
Secure Resource Provisioning Across Multiple
Domains

Toru Mano
NTT Network Innovation Laboratories

mano.toru@lab.ntt.co.jp

Kimihiro Mizutani
NTT Network Innovation Laboratories

mizutani.kimihiro@lab.ntt.co.jp

Osamu Akashi
NTT Network Innovation Laboratories

akashi.osamu@lab.ntt.co.jp

Abstract—Network resource provisioning is an important
technique for infrastructure providers (infra-providers) because
it enables them to utilize their facilities with high efficiency.
However, to fully satisfy user requests it is probably necessary to
use facilities across multiple domains, for which the conventional
resource provisioning methods are unsuitable for the multiple do-
mains because they require unrevealed information from infra-
providers. The competitive relationships among infra-providers
make it difficult for them to reveal their information to the infra-
providers. In this paper, we propose a framework and method for
resource provisioning across multiple domains that uses infra-
providers’ confidential information without exposing it to other
infra-providers. To preserve the confidentiality of the infra-
providers’ information, we propose a cooperative framework
using multiparty computation (MPC). However, although MPC
provides confidentiality it also brings about nearly intractable
computational overhead. Therefore, we pick out values that are
locally commutable in each domain and essential for resource
provisioning. By using MPC only for these values, our proposed
method achieves both tractable MPC overhead and good quality
provisioning while preserving information secrecy. Evaluation
results show that the computational overhead is tractable and
that the average utility fee is at least on the same level as that
of the conventional methods.

I. INTRODUCTION

Network resource provisioning is an important technique
for infrastructure providers (infra-providers). In resource pro-
visioning for user requests such as those for a virtual network
that contains network and computational resources, the infra-
provider determines which nodes and links should be used
and how to connect them to satisfy the request. By combining
this technique with network virtualization [1], infra-providers
can utilize their facilities effectively and satisfy user requests
flexibly. However, it is probably necessary to use facilities
across multiple domains to fully satisfy user requests. For
example, some users may want to use a geographically
widespread network in which some nodes are located in the
U.S., other nodes are located in the EU, and the other nodes
are located in Asia. In such cases, the provisioning requires
multiple infra-providers’ facilities because one infra-provider
can hardly cover the whole world. Although many existing
research studies deal with resource provisioning [2]–[5], they
focus on single domain provisioning.

However, using these methods for multiple domains is not
suitable since in such cases the methods requires unrevealed
information about the infra-providers such as network topol-
ogy, facility locations, and available resources. Without this
information the result will probably be provisioning failures or
poor provisioning quality, but it is hard for the infra-providers
to expose such information to other infra-providers due to

the competitive environment that exists among them [6]. For
example, it has been found that free-riding on a competitor’s
experiences is quite effective in general [7]. In other words,
imitation costs are much lower than inventive costs.

In this paper, we address the problem of secure resource
provisioning across multiple domains, that is, the problem
of how to provision resources across multiple domains while
keeping infra-providers’ information secret from other infra-
providers. We propose a framework and method to deal
with this problem. At first glance, it seems impossible to
calculate on the basis of infra-providers’ information without
revealing it, but a cooperative framework known as multiparty
computation (MPC) [8]–[10] makes the calculation theoret-
ically possible. Hence, our proposed framework uses MPC
to enable secure resource provisioning. However, although
MPC provides confidentiality, it also brings about nearly
intractable computational overhead. Therefore, we pick out
values that are locally commutable in each domain and
essential for resource provisioning. By using MPC only for
these values, our proposed method aims to achieve both
tractable MPC overhead and good quality provisioning while
preserving information secrecy. In particular, to reduce the
MPC overhead with our proposed method to the tractable
level, we split the task into two parts: one executed among the
domains via MPC and one executed in each domain locally.
We obtained evaluation results showing that the proposed
method’s computational overhead is tractable and that its
average utility fee is at least on the same level as that of
the conventional methods.

The rest of this paper is organized as follows. Section
III presents the network model and formulates the secure
resource provisioning problem. Section III describes the
framework and method we propose. Section IV evaluates the
computational overhead and the average utility fee. Section
V summarizes related work. Section VI briefly concludes the
paper with a summary of key points.

II. RESOURCE PROVISIONING ACROSS MULTIPLE

DOMAINS

In this section, we first define network model, user request,
and resource provisioning. Then, we formulate the resource
provisioning problem for a single domain. Finally, we de-
scribe resource provisioning across multiple domains.

A. Network model

We define an infra-provider’s network as comprising an
undirected graph G = (V,E), node attributes, and link
attributes, where V is the set of nodes and E is the set of links.

1129978-3-901882-50-0 c©2013 IFIP

In this paper, we consider available CPU capacity, geographic
location, and utility fee for node attributes, and denote them
respectively as mappings aV , lV , and uV . We also consider
available bandwidth capacity and utility fee for link attributes,
and denote them respectively as mappings aEand uE . There-
fore, we denote the network as a tuple of an undirected graph
and attribute mappings N = (G, aV , lV , uV , aE , uE).

B. User request

We define a user network request as comprising an
undirected graph H = (W,F), node constraints, and link
constrains, where W refers to the set of nodes and F
refers to the set of links. In this paper, we consider CPU
capacity and geographic location for node constraints, and
bandwidth capacity for link constraints. We use a mapping
cW to represent CPU capacity constraints, a mapping lW to
represent preferred geographic locations, and a mapping dW
to represent acceptable distances from preferred locations. In
other words, a node w ∈ W requires CPU resource cW (w)
and requires locating in position within a radius of dW (w)
from lW (w). For representing bandwidth constraints of the
links, we use a mapping cF . Thus, we denote a user network
request as a tuple of an undirected graph and constraint
mappings R = (H, cW , lW , dW , cF).

C. Resource provisioning

We define a resource provisioning P as a combination of
a node mapping MN and a link mapping ML. In resource
provisioning, we have to determine which infra-provider’s
resources should be used for satisfying the user request. In
other words, we have to determine which infra-provider’s
nodes should be used for each user requested node and how
to connect them by using the infra-provider’s links. Here, the
node mapping MN is a mapping from the set of request nodes
W to the set of infra-provider’s nodes V and MN (w) = v
if and only if the infra-provider’s node v is used for the
request node w. The link mapping ML is a mapping from
the set of request links F to the set of 0-1 integer vector with
respect to the set of infra-provider’s links E. In particular,
(ML(f))e = 1 if and only if the infra-provider’s link e is used
for the request link f . When path splitting [2] is allowed in
provisioning, ML is a mapping to the set of 0-1 real vectors
and (ML(f))e > 0 means that the link e is used for the
request link f in the proportion of (ML(f))e. In this paper,
we assume that path splitting is allowed because it enables
the efficient resource utilization.

We seek to achieve low price provisioning while sat-
isfying the user request because users main interest, other
than the availability of the requested network, is how much
the network utility fee will be. Thus, we search a resource
provisioning (MN ,ML) that minimizes the network utility
fee:∑
w∈W

uV (MN (w)) cW (w) +
∑

e∈E,f∈F

uE(e)cF (f)ML(f)e

(1)
while satisfying the following conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cW (w) ≤ aV (MN (w)) ∀w ∈W

‖lV (MN (w))− lW (w)‖ f ≤ dW (w) ∀w ∈W∑
f :e∈ML(f) cF (f) ≤ aE(e) ∀e ∈ E

ML(f) are paths between MN (x) and MN (y) ∀f = (x, y) ∈ F
(2)

b a

c d

20 30

30 10
20

30

10 A B

C D

E F

G H

I

K

J

20 20

20 20

a

c

d

b

30

10 10

10

20

10

30

30

30

20

10

5
10

20

10

20
10

Figure 1. A user request (left) and the infra-providers’ network (right) and
the resource provisioning (right).

Note that the second term of the network utility fee represents
the fee that comes from link utilization because for each
request link f ∈ F and each infra-provider’s link e ∈ E,
we have to reserve bandwidth of the link e for the link f by
cF (f) (ML(f))e. The above four conditions signify a user
request. The first condition signifies that the infra-provider’s
node MN (w) has enough capacity for the request node w.
The second condition signifies that the infra-provider’s node
MN (w) is close enough to the preferred location lW (w). The
third one signify that the infra-provider’s link e has enough
capacity to contain all the request links f such that they
are mapped to the path ML(f) which contains the link e.
In addition, the resource provisioning problem is one of the
NP-hard problems [11]. This means that unless P = NP ,
no algorithm can solve the problem in polynomial time.

D. Multiple domains

In this paper, we assume that network N consists of
multiple infra-providers and the number of infra-providers is
n. Here, we denote thei-th infra-provider’s network as N (i) =

(G(i), a
(i)
V , l

(i)
V , u

(i)
V , a

(i)
E , u

(i)
E) where G(i) =

(
V (i), E(i)

)
, and

assume that the inter-domain links, which lie in different infra-
providers, belong to both infra-providers. As a result, we can
express the entire set of nodes V as

⋃n
i=1 V

(i) and the entire
set of links E as

⋃n
i=1 E

(i). In secure resource provisioning
across multiple domains, the infra-providers seek the provi-
sioning that minimizes the utility fee (1) and satisfies the user
request(2). “Secure” means that, during this procedures, the
infra-providers do not reveal their information: topology, node

attributes, and link attributes, i.e., G(i), a
(i)
V , l

(i)
V , u

(i)
V , a

(i)
E ,

and u
(i)
E . However, we assume that the physical connection

relationships among the infra-providers are known [12]. Ad-
ditionally, we assume that the infra-providers are semi-honest
or honest-but-curious, that is, they follow the protocol but
keep intermediate computation results and can use them for
inferring the others’ information [9]. In other words, they do
not cheat or not lie but merely gather information and use it
for inferring.

III. PROPOSED SECURE RESOURCE PROVISIONING

ACROSS MULTIPLE DOMAINS

In this section, we first describe problems that occur
when using conventional single domain methods. Next, we
describe our cooperative framework and its reasoning behind
its development. Then, we describe our proposed method by
splitting in into three procedures: node-domain assignment
selection, inner provisioning at each infra-provider, and inner
provisioning integration.

1130 IFIP/IEEE IM2013 Workshop: 5th International Workshop on Management of the Future Internet (ManFI)

A. Problems with the conventional single domain methods

Although several research studies have been made on
resource provisioning [2]–[5], when we try to apply these
conventional single domain methods to multiple domains, we
encounter three problems: the domain information security,
the need for a trusted and neutral third party, and MPC
overhead. In consequence, applying conventional methods to
the multiple domains is impractical.

Using the conventional methods does not keep the infra-
providers’ information secret because the information must
be gathered into one place, e.g., one of the infra-providers,
to execute the methods. Since, this violates the information’s
confidentiality, we need mechanisms to perform the provi-
sioning while keeping the information secret. We think there
are two prospective frameworks for achieving this: the trusted
and neutral third party framework and the MPC framework.

In the trusted and neutral third party framework, the infra-
providers ask for a third party to find the provisioning instead
of them. In other words, infra-providers give their secret
information to the trusted third party and the party computes
the provisioning by using one of the conventional methods
after aggregating the information. However, we need a third
party that is not only trusted but also neutral, i.e., the party
should not reveal the information or cheat in computation for
a certain infra-provider’s benefit. From a practical application
viewpoint, it is very hard to find or establish a third party
independent from any infra-providers. Hence, the trusted and
neutral third party framework is impractical.

In the MPC framework, the infra-providers execute con-
ventional methods via MPC to maintain the information
security. Although this framework theoretically enables us
to provision resources securely across multiple domains, it
is impractical due to MPC’s huge computational overhead.
Directly applying MPC to an algorithm means that every algo-
rithm operation (addition, multiplication, comparison, etc.) is
executed via MPC. Since MPC usually needs communication
to be established among the parties, and since the communica-
tion overhead is much larger than the ordinary computational
(addition, multiplication, comparison, etc.) overhead, com-
bining these methods results in impractically large overhead.
Detailed analytic evaluations of these overheads are described
in Section IV.

B. Cooperative framework via MPC

We employ a cooperative framework using MPC for two
reasons. First, it is hard to find or establish a trusted and neu-
tral third party, as described before. Second, although MPC is
operationally "heavy", there is room for reducing the number
of MPC operations. In the framework we propose, the user
first sends a request to one of the infra-providers. The recipient
infra-provider then shares it with other infra-providers in the
framework. Next, the infra-providers start executing coopera-
tive computations among them, some computations via MPC
for confidentiality and the others in each infra-provider locally
without MPC to reduce the MPC overhead. Finally, after the
computations are finished, the recipient provider tells the user
whether the requested network is available and if so what the
provisioning utility fee is. Note that the infra-providers do
not use any third parties’ help and all infra-providers in the
framework join in performing the computations.

The MPC framework is a cooperative way of conducting
general calculation on the basis of the parties’ input while
keeping the input secret without a third party’s help [8]–
[10]. Using MPC enables almost all of the calculation to
be done while preserving the input secrecy among multiple
parties. However, MPC’s computational costs are extremely
high because every elemental operation (e.g. multiplication,
comparison) in it requires communication established among
the parties. In addition, its millisecond-order communication
delay is much larger than the usual nanosecond-order com-
putational delay. We therefore use MPC only partially in our
method, for purposes of preserving secrecy.

C. Overview of the proposed method

We use MPC to carry out the cooperative computation
needed for resource provisioning without revealing the infra-
providers’ information, but no for the cooperative computation
as a whole because of its high communication overhead.
Therefore, we divide the task into two parts: one executed
among the infra-providers via MPC, the other executed in
each infra-provider locally without MPC. As a result, we
can decrease the overhead by reducing the number of MPC
operations. However, this means reducing the information
shared among infra-providers via MPC, which could worsen
the provisioning quality. We evaluate this effect in Section IV
by calculating the average utility fee.

In our proposed method, roughly speaking, the infra-
providers repeat three procedures: choosing a node-domain as-
signment, finding the inner provisioning in each infra-provider
according to the node-domain assignment, and integrating the
inner provisioning to the entire provisioning (Algorithm 1).
We overview our method in the following paragraph and
describe these three procedures in detail in the following
subsection.

Algorithm 1 Overview of the proposed method

1: t← 0, x← 0, y ←M � M is a sufficiently large
number

2: for all node-domain assignments Ai in A do
3: find inner provisioning {Pj} in each infra-provider
4: x′, y′ ← inner provisioning integration � via MPC
5: if y′ < y then � compare via MPC
6: t← i, x← x′, y ← y′ � update via MPC
7: end if
8: end for
9: reveal t, x, y and recalculate the provisioning

First, the infra-providers initialize the variables t to 0, x
to 0, and y to M . Here, the variable t represents a temporal
assignment index, x represents a temporal integration index
(Subsection III-F), andy represents a temporal utility fee.
The constant M is a sufficiently large positive integer. We
use MPC to keep these variables t, x, y secret during this
procedure. Next, the infra-providers choose one of the node-
domain assignments Ai, i.e., they determine which infra-
provider provides resources for a certain request node. Then,
each infra-provider independently finds an inner provisioning
(a resource provisioning for assigned nodes and links that
contains them) and calculates the utility fee for the provi-
sioning. Next, the infra-providers share the results of the
local provisioning via MPC, integrate them into one consistent
resource provisioning across multiple domains, and store its

IFIP/IEEE IM2013 Workshop: 5th International Workshop on Management of the Future Internet (ManFI) 1131

information to x′ and y′. They then update the variables t,
x, y if the current provisioning has a lower utility fee. Next,
after searching all of the node-domain assignment candidates,
they reveal the variables t, x, y and calculate the provisioning.
Finally, the recipient infra-provider tells user the results. Note
that there is a possibility the inner provisioning will fail; when
this happens the infra-providers simply skip the node-domain
assignment. However, for the sake of simplicity, in the rest
of this paper we assume that no infra-provider will fail to
perform its inner provisioning assignment.

D. Node-domain assignment selection

We define a node-domain assignment as a division of the
request nodes W : A = (A1, A2, . . . , An), where

⋃n
i=1 Ai =

W and Ai ∩Aj = ∅ for all i, j ∈ {1, . . . , n}. In other words,
when the i-th infra-provider’s assignment Ai contains a node
w ∈ W , then the i-th infra-provider provides a resource for
the node w. We denote the set of node-domain assignment
candidates as A and its size |A| is at most nW . In this
paper, we set the candidateA for all node-domain assignments
and do not use any heuristics. This is because this paper
focuses on the effectiveness of our cooperative framework
and our proposed method. The most significant aspect of
the proposed method is that it separates the computations
into those locally executed at each infra-provider and those
executed among infra-providers. Hence, we first evaluate that
aspect and leave other aspects untouched, although reducing
the search space (i.e., reducing the number of node-domain
assignment candidates) is also an important issue.

E. Inner provisioning at each domain

Once the node-domain assignment is chosen, each infra-
provider adds auxiliary nodes to achieve consistency and finds
inner provisioning using the linear programming relaxation
method [4]. After finding the inner provisioning, they share
the results via MPC.

When the node-domain assignment is selected, each infra-
provider (e.g., the i-th infra-provider) starts finding the local
provisioning for assigned nodes Ai and links contains them.
The infra-provider add auxiliary nodes to use the conventional
resource provisioning method because one of the end points
of the request link may not be assigned to the infra-provider.
Accordingly, the i-th infra-provider adds new nodes to both
infra-provider’s nodes Vi and request nodes Ai. We define a
boundary of the nodes V as the set of nodes that are connected
to the nodes V but do not belong to them, and denote it as
B(V). We add the boundary infra-provider’s nodes B(Vi)
to the infra-provider’s nodes Vi, and also add the boundary
request nodes B(Ai) to the request nodes Ai. Additionally, we
assume that any of the boundary request nodes B(Ai) can be
mapped to any of the boundary infra-provider’s nodes B(Vi)
but can’t be mapped to any other nodes. We also assume that
there is no utility fee for the infra-provider’s boundary nodes
B(Vi). These procedures ensure that all the request link’s
end points lie in the domain. Hence, the infra-providers can
solve the inner provisioning problem by using one of the con-
ventional methods. However, the provisioning is likely to be
inconsistent with another infra-provider’s inner provisioning
due to adding the boundary nodes. These inconsistencies are
resolved during the integration procedure (Subsection III-F).

We use the linear programming relaxation method to
achieve inner provisioning.We chose this method for three

reason. First, the method is computationally tractable and
will terminate in practical time. More precisely, this method
is polynomial time algorithm and the computational cost is
O(m3.5) where m is the number of variables in the linear
programming [13]. Second, the method tends to output solu-
tion that are nearer to being optimal than the solutions output
by other approximation methods such as greedy ones [4].
Third, the method is flexible owing to the linear programming
formulation, i.e., we can easily add new constraints or change
the utility fee function.

After finding the inner provisioning, each infra-provider
emits one bit that signifies whether the infra-provider can
afford to provide resources for the assigned nodes via MPC.
In addition, each infra-provider emits the utility fee for the
resources. This information is used for the next integration
procedure.

F. Integration of the inner provisioning

In the integration procedure, we integrate n pieces of inner
provisioning into one whole provisioning which satisfies two
conditions: (a) it is consistent with boundary conditions and
(b) it has a low utility fee. Here, the boundary condition
represents the mapping relationships between inter-domain
request links and inter-domain infra-provider links. To achieve
the former condition (a), we adjust the pieces of inner
provisioning to be consistent with the boundary conditions
and integrate them one by one (Algorithm 2). To achieve
the latter condition (b), for each piece of inner provisioning,
we start integration from the inner provisioning. Accordingly,
we obtain n kinds of whole provisioning. From them, we
choose the best one i.e., the minimum utility fee provisioning
(Algorithm 2). In the following, we provide the details of the
procedure.

First, the infra-providers initialize the variables x to 0 and
y to M . Here, the variable x represents a temporal integration
index and y represents a temporal utility fee. The constant
M is a sufficiently large positive integer. We use MPC to
keep these variables x and y secret during this integration
procedure. Next, the infra-providers choose one of them (e.g.,
the i-th infra-provider) and let T be {i}. Here, T represents
the infra-providers whose inner provisioning is fixed. Then,
the i-th infra-provider tells the neighbors N ({i}) its boundary
conditions. We define a neighbors of the i1-th, i2-th, ..., ik-
th infra-providers as the infra-providers that are connected
to at least one of the i1-th, i2-th, ..., ik-th providers by the
inter-domain link. We also denote them as N ({i1, . . . , ik}).
Next, the infra-providers find the neighbor infra-provider from
N(T) that has the highest utility fee. Here, we assume that the
infra-provider is the j-th infra-provider. Note that this search
is executed by using MPC. Then, the j-th infra-provider
recalculates the inner provisioning in order to accommodate
it with the boundary conditions. Next, the j-th infra-provider
tells the neighbors N ({j}) its boundary conditions and the
infra-providers add T to j. The infra-providers repeat these
procedures until T becomes full, i.e.,T = {1, . . . , n}. When T
is full, then the infra-providers have the whole and consistent
provisioning. Accordingly, they calculate the utility fee y′ via
MPC. Then they update the temporal variables x and y as
follows via MPC: if y′ < y then they set x to i and y to y′,
otherwise they do nothing. Next, they choose another index i′
and let T be {i′} and repeat the above procedure. Finally, after
searching all the indices, the variable y contains the minimum

1132 IFIP/IEEE IM2013 Workshop: 5th International Workshop on Management of the Future Internet (ManFI)

utility fee found in this integration and the variable x contains
the corresponding infra-provider index.

Algorithm 2 Inner provisioning integration

1: x← 0, y ←M � M is a sufficiently large number
2: for i← 1, . . . , n do
3: T ← {i}
4: The i-the infra-provider tells the neighbors N({i})

the boundary conditions
5: while T 	= {1, . . . , n} do
6: find j ∈ N(T) such that the j-th infra-provider

has the highest inner utility fee � find via MPC
7: the j-th infra-provider recalculates the

provisioning to accommodate the boundary conditions
8: the j-th infra-provider tells the neighbors N ({j})

the new boundary conditions
9: T ← T ∪ {j}

10: end while
11: calculate entire provisioning fee y′ with MPC
12: if y′ < y then � compare via MPC
13: x← i, y ← y′ � update via MPC
14: end if
15: end for

IV. EVALUATION

We evaluate the effectiveness of our proposed method
by comparing its computational overhead and average utility
fee with the those of conventional methods. We evaluate the
overhead analytically and the average fee numerically. The
results show that the proposed method’s overhead is one
hundredth that of the conventional methods and that the utility
fee is at least on the same level as that of the conventional
methods when the problem size is relatively small.

A. Methods for comparison

We use combinations of a conventional method and MPC
as methods for comparison. For the node mapping algo-
rithm, we use three conventional methods: full search, greedy
algorithm, and linear programming relaxation [4]. For link
mapping, we use the linear programming method for solving
the minimum-cost max-flow problem [14] that represents link
mapping. We execute all these methods via MPC to keep the
infra-providers’ information secret. Accordingly, we denote
the combination of the full node mapping search and the link
mapping method as full search, the combination of the greedy
node search and the link mapping method as greedy, and the
combination of the linear programming relaxation and the link
mapping method as LP relax.

B. Analytic evaluation of the overheads

The number of MPC operations in full search is
O(|V ||W ||E|3.5|F |3.5), in greedy is O(|E||F |3.5), in LP relax

is O
(
(|V ||W |+ |E||F |)3.5

)
, and in the proposed method

is O(n|W |+2). This is because the interior point method
[15] can solve linear programming problem by O(m3.5)
operations, where m is the number of variables in the linear
programming. Furthermore, the number of variables in the
minimum-cost max-flow problem for the link mapping is
|E| · |F |. Note that, in the proposed method, each infra-
provider needs O(n|W |(|E|/n)3.5|F |3.5) ordinary operations
(i.e., operations without MPC) on average.

1.00E+00
1.00E+05
1.00E+10
1.00E+15
1.00E+20
1.00E+25
1.00E+30
1.00E+35

3 4 5 6 7 8 9 10

T
he

 c
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

ec
on

ds
)

The number of infra-providers

Full search Greedy LP relax Proposed

Figure 2. The estimated computational overhead of full search, greedy, LP
relax, and proposed methods.

To estimate the practical computation time, we substitute
the parameter values into the computation cost equations. The
values were set as follows: 20 nodes in each infra-provider, 40
links in each infra-provider, a user request contains10 request
nodes and 20 request links. We also assume that each MPC
operation takes 10 milliseconds due to communication delay
and that each ordinary operation takes one nanosecond. We
vary the number of infra-providers between 3 and 10 and
evaluate the computational overhead for each case (Fig. 2).

The evaluation results show that for a fairly small number
of infra-providers, in particular eight at most, the proposed
method’s computational overhead is less than one-hundredth
that of the conventional methods.

1) Numeric evaluation of the provisioning: We imple-
mented the four methods (full search, greedy, LP relax, pro-
posed) for the numerical simulation. In the implementation,
we replaced each MPC operation with an ordinary operation
because this does not change the output provisioning and
reduces the computational cost. We used the GNU Linear Pro-
gramming Kit (GLPK) [16] to solve the linear programming
in these methods.

In order to evaluate the quality of the methods, we defined
the normalized utility fee for the provisioning as the value
obtained by dividing the utility fee for the provisioning (1) by
the minimum utility fee. We randomly generated the problems
and solved them by using the four methods and calculate the
average normalized utility fee of the greedy method, the LP
relax method, and the proposed method (Fig. 3). Note that
the normalized utility fee of the full search method is always
1 because this method always outputs optimal provisioning.

We used the following parameters: 40 nodes in the infra-
providers, a uniform distribution of 40 to 120 links in the
infra-providers, and two infra-providers. We varied the num-
ber of request nodes |W | between 3 and 9 and, in accordance
with this, randomly chose between |W | and 3 · |W | request
links. For each number of request nodes, we generated 100
problems and used them to calculate the average utility fee.
We set a small number of infra-providers n to hold down the
computational cost. This is because calculating the optimal
utility fee necessitates executing the full search method, which
has exponential computational cost.

The results show that the proposed method’s average util-
ity fee is at least on the same level as that of the conventional
methods (Fig. 2). Overall, the results we obtained confirm that
the proposed method has small computational overhead and

IFIP/IEEE IM2013 Workshop: 5th International Workshop on Management of the Future Internet (ManFI) 1133

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9T
he

 a
ve

ra
ge

 n
or

m
al

iz
ed

ut

ili
ty

 fe
e

The number of request nodes

Greedy LP relax Proposed

Figure 3. The average normalized utility fee of the greedy, LP relax, and
proposed methods.

also outputs good resource provisioning when the problem
size is relatively small.

V. RELATED WORK

In addressing the resource provisioning problem, we find
a combination of network and computational resource and
determine how to connect them to each other to satisfy
given conditions. Much research has been done on resource
provisioning, especially in virtual network contexts such as
allowing path splitting [2], using a graph isomorphism tech-
nique [3], using linear programming and random rounding
techniques [4], and using a page-rank like technique [5].
However, we cannot apply these single domain methods
directly to multiple domains because infra-providers do not
reveal their network information to other infra-provider.

There are several ways to construct a path between
two network nodes lying in different domains, including
MPLS/GMPLS and RSVP [17], [18]. Although these proto-
cols are useful, they are unsuitable for solving the resource
provisioning problem across multiple domains because we
first have to determine which nodes and links should be used.

Some methods developed through research handle network
operations with complete confidentiality. For instance, one
deals with finding the shortest path across multiple domains
[6], while another copes with verifiable routing between ASs
[19]. However, since specific techniques are used for each of
these methods, we cannot apply the same technique to the
resource provisioning problem across multiple domains.

Secrecy preserving computation methods such as MPC
have been developed for general purposes [8]–[10]. In some
research these techniques have been applied to practical prob-
lems [20]. Nevertheless, using these methods directly to solve
the resource provisioning problem across multiple domains is
impractical because they impose too much computational cost
on infra-providers in compensation for providing information
security.

VI. CONCLUSION

In this paper, we have proposed a cooperative framework
and method to address the secure resource provisioning prob-
lem across multiple domains. Using our proposed method,
the domains can find resource provisioning across multiple
domains while keeping their information secret. In our frame-
work, the infra-providers’ information is kept secret due to
the use of multiparty computation (MPC). However, the use
of MPC brings about huge computational overhead. In the

proposed method, we therefore reduce the MPC overhead
by splitting the task into two parts: one executed among
the infra-providers via MPC and the other executed in each
infra-provider locally. We also evaluated the computation
overhead and average utility fee of our proposed method and
conventional methods. The results show that the proposed
method’s overhead is one hundredth that of the conventional
methods and its utility fee is at least on the same level as
that of the conventional methods when the problem size is
relatively small.

REFERENCES

[1] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtual-
ization,” Comput. Netw., vol. 54, no. 5, pp. 862–876, Apr. 2010.

[2] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual net-
work embedding: substrate support for path splitting and migration,”
Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar. 2008.

[3] J. Lischka and H. Karl, “A virtual network mapping algorithm based
on subgraph isomorphism detection,” in Proc. ACM VISA, 2009, pp.
81–88.

[4] M. Chowdhury, M. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206 –219, feb. 2012.

[5] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
Comput. Commun. Rev., vol. 41, no. 2, pp. 38–47, Apr. 2011.

[6] M. Fukushima, T. Hasegawa, T. Hasegawa, and A. Nakao, “Minimum
disclosure routing for network virtualization,” in Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on,
april 2011, pp. 858 –863.

[7] M. B. Lieberman and D. B. Montgomery, “First-mover advantages,”
Strategic Management Journal, vol. 9, no. S1, pp. 41–58, 1988.

[8] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in Proc. ACM STOC, 1987, pp. 218–229.

[9] O. Goldreich, Foundations of Cryptography, volume II, Basic Appli-
cations. Cambridge University Press, 2004.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation,” in
Proc. ACM STOC, 1988, pp. 1–10.

[11] D. G. Andersen, “Theoretical approaches to node assignment,” Dec.
2002, unpublished Manuscript.

[12] The cooperative association for internet data analysis (CAIDA).
[Online]. Available: http://www.caida.org/data/

[13] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proc. ACM STOC, 1984, pp. 302–311.

[14] J. B. Orlin, “A polynomial time primal network simplex algorithm for
minimum cost flows,” in Proc. ACM SODA, 1996, pp. 474–481.

[15] Y. Ye, Interior-Point Algorithms: Theory and Analysis. New York,
USA: John Wiley & Sons, 1997.

[16] GNU linear programming kit (GLPK). [Online]. Available:
http://www.gnu.org/software/glpk/

[17] S. Dasgupta, J. de Oliveira, and J.-P. Vasseur, “Path-computation-
element-based architecture for interdomain MPLS/GMPLS traffic en-
gineering: Overview and performance,” Network, IEEE, vol. 21, no. 4,
pp. 38 –45, july-august 2007.

[18] J. Vasseur, A. Ayyangar, and A. Farrel, “Inter-domain MPLS and
GMPLS traffic engineering–resource reservation protocol-traffic engi-
neering (RSVP-TE) extensions,” RFC 5151, Feb. 2008.

[19] M. Zhao, W. Zhou, A. J. Gurney, A. Haeberlen, M. Sherr, and B. T.
Loo, “Private and verifiable interdomain routing decisions,” in Proc.
ACM SIGCOMM, 2012, pp. 383–394.

[20] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft, “Secure multiparty computation goes live,”
in Financial Cryptography, 2009, pp. 325–343.

1134 IFIP/IEEE IM2013 Workshop: 5th International Workshop on Management of the Future Internet (ManFI)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

