RPO: Runtime Web Server Optimization Under
Simultaneous Multithreading

Samira Musabbir, Diwakar Krishnamurthy

University of Calgary
Dept. of Electrical and Computer Eng.
Calgary, Canada
{smusabbi, dkrishna}@ucalgary.ca

Abstract—Multicore architectures commonly feature simulta-
neous multithreading (SMT), a hardware technology to improve
the performance of multi-threaded applications, such as web
servers. By studying a TPC-W testbed we observe that the
performance of SMT for a multi-tier application strongly depends
on the workload mix in execution in the system, thus prompting
the need for smart management policies to decide when to enable
or disable SMT. To tackle this problem, we propose the Runtime
SMT Performance Optimizer (RPO), a module for the Apache
web server that automates SMT activation and deactivation at
runtime. Decisions rely on the estimated mix of requests in
execution in the system and a classification of transactions based
on historical data about the ability of each request to benefit from
SMT. Experimental results indicate that RPO can gain up to 40%
in request latency compared to the best static SMT configuration
policy, at the expense of a small overhead of 0.6% utilization on
average for each core.

[. INTRODUCTION

Simultaneous multithreading (SMT) is a popular hardware
technology for multicore architectures, implemented in com-
mercial solutions such as Intel Hyper-Threading [1]. SMT aims
at increasing resource utilization by implementing on each
core a set of hardware threads. These are processing units that
share some hardware components (e.g., caches, register file,
fetch bandwidth). At the operating system level, each hardware
thread is abstracted as a logical core which provides the
illusion to applications of running on a real physical core. In
this way, SMT allows higher parallelism and better throughput
for multithreaded code. However, this can come at the expense
of higher latencies, due to the contention from other hardware
threads or due to cache misses [11], [12].

Despite its diffusion and importance, past research on
SMT has focused with few exceptions on architectural per-
formance under micro-benchmarks [2]-[4]. Some studies have
investigated the impact of SMT on enterprise servers [6] and
databases [8], [9], however relatively little research has been
done towards understanding the implications of SMT adoption
from a web server management perspective. In this paper, we
try to fill this gap by studying the performance implications
of SMT on a basic TPC-W multi-tier application [15]. To the
best of our knowledge, this is the first study that investigates
web server dynamic management issues arising from SMT.

By running TPC-W workloads on a two-tier architecture,
we find that the impact of SMT on web server response
times can be dramatic, up to 50% on average on some

978-3-901882-50-0 (©2013 IFIP

85

Giuliano Casale
Imperial College London
Department of Computing

London, U.K.
g.casale@imperial.ac.uk

experiments, either as a speedup or as a slowdown from
the baseline depending on the workload. Root-cause analysis
reveals SMT degradations to arise from a subtle chain of
interaction originating from cache misses at the web tier and
ending in excessive thread creation at the database. Rather than
stressing the magnitude of such slowdowns, which can change
depending on the workload and testbed, our work emphasizes
the difficulty of deciding when to enable SMT and thus argues
for the need of automated solutions. Further, we try to answer
fundamental questions that arise on the achievable performance
gains with dynamic SMT management.

To tackle this problem, we propose the Runtime SMT
Performance Optimizer (RPO), an Apache web server module
that automates SMT activation and deactivation at runtime.
RPO stems from the assumption that the mix of requests in
execution in a web server can drive the decision on enabling
or disabling SMT. It then estimates the mix of requests in
the system by intercepting the HTTP metadata upon request
arrival to the web server and thus keeping track in a lightweight
manner of the system state. We then propose a methodology
to map a given mix into a SMT activation decision based on
estimates from historical or test data of the ability of each
request to benefit from SMT. Based on this, we introduce a
classification for request mixes as being either SMT friendly
or unfriendly. This classification is used by RPO at runtime to
decide on SMT activation or deactivation.

Experimental results on workloads with different degrees
of variability, obtained by mixing existing TPC-W workloads,
reveal that RPO can gain up to 40% in request latency
compared to the best static SMT configuration policy. Further-
more, it only imposes a small cost of 0.6% overhead per-core
utilization. In particular, experiments show RPO to be robust to
workload non-stationarity where the mix in the system changes
rapidly.

The rest of the paper is organized as follows. Section 2
provides a motivating example for our work, showing the
unpredictable behavior of SMT under different TPC-W work-
loads. Section 3 introduces RPO and discusses its implemen-
tation. Section 4 quantifies RPO performance and overheads
for experiments under different workload mixes. Section 5
summarizes related work. Section 6 draws conclusions.

II. MOTIVATING EXAMPLE
A. Testbed

The testbed used in this paper consists of a client machine
and a server machine connected by a 1 Gbps Ethernet switch.
The testbed runs a PHP implementation of the TPC-W bench-
mark multi-tier bookstore application [15]. Each machine has
32 GB of RAM and 2 quad-core Intel Xeon 5540 2.53GHz
processor with 2 hardware threads per processor. Thus, the
server has 8 physical cores and can use up to 8 cores without
hyper-threading (NOHT configuration policy) or up to 16 cores
when hyper-threading is enabled (HT configuration policy).
We shall refer to the HT and NOHT configurations as SMT
policies. L1 (64 KB) and L2 (256 KB) caches are private to
each core, while the L3 cache (8MB) is shared by cores on
the same processor.

The server machine runs Ubuntu Linux (kernel ver. 2.6.38),
and hosts an Apache web server (ver. 2.2.16) and a MySQL
database (ver. 5.0.75). Thus, we adopt a two-tier deployment.
This represents a stress case for SMT, since it implies hardware
resource sharing from different application tiers. The client and
server systems are optimized for high concurrency. Apache is
configured with MaxClients increased to 1300 and MySQL is
configured with max_connections set to 2000.

In our experiments, the cores of processor 0 are used for
processing requests; processor 1 runs only monitoring tools.
Thus, if not otherwise specified, Apache and MySQL use
exactly 4 cores (NOHT) or 8 cores (HT), all of processor O.
We disable cores on both processors 0 and processor 1 that are
not needed for an experiment. Server-side measurements are
obtained with collectl and with the Intel Performance Counter
Monitor (PCM)(ver. 2.0). Power consumption is collected by
an external Lindy Power Meter 32710. Reported utilizations
only consider cores executing processes belonging to TPC-W
and their OS activity.

B. Experimental Results

To illustrate the impact of SMT on a multi-tier architecture,
we experiment with the browsing and ordering workload mixes
of TPC-W. The browsing mix is read-intensive at the database.
In contrast, ordering frequently updates the database tables.
We use the open-source httperf workload generator to emulate
clients; httperf generates open arrivals of sessions, thus mean
throughput and mean request arrival rate are identical in our
experiments and decided before starting the experiment so as
to impose a target utilization. Session inter-arrival times are
exponentially distributed. Successive requests within a session
are separated by an exponentially distributed think time with
a mean of 2 seconds. For each experiment, multiple runs
are performed to obtain tight confidence intervals, at 95%
confidence, for the mean response time. The duration of an
experiment is 900 seconds for browsing and 1500 seconds for
ordering.

Table I illustrates mean performance metrics for a set
of experiments for different processor frequencies and SMT
policies. The fastest response time in each group is marked
in bold. Frequency is scaled using the cpufreq kernel in-
frastructure in Linux. The results indicate that the mean
response time is slightly lower for NOHT at low utilizations

TABLE 1 RESULTS: BROWSING MIX

Freq. Cores Policy X R U

2534 8 HT 356 13.50 | 0.34 184
2534 4 NOHT | 356 | 11.60 | 0.53 193
2133 8 HT 356 16.10 | 0.40 170
2133 4 NOHT | 356 | 14.50 | 0.62 176
1867 8 HT 356 | 17.50 | 0.46 167
1867 4 NOHT | 356 18.70 | 0.69 174
1600 8 HT 356 | 21.20 | 0.55 167
1600 4 NOHT | 356 | 43.10 | 0.86 173

Frequency is in KHz. X'= Mean Throughput (rps), R= Mean
Response Time (ms), U= Mean Core Utilization, P= Mean
Power consumption (W).

TABLE 11 RESULTS: ORDERING MIX
Freq. Cores Policy X R U P
2534 8 HT 48 41.50 0.22 173
2534 4 NOHT | 48 38.70 0.38 202
2133 8 HT 48 103.70 0.33 164
2133 4 NOHT | 48 50.00 0.48 179
1867 8 HT 48 unstable | 0.61 168
1867 4 NOHT | 48 58.40 0.56 169
1600 8 HT 48 unstable | 0.64 164
1600 4 NOHT | 48 156.80 0.69 167

Frequency is in KHz. X'= Mean Throughput (rps), R= Mean
Response Time (ms), U= Mean Core Utilization, P= Mean
Power consumption (W), unstable = thread limit exceeded
(R €[18s, 55s]).

(2534KHz and 2133KHz). However, HT clearly outperforms
NOHT at higher utilizations (1867KHz and 1600KHz). For
example, with 1600KHz and NOHT we have seen that there
is a 20% probability that the response time will be greater
than 70 ms. In contrast, with HT the chance of response
times exceeding 70 ms is less than 5%. As expected, the
power consumption decreases with frequency for both HT and
NOHT. Furthermore, power consumption is smaller for HT
than NOHT for all load levels. Summarizing, NOHT performs
marginally better than HT at low loads; at high loads, HT
significantly outperforms NOHT. From this, HT appears to be,
overall, a better configuration for this server under browsing.

Table II presents evidence that this conclusion, however,
depends on the workload mix under study. The table reports
experimentation for the ordering mix. While power consump-
tion is similar to what is observed for browsing, we observe
that the performance behavior of HT is vastly different for this
mix. At 2534KHz, the mean response time for HT is 7% higher
than for NOHT. At 2133KHz, the gap grows to 52%, still in
favor of NOHT. At 1866KHz and 1600KHz under HT, the
system becomes unstable due to a severe backlog of requests
which causes both the Apache and MySQL thread limits to be
exceeded. In contrast, the system remains stable under NOHT.
We have further investigated the root causes of this gap using
specialized monitoring tools as discussed next.

C. Root Cause Analysis

To explain the behavior we have just discussed, we perform
a root cause analysis using L3 cache data from the PCM tool.
Since the L3 cache is shared between hardware threads, it is a
major source of contention in SMT. In this campaign we pin
all Apache processes to processor 0 while MySQL processes
are pinned to processor 1. This setup allows us to discriminate

TABLE III. DATABASE PROFILING : ORDERING
Threads
Mix Policy R Max Running Max Created
ordering HT 179.70 44 185
ordering | NOHT 114.20 22 85

86 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

8000 T T T T T

6000

4000

2000

Response time [ms]

0 200 400 600 800 1000 1200

o
=1

Threads running
=] o I
(=] =) o
— .

=)
T

(=1

| |
0 200 400 600 800 1000 1200
Time [g]

Fig. 1. Database Contention of ordering - Hyper-Threading: (a) Response
Time (b) Number of Threads Running

the impact of HT and NOHT on web server and database
and effectively emulates a multi-tier deployment. Table IV
illustrate the results. We define the L3 misses per completion
(MPC) metric as the ratio between the total number of L3
misses and the total number of requests completed in the run.
Table entries are sorted for increasing response times.

Table IV indicates that ordering suffers much larger MPC
values than browsing. We attribute this partly to the fact that
browsing is a read-intensive workload, thus it can benefit from
increased cache locality compared to ordering. We also note
that the changes observed in the mean response times for
ordering across the four experiments have a 98% correlation
with the variation in web tier MPCs and a fair correlation
(36%) with the database tier MPCs for the same experiments.
Conversely, under browsing there is a negligible correlation (-
5%) between response times and web tier MPCs as well as a
fair correlation (33%) between response times and database
tier MPCs. These results are consistent with the different
behaviors seen for HT and NOHT in Section II-B: under HT
browsing does not incur major MPC penalties and can fully
take advantage of the increased parallelism of HT. Conversely,
under ordering there are major performance degradations due
to significantly increased cache misses at the web tier.

We have further investigated ordering to better understand
the impact of cache misses at the web tier. In this analysis, we
have used the “SHOW STATUS” MySQL command to collect
performance measures at the database tier. Our conjecture is
that, if transactions are slowed down at the web tier there will
also be an increase in the number of concurrent transactions at
the database tier. Indeed, Table III shows that this is the case:
the slowdown at the Web tier causes severe congestion at the
database tier as well. From the table, the maximum number of
concurrent database threads running and the maximum number
of database threads created is approximately double with HT
than with NOHT. Figure 1 provides a more detailed view of
the contention at the database server triggered by HT. The
figure shows the time series plots of transaction response times,
averaged over 1 second intervals, and the number of running
threads, collected every 1 second. Clearly, there is a very good

TABLE 1V. L3 CACHE MISSES PER COMPLETION (MPC)

Mix Policy Web Policy DB Web MPC | DB MPC R
browsing HT HT 9364 597 48
browsing HT NOHT 7121 557 48
browsing NOHT NOHT 4656 667 71
browsing NOHT HT 8789 721 258
ordering NOHT NOHT 6853 24486 659
ordering HT NOHT 17796 25912 1023
ordering NOHT HT 22036 20952 1249
ordering HT HT 33741 27723 1460

correlation between the peaks of the thread count series and the
response time series. This completes the root cause analysis by
confirming that the cache misses at the web tier result in large
performance degradations at the database due to the subsequent
increase of the number of active threads.

D. Summary

Summarizing, the impact of HT on cache performance, and
hence on overall response times, can in general have complex
dependencies with processor characteristics, application char-
acteristics, tier configuration, multiprogramming limits, and
workloads. This strongly motivates the need for a methodology
that automatically selects between HT and NOHT for a given
system based on the mix of incoming transactions into the
system. For example, if over a given time window of arrivals
there are more transactions that can benefit from HT than from
NOHT, then a reasonable policy might be to turn on HT. In
what follows, we propose a heuristic approach that leverages
the results presented in this section and the previous section
to classify transactions into two classes namely, HT-Friendly
and NOHT-Friendly.

III. RUNTIME SMT PERFORMANCE OPTIMIZER (RPO)

The choice to enable HT depends on the transaction mix.
In this section, we develop the Runtime SMT Performance Op-
timizer (RPO), a runtime controller that dynamically enables
or disables HT based on the active transaction mix observed
in operation. To do so, first we propose to classify requests
based on their expected ability to benefit from HT. Next, we
describe the architecture and implementation of RPO as an
Apache module.

A. Request Classification

We begin with the observation that browsing favors HT
while ordering favors NOHT. Then, in the proposed approach,
a transaction which occurs more frequently in browsing than
in ordering is classified as favoring HT (HT-Friendly). Other
transactions that occur more frequently in ordering than in
browsing are classified as NOHT-Friendly. When classification
is applied to more than two mixes, this line of reasoning
can be applied in the same way after forming two groups,
one for experiments that benefit more from HT and one for
those that favor NOHT. We note that more sophisticated per-
tier classification schemes may be needed for systems where
individual tiers are on different physical hosts. We defer this
to future work.

The result of such a classification applied to browsing
and ordering is shown in Table V. From the table, the HT-
Friendly class contains mostly transactions that issue reads to

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 87

TABLE V. REQUEST CLASSIFICATION

Class Name Request Type
HT-Friendly Home, New Products, Best Sellers,
Product Detail
NOHT-Friendly | Search Request, Search Results, Admin Request,
Shopping Cart, Buy Request, Admin Confirm,
Buy Confirm, Customer Registration

the database whereas the NOHT-Friendly class mostly contains
transactions that write to the database. Furthermore, additional
experiments, not reported due to space constraints, reveal that
the mean service time for the majority of NOHT-Friendly
transactions are two orders of magnitude higher than for HT-
Friendly transactions. This suggests that, in the absence of his-
torical information, a size based classification of transactions
into large and small may be adopted as an alternative clas-
sification'. Using the proposed HT-Friendly/NOHT-Friendly
classification, for browsing 73% of the total requests are HT-
Friendly, whereas for ordering only 48% are HT-Friendly.

B. RPO Controller Design

The underlying idea of RPO is to estimate the mix of
transactions in the application over a group of arrivals and
activate HT only if HT-Friendly transactions form a relative
majority in the system. This is achieved as follows. RPO
observes requests arriving to Apache recording their type.
Every time a batch of b requests has arrived, RPO computes
the fractions of HT-Friendly and NOHT-Friendly transactions
in the batch using the classification scheme discussed in the
previous subsection. If there is a majority of HT-Friendly trans-
actions in the batch, then HT is enabled until a new decision
is computed for the following batch. Othewise, RPO switches
to the NOHT policy. Note that RPO heuristically estimates
the mix in operation based on historical information of the
last b arrivals. For example, it does not guarantee that the first
arrived request is still in the system at the time when the batch
is completed and the SMT policy for the following period is
decided. A more accurate approach requires synchronization
between multiple Apache modules which could affect Apache
performance. Furthermore, careful choice of the b batch size
parameter can alleviate the impact of any inaccuracies from
our approach as we show in Section IV-D.

The logic described above is implemented in RPO by
three components, namely the Request Collector, the Request
Classifier, and the SMT Switcher. The Request Collector
component is in the path of Apache request processing and,
in our implementation, it is a custom Apache module that
hooks itself to the metadata processing phase of the web
server. It intercepts a request just after it is received by
Apache but before it is processed by web server content
generation engine. The Request Collector extracts the name
of the request URL from the request header and transmits it to
the Request Classifier. The Request Classifier classifies each
URL it receives into either HT-Friendly or NOHT-Friendly.
Once b requests have been received, this component computes
the fractions of HT-Friendly and NOHT-Friendly transactions
for this batch. It then sends these fractions to the SMT Switcher
component which either enables or disables HT according

'We leave the investigation of this possibility for future work, however we
have experimentally observed that this approach is promising.

to the relative majority of HT-Friendly or NOHT-Friendly.
We stress that Request Classifier and SMT Switcher work
independently of Apache request processing, hence they do
not produce direct overhead on incoming requests, yet they
contribute to the processor utilization.

C. Implementation

Several factors need to be considered to guarantee RPO
effectivess. First, the work done by the Request Collector
module should not be significant given that it is in the
request processing path. Next, the batch size b must be chosen
carefully: a large value will diminish the agility in responding
to fluctuations in the mix and reduce accuracy in the estimation
of the mix in the system. Conversely, a small value will
cause frequent switching between HT and NOHT causing
overheads. Finally, the time taken to calculate the mix of a
batch and switch between HT and NOHT should be very
small otherwise many transactions in the batch could complete
before switching to the optimal policy for that batch. We ex-
perimentally characterize RPO overheads in Section IV-C and
RPO sensitivity to the batch size parameter in Section IV-D.

The main challenge of RPO implementation is achieving a
fast execution time for the SMT Switcher module. To simplify
design and ensure low overhead, we have decoupled Apache
request processing from the SMT policy switching. We have
attempted to implement SMT policy switching via both the
Linux CPU hotplug mechanism and the Linux faskset utility.
However we have found in both cases the switching overheads
to be too large with respect to the request response times.
RPO solution is then to use the cgroups mechanism of Linux.
This feature provides a way to map a set of processes and
their future children to a group with specific attributes. Group
attributes can be set to control the amount of resources allo-
cated to its processes, e.g., the quantum of CPU and memory
resources. To support RPO, we have created a group that
contains the Apache and MySQL processes. We enable and
disable HT by controlling the CPU resources assigned to this
group. Assigning all cores in the system to this group is akin
to enabling HT. Assigning only the common cores of NOHT
and HT achieves the effect of switching to NOHT. We have
found that this approach is remarkably faster than the previous
two approaches. It takes around 1 ms to effect the switch. This
is at least 5 times faster than the smallest transaction response
time observed with the lightest possible system load (1 client).

IV. EXPERIMENTAL VALIDATION

We have performed an exhaustive validation of RPO: Sec-
tion IV-A presents RPO results for the browsing and ordering
mixes. Section IV-B evaluates RPO with custom mixes of
browsing and ordering sessions. Section IV-C analyses the
overhead introduced by RPO. Section IV-D performs sensitiv-
ity analysis on the batch size input parameter. If not otherwise
stated, in the reported experiments we have configured RPO
with a batch size b = 20. Furthermore, unless stated otherwise,
the Request Classifier and SMT Switcher modules of RPO
execute alongside the monitoring tools on processor 1 while
the TPC-W processes belonging to the RPO-enabled Apache
and MySQL execute on processor 0.

88 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

TABLE VI. EXPERIMENT RESULTS OF BROWSING AND ORDERING MIX

WITH RPO
Mix Freq. Cores Policy X R U P
browsing 1600 8 HT 356 21.2 0.55 165

browsing 1600 4 NOHT | 356 43.1 0.82 170
browsing 1600 | dynamic RPO 356 22.4 0.55 167
ordering 2133 8 HT 48 103.7 | 0.33 164
ordering 2133 4 NOHT 48 50.0 0.48 179
ordering 2133 dynamic RPO 48 56.3 0.27 170

Legend is same as Table 1.

A. Results with browsing and ordering

Table VI compares the performance of HT, NOHT, and
RPO for the TPC-W mixes on two representative cases of
Table 1. The results in Table VI demonstrate good promise for
RPO. For both mixes, RPO performs almost as well as the
best observed policy. Specifically, for browsing, the response
time of RPO is almost the same as the response time for HT,
which is the optimal policy for this mix. For ordering, RPO
performance is close to that of the optimal NOHT policy. We
note that although the mean response times with RPO are
slightly higher than those of the corresponding best observed
policies, the differences are not statistically significant. The
95% confidence intervals of mean response time for RPO and
HT overlap for the browsing mix. Similarly, RPO and NOHT
confidence intervals overlap for ordering. We also observe that
the power consumption with RPO for a given mix is closer to
the power consumption of the best observed performance SMT
policy for that mix.

We have also investigated the distribution of response times
for browsing and ordering for HT, NOHT, and RPO. We have
found that, for browsing the distribution function of response
times of HT and RPO is nearly identical. For ordering, RPO
lies in the middle between the NOHT curve and the HT curve
for the distribution body, but has a nearly perfect match of the
NOHT distribution tail.

We have also tracked the decisions of the SMT switcher
module over time. While for browsing RPO recommends that
most of the time the system use HT, for ordering the situation
is the opposite. Figure 2 plots a period of the experiment where
ordering RPO frequently switches between HT and NOHT.
This period is qualitatively very similar to the rest of the
trace. In the figure a core count of 4 corresponds to NOHT
while a core count of 8 corresponds to HT. The figure shows
high dynamism of RPO, which switches SMT configuration
policy every few seconds. Table VII illustrates the root causes
for such a frequent switching behavior under ordering. All
the batches encountered by RPO while serving browsing are
dominated by HT-Friendly transactions. Thus, RPO enables
SMT and performance is similar to HT. In contrast, a balanced
amount of HT-Friendly and NOHT-Friendly batches appears in
ordering, and this explains the frequent switches between the
SMT policies.

Table VIII investigates the effect of the batching done by
RPO. For example, in browsing, batches that have a majority
of HT-Friendly requests still have a significant percentage, i.e.,
27%, of NOHT-Friendly transactions. Similarly, the NOHT-
Friendly batches in browsing have 44% of HT-Friendly trans-
actions. Transactions that are a minority in a batch are unlikely
to benefit from RPO policy choice. However, from the results

cores

g o - ©
— T

I I
6 58 6 62 64 66 63 7

time [ms]

response fime

0 h h
56 58 6 62 64 66 63 7

time [ms] ¥ 105

Fig. 2. Switching between HT and NOHT by RPO for the ordering workload.

TABLE VII. RPO BATCH CLASSIFICATION
batches
Mix HT-Friendly = NOHT-Friendly
browsing 99.3% [0.7%
ordering 51.2% ‘ 48.3%

it appears that the incurred penalties do not dominate over the
performance gains enjoyed by the majority of transactions in a
batch. This argues for the robustness of RPO to the batching-
based classification.

Summarizing, RPO does nearly as well as the optimal
policies for the browsing and ordering mix. This is a powerful
argument in favor of RPO since it eliminates the need for
a system administrator to choose between HT and NOHT
while configuring an enterprise system. In the next section,
we construct customized mixes to see if there exist situations
where RPO can even outperform both HT and NOHT.

B. RPO with Custom Workloads

We created custom workloads by mixing two groups of
sessions, 2000 from the browsing mix and 2000 from the
ordering mix. The first group of sessions has only HT-Friendly
transactions while the second group has only NOHT-Friendly
transactions. Sessions are defined in order to include all
transactions types in Table V. All workloads contain the same
set of sessions but in different orders, thus they have the same
transaction mix of 71% HT-Friendly and 29% NOHT-Friendly
transactions. Upon arrival of a session, a unique switching
probability value is used to choose if the following session
will be of the same type, i.e., HT-Friendly or NOHT-Friendly.
By changing the value of the switching probability, we have
defined four custom workloads: S(0), S(5), S(15), and S(50),
where the number between brackets denotes the switching
probability in percentage points. The S(0) workload has been
generated in such a way to contain a single transition from
HT-Friendly sessions to NOHT-Friendly sessions, where the
NOHT-Friendly period lasts about 10 times the HT-Friendly
one. Thus, S(0) exhibits near zero probability of switching
between session types. Conversely, S(50) has the highest

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 89

TABLE VIIL RPO BATCHING EFFECTS
HT-Friendly requests NOHT-Friendly requests
Mix in NOHT-Friendly batches in HT-Friendly batches
browsing 44% 27%
ordering 38% 44%

switching probability of 50%, which leads to observing a rapid
alternation of session types in the system.

Since our previous experiments suggest that SMT selection
is more crucial at high load, one of our objective was to
observe system behavior at a consistently high load when
both types of sessions are present. Specifying a single mean
session inter-arrival time was insufficient to achieve this effect
since the NOHT-Friendly transactions place much higher CPU
demands than the HT-Friendly transactions. Therefore, we
have specified different mean session inter-arrival times for
HT-Friendly and NOHT-Friendly sessions. Specifically, a mean
of 0.4s is used for NOHT-Friendly sessions, while we explore
two different mean session inter-arrival times of 0.02s (high
load) and 0.03s (lower load) for HT-Friendly sessions. As with
the standard TPC-W workloads, both sets of inter-arrival times
are exponentially distributed.

1) S(0) Results: Table IX presents the results of the S(0)
workload with HT, NOHT, and RPO. For the first group
in the table, the mean inter-arrival time for the HT-Friendly
and NOHT-Friendly sessions is 0.02s and 0.4s, respectively.
In contrast to browsing and ordering, where RPO only did
as well as the best observed policy for a given mix, RPO
outperforms both HT and NOHT. One can observe that RPO
is significantly better than solely using either HT or NOHT.
The mean response time with RPO is about 40% better than
that of the next best policy which is HT. The mean response
time with NOHT is 3.2 times that of RPO. The 95% confidence
intervals of mean response times suggest that these differences
are statistically significant. We have also investigated the
distribution of response times and found that RPO improves
response times over all regions of the distribution.

For the second case in Table IX, the mean inter-arrival
time for HT-Friendly sessions is increased from 0.03s to 0.02s
while the mean inter-arrival time for NOHT-Friendly sessions
is unchanged. This causes a drop in utilization during the 10%
of the time when the system has solely HT-Friendly sessions.
Since the utilization is unchanged for the rest of the 90% of the
experiment duration, a period during which the system receives
only NOHT-Friendly sessions, the overall utilization reduces
only marginally from the previous case as seen for NOHT in
Table IX. However, the response time behavior is markedly
different from the previous case. In contrast to the high load
case, NOHT now outperforms HT confirming results from our
motivating example that the benefits of HT are apparent only
at high load. Furthermore, RPO outperforms the best observed
policy of NOHT, although the gains are more modest when
compared to the high load case.

2)8(5), S(15), S(50) Results: The S(5), S(15), and S(50)
workloads result in RPO batch classifications that are less
biased to a single transaction type than for S(0), as shown
in Table XI. Table X investigates how RPO reacts to this
workload characteristic. In this experiment, we reduce the
cores by half to 2 (NOHT) and 4(HT) to observe system

TABLE IX. EXPERIMENT RESULTS OF S(0) MIX WITH RPO
Mix Freq. Cores Policy X R U P
S(0) 1600 8 HT 43 122.7 0.42 157
S(0) 1600 4 NOHT 43 233.4 0.57 164
S(0) 1600 dynamic RPO 43 73.3 0.44 157

S(0) 1600 8 HT 43 147.6 | 042 158
S(0) 1600 4 NOHT | 43 77.6 0.54 164
S(0) 1600 | dynamic RPO 43 72.3 0.49 156

Legend is same as Table 1.

TABLE X. EXPERIMENT RESULTS OF S(5), S(15), S(50) MIX WITH
RPO AT HIGH LOAD
Mix Freq. Cores Policy X R U P
SG5) 1600 4 HT 36 | 1629 | 0.64 | 154
S(5) 1600 2 NOHT | 36 | 2462 | 0.82 | 162
S(5) 1600 - RPO 36 | 1409 | 0.60 | 154
S(15) | 1600 4 HT 36 | 143.6 | 0.66 | 154
S(15) | 1600 2 NOHT | 36 | 2863 | 0.81 | 162
S(15) 1600 - RPO 36 139.9 0.64 155
S(50) | 1600 4 HT 36 | 1558 | 0.66 | 154
S(50) | 1600 2 NOHT | 36 | 4005 | 0.79 | 163
S(50) | 1600 - RPO 36 | 1354 | 0.67 | 154

Legend is same as Table 1.

behavior at a high load. From Table X, for all three workloads
the performance of RPO is still the best, followed by HT,
and then by NOHT. Specifically, RPO can speedup the mean
response time by a factor of up to 3 over an incorrect SMT
policy choice, i.e., NOHT. The mean response times with RPO
are 2% to 15% lower than those of HT. However, in general
the gains from RPO over the next best policy seem to diminish
when the switching probability increases (Table XI). Results
for a lower load scenario, not included due to space constraints,
confirm previous findings that RPO performs the same as the
best observed static SMT policy.

Summarizing, this experimental campaign shows that RPO
outperforms a static choice of SMT policies at high loads.
Gains are particularly significant when there is pronounced
skew to a single transaction type within RPO batches, as in
the S(0) mix. As this skew diminishes, RPO still performs
the best although gains become more modest due to a larger
fraction of transactions in batches not benefiting from the SMT
policy selected by RPO.

C. Overhead Analysis

Table XII exemplifies the overhead of adding the Request
Collector module to the request processing path for browsing
and ordering experiments. From the table, the mean response
time with and without the RPO module is almost the same.
This indicates that the module does not impose a significant
overhead. We next characterize the impact of the other RPO
components.

As stated earlier, two separate sets of cores have been
used to run the Request Classifier and SMT Switcher modules
of RPO and the processes belonging to the TPC-W system.
Monitoring data shows that the Request Collector and SMT
Switcher components add only 0.6% and 0.5% to the mean
utilizations of their respective cores. We next evaluate the
overhead of RPO when there are no spare cores available for
these 2 components and they are forced to share the cores used
by the TPC-W processes.

90 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

TABLE XI. RPO BATCHES ON CUSTOM MIXES

HT-Friendly requests NOHT-Friendly requests
Mix in NOHT-Friendly batches in HT-Friendly batches
S(0) 0% 0%
S(5) 32% 22%
S(15) 40% 25%
S(50) 42% 27%
TABLE XII. OVERHEAD OF RPO Request Collector

Mix Freq. Cores RPO X R U

browsing 1600 8 OFF | 356 22.6 0.58
browsing 1600 8 ON 356 21.2 0.55
ordering 1600 8 OFF 48 42.00 | 0.22
ordering 1600 8 ON 48 42.05 | 0.22

Legend is same as Table I.

Table XIII shows the results of this experiment. We first
consider experiments with the browsing workload that cause
a high per-core processor utilization of 71%. For the first
set of these experiments we pin Request Classifier and SMT
Switcher to the same cores (core 0,2,4,6) where the Apache
and MySQL processes are executing. For the second set we
pin Request Classifier and SMT Switcher to cores 3 and 7
that were not used by the TPC-W processes. From Table XIII,
the mean response times are quite close in both cases. The
table also shows similar trends for a lower load browsing case
as well as an ordering case. These results suggest that RPO
imposes very little overheads and can be even used in high
load scenarios, which can benefit significantly from dynamic
adaptation between HT and NOHT.

D. Batch Size Sensitivity

Finally, we conclude the validation by exploring the impact
of the batch size parameter b of RPO. We compare the results
obtained from the S(50) workload using several batch sizes.
Results are shown in Table XV, while Table XIV shows
mean response times obtained with RPO. Table XV indicates
that small batch sizes result in better RPO performance.
However, Table XIV indicates that small batch sizes, and
thus the frequent use of the SMT Switcher, trigger high latency
overheads due to the cost of migrating the context of processes,
e.g., cached data, from the deactivated cores or viceversa.
Conversely, setting batch values to the order of several tens
becomes ineffective with respect to the workload fluctuations.
Batch sizes of 10-20 seem to strike the right balance between
reducing these overheads and achieving agility in reacting to
incoming workload changes.

V. RELATED WORK

A vast majority of studies that characterize the behavior
of SMT have focused on scientific and batch workloads.
While some of these studies [4] report consistent performance
benefits from SMT, other studies indicate that SMT can be
harmful for some workloads [7] and may only be effective at
high loads [10]. Furthermore, performance benefits of SMT
processors have been found to depend on task co-scheduling
policies and cache performance [11], [12]. Relatively few
studies have focused on SMT impact on components of
multi-tier applications deployments, such as web and database
servers. Lo et al. examined database performance on SMT
processors using traces from an Oracle database management

TABLE XIII. OVERHEAD CHARACTERIZATION OF RPO

Mix Freq. Cores X R U
browsing 1600 | 4(0,2,4,6) | 416 70.20 0.71
browsing 1600 2 (3,7) 416 73.20 0.71
browsing 1600 | 4 (0,2,4,6) 357 41.55 0.59
browsing 1600 2 (3.7 357 39.95 0.59
ordering 1600 | 4 (0,2,4,6) 22 132.55 | 0.36
ordering 1600 237 22 130.1 0.36

Legend is same as Table I.

TABLE XIV. IMPACT OF BATCH SIZE b OF RPO

Mix b Freq. X R U

S(50) | 100 [1600 | 36 | 175.00 | 0.68
S(50) 40 1600 | 36 | 160.23 | 0.68
S(50) 20 1600 | 36 | 13538 | 0.67
S(50) 10 1600 36 138.17 0.67
S(50) 5 1600 | 36 | 166.03 | 0.65
S(50) 1 1600 36 324.67 0.65

Legend is same as Table I.

system (DBMS) [8]. Using simulation, the authors show that
SMT can introduce additional data cache conflicts. Hassanein
et al. [9] instead report a performance improvement with HT
of up to 16% in TPC-C queries and up to 26% in TPC-H
queries on a Pentium 4 processor. Ruan et al. [6] evaluated
three versions of the Hyper-Threaded Intel Xeon processor for
several Web servers. Their evaluation suggested that the Xeon
processor can provide better performance gain with SMT only
when it employs larger L3 caches. The only study we are
aware of that focuses on a multi-tier application is that by
Cain et al. [13]. In contrast to our work which considered a
real system, the authors study the behavior of a Java-based
TPC-W application on a simulated SMT processor. Their
results show that SMT can cause higher cache misses but
can achieve higher throughputs due to its ability to hide long
memory latencies. A larger body of work has focused on
automatically reconfiguring a multi-tier system in response to
workload fluctuations, e.g., [5]. However, these studies only
explore strategies such as modifying the amount of resources,
e.g., processors, allocated to application tiers. To the best of
our knowledge, no previous case exists in the literature of a
performance management controller integrating SMT control
for a multi-tier web application.

VI. CONCLUSION

This paper has presented a case for automatically managing
the choice of SMT policy for multi-tiered systems. We have
proposed the RPO solution that implements such a capability.
Extensive validation results show that RPO outperforms a static
choice of SMT configuration policy for many workloads. For
the other workloads, it typically performs closely to the opti-
mal static configuration policy. RPO is robust towards work-
loads that display rapid alternations between SMT friendly and
SMT unfriendly mixes. Also, it places negligible overheads on
core utilization and transaction response times.

Future work will focus on generalizing our results for other
SMT processors, applications, multi-tier configurations, and
workloads. Our preliminary results on an alternative system
setup where the web and database tiers were each allocated
their own dedicated processor yielded similar trends leading
us to believe that RPO may be effective for more complex
multi-tier deployments as well. Our effort will also be centred

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013) 91

TABLE XV. RPO BATCHES FOR VARIOUS b VALUES

HT-Friendly requests NOHT-Friendly requests
Mix b in NOHT-Friendly batches in HT-Friendly batches
S(50) | 100 49% 28%
S(50) 40 46% 28%
S(50) 20 42% 27%
S(50) 10 37% 26%
S(50) 5 35% 21%
S(50) 1 0% 0%

around automating the classification of the SMT friendliness
of transactions and the choice of the optimum batch size.

ACKNOWLEDGEMENT

This work has been financially supported by Natural Sciences and
Engineering Research Council (NSERC) Canada, Hewlett Packard Labs, and
by the European project MODAClouds (FP7-318484).

REFERENCES

[1] Intel Hyper-Threading. http://www.intel.com/content/www/us/en/architecture-
and-technology/hyper-threading/hyper-threading-technology.html

[2] J. R. Bulpin and I. A. Pratt HT Aware Process Scheduling Heuristics.
USENIX Annual Tech. Conf. pp. 399-402, 2005.

[3] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm D. M.Tullsen, and
S. J. Eggers. Converting thread-level parallelism to instruction-level
parallelism via simultaneous multithreading. ACM T. on Comp. Sys.,
15(3):322-354, Aug 1997.

[4] N. Tuck and D. M. Tullsen. Initial observations of the simultaneous
multithreading Pentium 4 processor. Proc. of PACT, pp. 26-34. IEEE
Comp. Soc., Sep 2003.

[51 R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic Mix-Aware
Provisioning for Non-Stationary Data Center Workloads. Proc of ICAC,
21-30. Jan 2010.

[6] Y. Ruan, V.S. Pai, E. Nahum, and J. M. Tracey. Evaluating the Impact of
Simultaneous Multithreading on Network Servers Using Real Hardware.
Proc. of ACM SIGMETRICS, 315-326, 2005.

[7]1 H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer and
S. R. Kunkel. Characterization of simultaneous multithreading (SMT)
efficiency in POWERS. IBM J. RES. & DEV., 49(4/5), Jul 2005.

[8] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy,
and S. S. Parekh. An Analysis of Database Workload Performance on
Simultaneous Multithreaded Processors. Proc. of ISCA, Jul 1998.

[91 W. M. Hassanein , L. K. Rashid, M. A. Hammad. Analyzing the Effects
of Hyperthreading on the Performance of Data Management Systems.
Int. J. of Parallel Programming, 36:206-225, Apr 2008.

[10] TMurgent Technologies. Hyper—-Threading and Multiiprocessor System
Performance On Server 2003. White paper. June 25, 2003.

[11] J. Kihm, A. Settle, A. Janiszewski and D. Connors. Understanding the
Impact of Inter-Thread Cache Interference on ILP in Modern SMT
Processors. J. of Instruction-Level Parallelism, pp.1-28, June 2005.

[12] S. Parekh, S. Eggers, H. Levy and J. Lo. Thread-Sensitive Scheduling
for SMT Processors. U. of Washington Tech. Rep. 2000-04-02, 2000.

[13] H. W. Cain, R. Rajwar, M. Marden, and M.H. Lipasti. An architectural
evaluation of Java TPC-W. Proc. of the International Symposium on
High-Performance Computer Architecture, 229-240, 2011.

[14] J. R. Funston, K. E. Maghraoui, J. Jann, P. Pattnaik, and A. Fedorova.
An SMT-Selection Metric to Improve Multithreaded Applications’
Performance. 2012 IEEE 26th International Parallel and Distributed
Processing Symposium , pp. 1388-1399, 2012

[15] C. Amza, A. Chanda, A.L. Cox, S. Elnikety, R. Gil, K. Rajamani,
W. Zwaenepoel, E. Cecchet, and J. Marguerite, Specification and
Implementation of Dynamic Web Site Benchmarks. Proc. of IISWC,3—
13, Nov 2002.

92 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

