-free
system always satisfies the well-extended property.

To further remove the restriction on shared variables, we
next introduce the concept of fine-grained specification.

Definition 5: A shared variable has a fine-grained specifi-
cation if any transition that reads/writes the variable generates
a message showing the value it reads/writes. If the variables
shared among different jobs or among jobs and control &
management machines have fine-grained specifications, the
system model is fine-grained.

Example: The shared variable x in the previous counterex-
ample does not have a find-grained specification—Job 2 can
modify x’s value without generating a message.

With the concept of find-grained model, Lemma 5 further
extends the answer to Question 2.

Lemma 5: If all the control & management machines are
well-extended for every job and the system model is fine-
grained, local detection can identify the traces existing when
a job executes alone, but not existing when two jobs execute
simultaneously.

Again, one may question whether the fine-grained prop-
erty is common in distributed multi-agent systems. It is a
misconception, as the property is a requirement of modeling
rather than that of a system. Once a model captures read/write
operations on variables shared either by two different jobs or
by a job and its control & management component, we call
the model fine-grained.

414 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

From Lemma 1 to Lemma 5, we can have Theorem 1.

Theorem 1: For a distributed multi-agent system, if the
control & management machines are well-extended for every
job and the system model is fine-grained, then global job
interferences can be detected locally; it is sound and complete.

C. Remarks

First, local observations are not the observation of one
system run, but the set of all local traces in all the system
runs. It is easy to obtain a local trace, but covering all of
them is nontrivial.

Second, one may feel the localization of detection is against
intuitions if he regards interference detection the same with
anomaly detection. These two tasks are different, and job
interference is an important source of anomalies in distributed
multi-agent systems where independent jobs execute.

D. Random Walk Guided by Local Observations

Following we propose a guided random walk algorithm
(Algorithm 1) to cover the local observations of Job i at Node
j without constructing the global reachability graph.

Algorithm 1 Random Walk Guided by Local Observations

Input:
The examined system, T(M,V, IO, S0, V0,m, n);
The examined job, Job i; The observed node, Node j;
The number of rounds, nr; The depth of a round, d;
The guiding vector, G;

Output:
The set of covered local traces of Job i at Node j, H;

1: H ← ∅, init(S0, V0) {Initialization}
2: for round = 1 to nr do
3: ct ← null {Initialize the current trace ct}
4: for depth = 1 to d do
5: for all m ∈ M do
6: W(m)← 0{Initialize the weight vector}
7: if isExecutable(m) = True then
8: add G.WeightOfMachine(m) to W(m)
9: if isJobiMachine(m) = True then

10: add G.WeightOfJobM(m) to W(m)
11: if isOnNodej(m) = True then
12: add G.WeightOfNodej(m) to W(m)
13: if isNewTransition(m) = True then
14: add G.WeightOfNewIO(m) to W(m)
15: if isExternalJobiIO(m) = True then
16: add G.WeightOfExtJobiIO(m) to W(m)
17: W← normalize(W); nt ← random(M,W)
18: if nt = null then
19: break {No machine to execute}
20: else
21: executeOneStep(nt)
22: update(ct) {Update the current trace}
23: update(H ,ct) {Update covered traces}
24: return H

The algorithm contains three layers of loops. The outer
loop and the second inner loop conduct the random walk with
nr rounds (at most d steps in each round). In each step, the
inner most loop computes the transition probability based on

the guiding vector G (Line 5-Line 16). A machine is thus
randomly picked and executed.

The entries in the guiding weight vector are as follows.
Weight of Machines describes the relative speed of each
machine. If the server machines have lower weight than the
client machines, interference due to heavy load on server will
be discovered early. Weight of Job i Machines describes the
possibility to pick Job i machines. A low value favors the local
observations with the possible interferences of Job i. Weight of
Node j describes the possibility of picking machines on Node
j. A large number is preferred to quickly cover more traces on
observed node. Weight of New Job i Transitions is preferred to
be large, as it describes the possibility of choosing a machine
that generates a new Job i symbol in the next step. Weight
of External Job i IOs describes the possibility of picking a
non-job i machine that can generate a Job i IO in next step.
A large value is preferred, because these IOs usually generate
interference.

If a Job i machine Mk is picked with probability pk and
takes sk steps to finish the execution, then we set the round
depth as d = 10 ×maxk(

sk
pk
). According to the Chebyshev’s

inequality, d steps can guarantee that 90% of the rounds finish
execution of Job i.

The memory cost of the algorithm is O(|Hi,j |+ d), where
|Hi,j | is the size of all local observations of Job i at Node
j. The memory consumption is independent of the number of
nodes and hence our algorithm is scalable.

The time cost of the algorithm is O(nr×d×|M|×|Hi,j |),
where nr is the number of rounds, |M| is the number of
machines. |Hi,j | is a multiplication factor because in each
step we need to check for each machine whether the next
transition generates a new local observation (Line 13). The
random walk algorithm can cover all local observations of Job
i on Node j with high probability when the number of rounds
is large enough (e.g. the number of global traces). The time
cost can be exponential to the number of nodes–the same with
the straightforward approach.

Theorem 1 transfers the high probability of the coverage to
the high confidence of global interference knowledge. Without
Theorem 1, one cannot claim his confidence no matter how
many local traces are observed, since the interference may be
just invisible locally.

IV. CASE STUDY: KANSEI

A. The Architecture of Kansei

The Kansei testbed [9], [1] is designed to facilitate research
on sensor network applications in a large scale. It provides a
testbed for conducting wireless sensor network experiments
on various wireless platforms as well as diverse sensor node
platforms, including XSM, Telosb, iMote2 and Stargates. Kan-
sei 1.0 consists of 96 Kansei Nodes. As shown in Fig. 2, each
Kansei node comprises of a Starget and three attached sensors.
The job control and management components reside on the
central Kansei Director and each Stargate.

Kansei specifications are modeled by a set of CEFSMs
(details skipped due to the space limit).

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 415

Kansei Director Stargate Director

Fig. 2: Kansei Architecture

B. Properties of Kansei

Kansei model satisfies the two properties: (1) the model is
fine-grained; and (2) the control & management components
are well-extended.

1) Fine-grained: The shared variables represent the sensor
hardware shared by jobs. We modele its read/write operations
with distinguished messages. Therefore the model is fine-
grained.

2) Well-extended: We study control & management ma-
chines in Kansei model one by one. (1) The Time machine
sends Job i start-time and end-time messages in a fixed order,
independent of other jobs. Time machine is well-extended. (2)
The KanseiDirectorRemote machine receives time messages
and sends START messages to HandleClient machines. The
START messages can be sent if and only if the start-time
message is received. If no local interference is found, no
other Job i message will be generated. The machine is thus
well-extended. (3) KanseiProxy only receives messages FileSt
and FileFin. FileSt messages are always accepted. FileFin
can be accepted only if its corresponding FileSt is at the
head of a queue (FileSt is removed after the acceptance).
Therefore KanseiProxy receiving Job i’s FileSt from Node
j eventually leads to receiving the corresponding FileFin—
independent of other jobs. KanseiProxy is well-extended. (4)
A JobMonitor machine receives Job i’s end-time messages
from the Time machine and sends out its FileSt and FileFin.
It is well-extended. (5) A HandleClient machine receives a
START message from the KanseiDirector and sends out the
start signal to a sensor mote—well-extended too. In summary,
the control & management components of Kansei satisfy the
well-extended property.

With the two properties, global interference detection on
Kansei can be replaced by the local one.

C. Interference Detection

Before jobs are submitted to Kansei, one detects job
interference to avoid anomalies resulted from the interference.
We study a case where two off-line sensing jobs are submitted.

1) Settings: Considering the scenario where Job 1 is sched-
uled on Node 0–71 and Job 2 is on Node 0–45 and Node 72–
95. They only collect data on XMS sensors and send back to
the server. Job 1 is supposed to start on Time 1 (logical time)
and finish on Time 2 while Job 2 is to start on Time 3 and
finish on Time 4.

2) Interference Traces Detected: The guided random walk
algorithm was applied on the Kansei model. we chose the
depth of walk as 200, the weight of Time machine as 4, the

TABLE I: Local Interference Traces Detected

1 t=1 t=2 j1St j2St End

2 t=1 j1St t=2 j2St End

3 t=1 t=2 j1St j2St j1FileSt End

4 t=1 j1St t=2 j2St j1FileSt End

5 t=1 t=2 j1St j2St j1FileSt j1FileFin End

6 t=1 j1St t=2 j2St j1FileSt j1FileFin End

7 t=1 t=2 j1St j1FileSt j2St End

8 t=1 j1St t=2 j1FileSt j2St End

9 t=1 t=2 j1St j1FileSt j2St j1FileFin End

10 t=1 j1St t=2 j1FileSt j2St j1FileFin End

weight of KanseiDirectorRemote machine as 80, the weight of
Job 1 machines as -0.9, the weight of new Job 1 transitions
as 50, and the weight of external Job 1 IO as 100. Due to the
symmetry, the overlapped nodes of two jobs have the same
local observations. We thus focus on Node 0. Similarly, Job
1 and Job 2 are symmetric, and we thus focus on detecting
interference on Job 1.

After running 100,000 rounds, 19 local traces were ob-
served on Node 0. According to the Job IOs, they are at most
19 local traces—we covered all local traces.

Comparing the observed local traces with the Job 1 traces
when it is executed alone, we identified ten interference traces
(shown in Table I). These traces only exist when Job 1 and Job
2 run in the system, but not when Job 1 runs alone. Take trace
5 as an example. The interference trace includes six job IOs:
time 1, time 2, start of Job 1, start of Job 2, start of Job 1 file
submission, and finish of Job 1 file submission. We can see that
Job 2 starts before the Job 1 submits files. Therefore, Job 2
will be programmed to the sensor while Job 1 is still running—
the interference actually leads to a severe anomaly. The first
six interference traces all generate the same anomaly. In the
remaining four traces, Job 1 finishes execution, but it cannot
finish data transmission due to the interruption of Job 2. The
interference also produces an anomaly in Kansei system. We
will further discuss the roots of interference in Section IV-D.

3) Memory Consumption: To measure memory perfor-
mance of the proposed algorithm, the algorithm was evaluated
on several cases: starting from a 4 node scenario where each
job uses 3 nodes with 2 overlapped nodes, and increasing the
number of nodes to 96; The experiments were repeated with
the number of rounds from 10 to 10,000. The heap memory
consumption in Java Virtual Machine was measured.

Fig. 3a shows that as the number of nodes increases, the
average memory consumption remains stable regardless the
number of rounds. The result is consistent with the theoretical
analysis in Section III-D. In contrast, when we constructed
the whole reachability graph, the 512M heap memory of Java
virtual machine quickly ran out with only 14 nodes.

Fig. 3b shows that the memory consumption is stable as the
number of covered local traces increases, although the previous
theoretical analysis indicates a linear increase. It is because the
memory consumption of new collected trace is shadowed by
the large memory cost on CEFSM construction and temporary
system state maintenance, which are constant to the number
of covered traces. The results do not change when the number
of nodes varies.

416 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

4) Coverage Time: The coverage time was also analyzed.
We used the number of rounds as a metric and observed how
the local traces were gradually covered in the random walk
with 100,000 rounds. The experiments were repeated with the
53 node scenario and 96 node scenario. The results are shown
in Fig. 3c. In both scenarios, the first several traces are quickly
covered due to the guiding vector. As the number of covered
traces increases, the number of rounds to cover the next new
local trace grows exponentially. About 100,000 rounds, all
19 local traces are covered. The exponential growth result is
consistent with our theoretical analysis.

D. Sources of interferences

The detected interference and the anomalies were reported
to the Kansei testbed team. The developers confirmed their
existence. With interference traces, we further helped them to
diagnose three sources of interference.

First, in Kansei Director, the scheduler fetches jobs in a job
table and dispatches them if the current time is later than the
jobs’ expected start time. Since Director checks the job table
every 30 seconds, the successive jobs that have close expected
start time may be scheduled out of order.

Second, Kansei Director reserves resources for a job only if
it is still running. Because Kansei Director determines a job’s
status according to their end-time but not its real status, a new
job might be programmed to the same node while an old one
is still submitting the experiment data.

Third, when a job finishes on a Stargate node, it attempts to
upload the log files to Kansei Proxy by a Socket connection.
The Kansei Proxy works in a single thread way. It receives
connection requests and puts them into a queue. Only when
the request is at the head of the queue, data transfer starts.
Kansei Director may schedule a new job on the same node
while a job machine on a Stargate is still waiting in the queue.

The detected interference as well as their sources indicates
two modifications of Kansei system design: (1) The system
should enable Kansei Director to know the real status of jobs,
so that a new job will not be scheduled until the old one
has completed. (2) The single-threaded socket in Kansei Proxy
could be replaced with a multi-thread one to avoid the potential
congestion in queue.

V. RELATED WORK

Job interference problems were originally studied in cen-
tralized telephony systems (referred as feature interaction
problems) where multiple independent features, such as call
forwarding and call waiting, are required to coexist without
interference. For example in [10], [11], feature interaction was
formally defined; theorems and algorithms were proposed to
avoid state explosion due to the large number of features.
Our work is inspired by the study, but focuses on avoiding
explosion generated by the large number of nodes, typical
in distributed systems. In [12], similar interaction problems
were studied in the context of distributed SIP call systems,
and it was extended to embedded control systems [13] and
networked home appliances [2]. However, they did not address
the state explosion in large distributed systems either. The
scalability problem due to the large number of agents were

studied in the context of detecting disagreements among team-
members[14], but it did not aim at detecting job interference.
Although general anomaly detection has been well studied in
distributed systems (e.g. [15], [16], [17], [18]), we are not
aware of study focusing on job interference detection in large
distributed multi-agent networks.

Our work is also inspired by flow security analysis that
checks whether a program may leak information about its
high (i.e. secret) inputs into its low (i.e. public) outputs.
The conventional method is to enforce noninterference such
that low outputs are independent of high inputs [19]. Recent
work includes noninterference for deterministic interactive
programs [20], quantitative analysis of information leak [21],
and information flow security in distributed systems [22].

VI. CONCLUSION

In this paper we studied the job interference detection of
distributed and multi-agent systems using a formal approach.
To cope with the state explosion problem we obtained suffi-
cient conditions, which allowed us to reduce the interference
detection to that on system components, instead of an analysis
of global system behaviors. We showed that our method is
sound and complete. At each network node, a memory efficient
guided random walk algorithm was applied for detecting
interference. We applied our method to Kansei wireless sensor
network system and uncovered ten new interference traces.

To apply our theory, we require pre-knowledge of system
topology. How to address the interference detection problem
without a fixed topology is our future work. Also, our theory
requires a system to satisfy two conditions: fine-grained and
well-extended. They are sufficient conditions. What is the
necessary and sufficient condition remains an open problem.

REFERENCES

[1] A. Arora, E. Ertin et al., “Kansei: A High-Fidelity Sensing Testbed,”
IEEE Internet Computing, pp. 35–47, 2006.

[2] M. Kolberg, E. Magill et al., “Compatibility Issues between Services
Supporting Networked Appliances,” Communications Megazine, IEEE,
vol. 41, no. 11, pp. 136–147, 2003.

[3] G. Holzmann, “The Model Checker SPIN,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[4] E. Clarke, “Model Checking,” in Foundations of Software Technology
and Theoretical Computer Science. Springer, 1997, pp. 54–56.

[5] M. Calder and A. Miller, “Feature Interaction Detection by Pairwise
Analysis of LTL Properties - A Case Study,” Formal Methods in System
Design, vol. 28, no. 3, pp. 213–261, 2006.

[6] A. Felty and K. Namjoshi, “Feature Specification and Automated
Conflict Detection,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 12, no. 1, pp. 3–27, 2003.

[7] D. Lee and M. Yannakakis, “Principles and Methods of Testing Finite
State Machines - A Survey,” Proceedings of the IEEE, vol. 84, no. 8,
pp. 1090–1123, 1996.

[8] S. Lam and A. Shankar, “Protocol Verification via Projections,” IEEE
Transactions on Software Engineering, no. 4, pp. 325–342, 1984.

[9] “KanseiGenie,” http://kansei.cse.ohio-
state.edu/KanseiGenieFed/index.php.

[10] T. LaPorta, D. Lee et al., “Protocol Feature Interactions,” in Proceedings
of FORTE-PSTV, 1998, p. 59.

[11] A. Arcuri and L. Briand, “Formal analysis of the probability of
interaction fault detection using random testing,” 2011.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 417

(a) (b) (c)

Fig. 3: (a) Average memory cost with varying number of nodes. (b) Average memory cost with varying number of local traces
covered. (c) Number of rounds with varying number of local traces covered.

[12] M. Kolberg and E. Magill, “Managing Feature Interactions between
Distributed SIP Call Control Services,” Computer Networks, vol. 51,
no. 2, pp. 536–557, 2007.

[13] A. Metzger, “Feature Interactions in Embedded Control Systems,”
Computer Networks, vol. 45, no. 5, pp. 625–644, 2004.

[14] G. Kaminka, “Detecting Disagreements in Large-Scale Multi-Agent
Teams,” Autonomous Agents and Multi-Agent Systems, vol. 18, no. 3,
pp. 501–525, 2009.

[15] P. Tichỳ and R. Staron, “Multi-Agent Technology for Fault Tolerant and
Flexible Control,” Innovations in Multi-Agent Systems and Applications-
1, pp. 223–246, 2010.

[16] S. Haegg, “A Sentinel Approach to Fault Handling in Multi-Agent
Systems,” Multi-Agent Systems Methodologies and Applications, pp.
181–195, 1997.

[17] L. Liu, K. Logan et al., “Fault Detection, Diagnostics, and Prognostics:
Software Agent Solutions,” IEEE Transactions on Vehicular Technol-
ogy, vol. 56, no. 4, pp. 1613–1622, 2007.

[18] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[19] A. Sabelfeld and A. Myers, “Language-Based Information-Flow Se-
curity,” Selected Areas in Communications, IEEE Journal on, vol. 21,
no. 1, pp. 5–19, 2003.

[20] D. Clark and S. Hunt, “Non-Interference for Deterministic Interactive
Programs,” Formal Aspects in Security and Trust, pp. 50–66, 2009.

[21] G. Smith, “On the Foundations of Quantitative Information Flow,”
Foundations of Software Science and Computational Structures, pp.
288–302, 2009.

[22] N. Zeldovich, S. Boyd-Wickizer et al., “Securing Distributed Systems
with Information Flow Control,” in 5th USENIX Symposium on Net-
worked Systems Design and Implementation, 2008, pp. 293–308.

APPENDIX

Proof of Lemma 3: WLOG, let i = 1. Consider a l ∈
R({J1}) and l �∈ π1 ◦R({J1, J2}). There are two cases.

Case 1: An anomaly trace l has a new projection on some
node that does not appear in R({J1, J2}), that is, ∃πNj (l) �∈
πNj

◦ π1 ◦R(J1, J2). The anomaly can be detected on Nj .

Case 2: An anomaly trace l does not have any new
projection on any node, but the interleaving of projections is
new. That is to say, ∀Nj , πNj

(l) ∈ πNj
◦ π1 ◦ R(J1, J2), but

l �∈ π1 ◦R({J1, J2}). If there is such a l, the anomaly cannot
be detected locally. We show that this kind of l does not exist.

Because there is no control & management part or shared
variables, J1 machines can only be affected by J2 machines
via inter-job messages. Since the message set sent in channels
are exclusive. Inter-job messages between J2 and J1 machines

do not appear in R({J1}) (where only J1 machines exist), that
is to say, inter-job messages are not in l. Hence in trace l, Job
1 is not affected by J2, i.e. l is not an anomaly trace. It is
contradicting to the condition. �

Proof of Lemma 4: WLOG let i = 1. Similar to Lemma
3, the proof is two-folded. On the one hand, if ∃πNj (l) �∈
πNj ◦ π1 ◦R(J1, J2), the anomaly can be detected on Nj . On
the other hand, if an anomaly trace l does not have any new
projection on any node, but the interleaving of projections is
new, l cannot be locally detected. Since no new projection is
observed, l does not include any messages sent and received
by J2 machines. Assume l = α1α2 . . . αt, now we show that
l can be constructed in R({J1, J2}) by induction. In other
words, l is not an anomaly trace.

Base: Consider α1. Because local observations are the
same, α1 can be generated.

Hypothesis: Assume α1α2 . . . αk can be constructed.

Induction: Consider α1α2 . . . αkαk+1

Case 1: αk+1 is a message sent or received by J1 machine
at Nj . α1α2 . . . αk has been generated, so does its projection
on Node j: lj = π1 ◦ πNj (α1α2 . . . αk). Since any message
sent or received by J1 machines will be observed, lj includes a
trace of J1 machines on Node j. According to the observation
on R({J1}), the trace lj of J1 machines on Node j can be
extended by αk+1. Because there are no shared variables or
messages sent by J2 in R({J1, J2}), J1 is able to send or
receive αk+1 based on what it received in α1 . . . αk.

Case 2: αk+1 is a message sent or received by control &
management machines at Nj . In α1α2 . . . αk, consider J1 IO
sequence sent or received by control & management machines
(denoting it as lc). In R({J1}), it is observed that lc can be
extended by αk+1. Since the control & management machines
on Nj are well-extended and the local observations are the
same, in R({J1, J2}), lc can also be extended by αk+1.

Above all l ∈ π1 ◦R({J1, J2}), a contradiction. �

418 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

