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Abstract—We take the first step to study the price competition
in a heterogeneous market cloud computing formed by public
provider and cloud broker, all of which are also known as cloud
service providers. We formulate a price competition between
cloud broker and public provider as a two-stage non-cooperative
game. In stage one, where cloud service providers set their service
prices to maximize their revenue, we use the Nash equilibrium
concept to study the equilibria for the price setting game.
Cloud users can select the services (from the cloud broker or
public provider) that provide them the best payoff in terms of
performance (i.e., delay) and price. To that end, cloud users can
adapt their service selection behavior by observing the variations
in price and quality of service offered by the different cloud
service providers. For the service selection game of cloud users
in stage two, we use the evolutionary game model to study the
evolution and the dynamic behavior of cloud users. Furthermore,
the Wardrop equilibrium and replicator dynamics is applied
to determine the equilibrium and its convergence properties of
the service selection game. Numerical results illustrate that our
game model captures the main factors behind the heterogeneous
market cloud pricing and service selection, thus represents a
promising framework for the design and understanding of the
heterogeneous market cloud computing.

I. INTRODUCTION

Recently, cloud computing is becoming more and more

popular in large-scale computing due to its ability to share

data and computations over a network of scalable nodes. As

the cloud computing market is growing, cloud users have to

deal with many different service types, pricing schemes, cloud

interfaces and the complexity of the cloud market. In the

beginning of cloud deployment, the public cloud provider or

hybrid public and private cloud infrastructure model dominates

the market. However, cloud market trend shows that market

share of the multi-cloud or federated clouds [1], [2], [3] are

increasing. The multi-cloud model can integrate resources

from different providers, which increases scalability and re-

liability and reduces cost while accessing to the resources

is transparent to users [4], [5]. In multi-cloud architecture

illustrated in Figure 1, a cloud broker is essential to transform
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Fig. 1. Multi-cloud architecture with Cloud Broker.

the cloud market into a commodity-like service [6]. Also,

the cloud broker offers a Provisioner which analyzes the

workload, schedules VMs placement among multiple clouds

and optimizes deployments [7]. Moreover, VM manager in

the cloud broker could be used to provide a uniform interface

with VM’s management, independent of the particular cloud

provider technology [6].

Pricing is the process of computing the exchange value of

resources relative to a common form of currency. Multi-cloud

model can be formed by combining public and private clouds

to provide users with resizable and elastic capacities [8].

Currently, companies such as Amazon operate as standalone

cloud service providers (a public provider) (Fig. 2.a). However,

in a multi-cloud model (Fig. 2.b), a cloud broker offer cloud

services to users as a cloud service provider [9]. The cloud

broker (a third party) acts as a mediator between the cloud user

and the cloud provider. Cloud users buy resources in advance

from the cloud broker instead of cloud provider for getting

additional benefit (e.g., compensation). The cloud brokerage

model can be used to offer a commendable pricing mechanism

which considers cheaper service for cloud user as well as more

profit for cloud provider [9]. The cloud brokerage pricing

model is somewhat similar to the price discrimination [10]

(different price for the same service in different segments of

the market).

In this paper, we take the first step to study the price

competition in a heterogeneous market cloud formed by

cloud service providers (CSPs) (i.e., cloud broker and public
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provider) and cloud users. There are two stages of compe-

tition in this heterogeneous market cloud. In stage one, we

formulate the competition among CSPs in selling the service

opportunities as noncooperative games, where each CSP can

set a service price such that its revenue is maximized. We

use M/M/1 and M/M/∞ queue models to show correlations

among the expected task finishing times, resource capacity,

and the request rates (from cloud users to the cloud broker

and public provider), respectively. Since the pricing strategy

of a cloud provider depends on its competitors, we take a

game theoretic perspective to study the strategic situation. The

Nash equilibrium is considered as the solution so that none of

the service providers can improve the revenue by deviating

from the equilibrium. To our knowledge, this is the first study

that discusses the competition among public cloud providers

(public providers) and cloud brokers.

In stage two, on the cloud users’ side, rational cloud

users can select the service (from the cloud brokers and

public providers) that provide them with the best payoff in

terms of performance (i.e., delay) and price. We use Wardrop

equilibrium to derive a steady-state equilibrium reached by

cloud users in the service selection game. Then, we further

focus on modeling the dynamic behavior of cloud users. We

formulate this dynamic as a evolutionary game [11], which

characterizes the strategic interactions among large numbers of

users, whose behaviors are modeled as a dynamic adjustment

process. Replicator dynamics [11], which are expressed as a

set of differential equations, is used to model the evolution

of the cloud users since such cloud users adapt their service

provider selection based on the observed system state. We

then provide equilibrium and convergence properties of the

proposed game.

The remainder of this paper is organized as follows. Section

II discusses the related work. Section III introduces the system

models. In Section IV, we introduce the duopoly market model.

Section V presents dynamic service selection game. Section

VI shows the numerical results. The conclusions are drawn in

Section VII.

II. RELATED WORK

Considering prices charged by cloud providers, the authors

in [12] and [13] used dynamic programming and microeco-

nomics, respectively, to solve the resource allocation problems

for cloud users. In [14], Kantere et al. proposed a price-

demand model for a cloud cache and found an optimal price

that maximizes the cloud provider’s profit. [15] and [16]

applied auction mechanism to find optimal prices in the cloud,

in which cloud users had budgetary and deadline constraints,

respectively. [17] studied dynamic cloud pricing by a proposed

revenue management framework.

Nevertheless, most of these works focused on provider’s

pricing and the responses of cloud users via their demand

functions. In this paper, we focus on the pricing mechanisms

and their impact on the equilibrium behaviors of users in a

strategic queueing system, where arriving users can take the

delay and other metrics into account to make their service

selection strategically, which can be traced back from the work

of [18], [19], [20], [21]. Several works have addressed on

this paradigm of wireless network such as [22], [23], [24],

[25], [26]. Recent work on this paradigm of cloud is [27],

in which optimal prices can be determined in a competitive

environment with more than one cloud provider. However, all

public cloud providers use the same M/M/1 queue to derive

the expected delay of cloud users and they did not consider

the dynamic behavior of users in such multiple cloud providers

market. Recent works have considered evolutionary games to

study the users’ behavior in cognitive radio and heterogeneous

wireless networks [28], [29], in which the authors focused on

the equilibrium, system dynamics and price of anarchy of a

cognitive radio networks.

III. THE SYSTEM MODEL

We now present the system model by presenting prelimi-

naries, cloud broker and public provider models.

A. Preliminaries

We start by defining a heterogeneous market with public

providers and cloud brokers that may wish to share a same

market of cloud users. The cloud users arrive to the cloud

market according to a Poisson process with rate λ. Upon

arrival, each cloud user has to make a decision: 1) acquiring

a multi-cloud service from a cloud broker for a guaranteed

service; or 2) using the legacy public service from the public

provider (i.e. Amazon). Here, we assume that the cloud broker

can overcome the resource limitation by buying resources from

cloud providers. Thus, the cloud broker can offer services

with higher Quality of Service (QoS) than those of the public

provider which has limited resource. This assumption implies

that the cloud broker has an M/M/∞ queue of virtualized

instance. However, the public provider only has M/M/1 queue

of virtualized instance due to the limitation of resource. It

means that the cloud broker can provide a better QoS (i.e.,

delay) cloud service. There are two stages of competition

in this heterogeneous market which is illustrated in Fig. 3.

The competition in the first stage is among the cloud service
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providers to sell services to the groups of cloud users. If

the price and delay offered by one service provider are

high, cloud user will deviate to choose the service from

another service provider. Therefore, each service provider must

carefully set the price so that its revenue is maximized. The

competitive behavior of service providers is naturally modeled

by noncooperative game model [30]. In this paper, we use

noncooperative strategic game (NSG) [30] (i.e., all players’

decisions are made simultaneously) and Stackelberg game

(SG) [30] (i.e., one player makes a decision first in advance) to

model the pricing competition between service providers. The

competition in the second stage is among multiple cloud users

to select cloud service offered by service providers (the cloud

brokers and public providers). If many cloud users choose

a cloud service provided by the same cloud provider, the

corresponding service becomes congested, which may result

in an performance degradation (i.e., increasing the delay). As a

result, the cloud users will evolve to choose cloud service with

lower price and better performance. The evolution of cloud

user will stop when the cost becomes identical to the average

cost of the all cloud users.

For simplicity, we consider a heterogeneous duopoly market

model which has one public provider and one cloud broker.

Let us denote by λ1 the overall cloud user arrival rate at the

cloud broker and by λ2 the rate of cloud users at the public

provider, so that λ = λ1 +λ2.

B. Cloud Broker Model

The average cost incurred by a cloud user consists of two

components: (i) the service price of the cloud broker’s service

p1, and (ii) an average delay cost. We assume that the cloud

broker always has sufficient number of servers to serve the

demand of cloud user. As illustrated in Fig. 1, whenever

an arriving cloud user decides to request the service to the

cloud broker, the admission control unit will send the accepted

request to the Provisoner. The Provisoner finds an allocation of

VM among different cloud providers which optimize the user

criteria and adheres to the placement constraints. VM Manager

can provide a uniform management interface for operations,

e.g., to deploy, monitor, and terminate VMs, with multiple

VM providers. The cloud broker (cloud service provider) is

modeled by an M/M/∞ queue, serving a common pool of

potential cloud users with infinite server, which combines

the resource capacity of multiple VM providers that the VM

Manager operates. The M/M/∞ queuing model has been

adopted by a number of existing papers in the literature that

analyzed data center or cloud provider operations. In [31], the

authors represent the large multi-server system as an M/G/∞

system. In [32], the authors solve the “packing” of virtual

machines in physical host machines problem in a network

cloud having an infinite server system. We assume that the

virtual resource capacity of the cloud broker is represented by

its service rate µ. Let α be the delay cost per unit time (i.e., α

represents its urgency). The expected cost when acquiring the

multi-cloud service from the cloud broker is thus given by

C1 =
α

µ
+ p1. (1)

The revenue of the cloud broker corresponds to the total

revenue obtained by pricing users. As a consequence, the

broker’s utility function is expressed as follows

U1 = λ1p1. (2)

C. Public Provider Model

If a cloud user chooses to use service from the public

provider, it joins a queue of cloud users who have chosen

the public provider. This queue is used in order to model

the delay incurred when a few cloud users wish to use the

same cloud infrastructure of the public provider. Here, public

provider system is modeled by an M/M/1 queue, serving

a common pool of potential cloud users with one “virtual”

server. The M/M/1 queuing model has been used in cloud

computing literature [27], [33] in order to analyze the response

time exhibited when processing requests as a function of the

computational capacity and the request arrival rate.

The PP system is modeled as an M/M/1 queue with a

service rate µ. We assume that λ < µ for the queue stable

condition. Here, we mainly consider homogenous service rates

where the service rates of the PP and CB are the same (i.e.,

µ). Based on queuing theory [34], the expected cost when

acquiring the public service from the public provider is thus

given by

C2 =
α

µ−λ2
+ p2. (3)

Given a service price p2 of the public provider, the public

provider’s utility function is expressed as follows

U2 = λ2p2. (4)

IV. PRICING COMPETITION IN HETEROGENOUS DUOPOLY

MARKET

In this section, we derive the equilibrium points of the

following games, namely: (i) the equilibrium cloud users

choosing the cloud broker and public provider, (ii) the equi-

librium prices set by the cloud broker and public provider in

a heterogeneous duopoly market. We consider two scenarios:

(1) both providers fix their price at the same time (Section

IV-B Noncooperative Strategic Game), and (2) the cloud

broker set a price before the public provider, anticipating

the strategy of latter, thus exploiting his dominant position

(Section IV-C Stackelberg Game). This paper studies duopoly



market for the ease of analysis, but the duopoly scenario can

still provide us enough insight into pricing and user dynamics

of the heterogenous market cloud. The analysis introduced

in Sections IV and V can be extended to the multi public

providers and cloud brokers scenarios at the expense of the

increased number of analysis and complexity according to the

rising variables.

A. Wardrop Solution of Service Selection Game

Given prices (p1, p2), the equilibrium cloud users choosing

the cloud broker and public provider is achieved by cloud

users in the service selection game, since in the market a large

number of cloud users must determine individually CSP they

should buy cloud service. In the service selection game, we

have two conditions: first, cloud users individually minimize

the perceived cost, which is expressed as C1 in (1) if they

choose the cloud broker, and C2 in (3) if they choose the

public provider; second, at the equilibrium point, the cost C1

is equal to the cost C2. Two above conditions satisfy the two

Wardrop’s principles [35], that are: the total costs perceived by

users on all used services are equal and the average delay/cost

is minimum. Therefore, at the Wardrop equilibrium, we have

C1 =C2 or:

α

µ
+ p1 =

α

µ−λ2
+ p2. (5)

Then, we can compute the equilibrium cloud user request λwa
2

for the public provider as a function of the prices set by both

the cloud broker and public provider:

λwa
2 =

(p1− p2)µ
2

(p1− p2)µ+α
. (6)

with 0< λwa
2 < λ. The condition 0< λwa

2 and queue stable con-

dition λwa
2 < µ imply the condition p1 > p2. The equilibrium

cloud user request sent to the cloud broker, λwa
1 , will therefore

be equal to λ−λwa
2 .

B. Noncooperative Strategic Game

We consider a noncooperative strategic game [30] where

the cloud broker and public provider compete with each

other by setting the price simultaneously to maximize their

utilities. Then, given a particular service price p1 of the

cloud broker, the public provider will determine the best reply

service price p2 and vice versa. Motivated by the concept

Nash equilibrium, we define equilibrium prices (pns1 , pns2 ), from

which no provider trying to maximize its own utility has

any incentive to deviate unilaterally. The Nash equilibrium

is obtained by using the best response function, which is the

best strategy of one provider given other provider’s strategies.

Given a service price p1, from (4) and (6), the best response

function (or reaction curve) BR2(p1) of the public provider

can be expressed in terms of p1 as follows

BR2(p1) = argmax
p2≥0

U2(p2), (7)

where the utility U2(p2) corresponding the Wardrop equilib-

rium is p2λwa
2 = p2

(p1−p2)µ
2

(p1−p2)µ+α
. By using the first order condi-

tion U2
∂p2

= 0, we obtain the best response function BR2(p1) as

follows

BR2(p1) = p1 +d−
√

d2 + p1d, (8)

where d = α
µ

. Similarly, given a price p2, the best response

function BR1(p2) is as follows

BR1(p2) = argmax
p1≥0

U1(p1). (9)

Hence, we have

BR1(p2) = p2−d+

√

(p2−d)α

∆
, (10)

where ∆= µ−λ. The Nash equilibrium prices (pns1 , pns2 ) exist if

and only if (pns1 = BR1(p
ns
2 ), pns2 = BR2(p

ns
1 )). In other words,

two reaction curves BR2(p1) and BR1(p2) have intersection

points. In order to obtain the Nash equilibrium solution, we

introduce the iterative algorithms (Algorithm 1) based on the

above best response dynamics mechanism. With starting price

p0
1 or p0

2, the algorithm iterates until the convergence condition

(th is a predefined threshold) is satisfied.

Algorithm 1 Iterative Algorithm.

1: Initialize parameters: p1(0) ( p2(0)), t=1;

2: loop:

3: p2(t) = BR2(p1(t−1)),
4: p1(t) = BR1(p2(t)),
5: ε = |p2(t)− p2(t−1)|+ |p1(t)− p1(t−1)|,
6: t=t+1,

7: end loop: ε < th.

Numerical Example: Fig. 4 shows the best response func-

tion BR2(p1) and BR1(p2) when two reaction curves have one

intersection point that is the unique Nash equilibrium point

(pns1 , pns2 ). Since the Nash equilibrium is defined as the set of

strategies that providers adopt given other provider’ strategies,

it is the point at which the best response functions of two the

providers intersect. This Nash equilibrium is illustrated in Fig.

4 where the best response of the public provider crosses that of

the cloud broker. An example illustrates the iterative algorithm

is presented in Fig. 5 (a). At first, given a starting price p1(0),
the public provider reacts by setting the best response price

p2(0) according to (8). At the next period, given the price

p2(0), the cloud broker reacts by setting the best response

price p1(1) according to (10). This process would continue

until the convergence condition is satisfied. Fig. 5 (b) shows

that the iterative algorithm can reach to the convergent point

fastly and smoothly .

Observation 1. The Nash equilibrium of the above noncoop-

erative strategic game is unique.

Proof. To find the Nash equilibrium, we consider each

provider’s profit maximization problem where each provider
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takes each other’s action as given parameters, but which are

resolved simultaneously






maxp1≥0 U1(p1, p2) = p1

[

λ− (p1−p2)µ
2

(p1−p2)µ+α

]

,

maxp2≥0 U2(p1, p2) = p2
(p1−p2)µ

2

(p1−p2)µ+α
.

(11)

By solving the first order condition U1
∂p1

= 0 and U2
∂p2

= 0, we

obtain
{

p1 +d− p2 =
√

(d− p2)
α

µ−λ
,

p1 +d− p2 =
√

d2 + p1d.
(12)

Solving (12), we have two solution for p1 as follows






p1
(1) =− d(−a2+2ad+2d2+a3/2

√
5a+4d)

2(a+d)2 ,

p1
(2) =

d(a2−2ad−2d2+a3/2
√

5a+4d)
2(a+d)2 ,

(13)

where a= α
µ−λ

. Since λ < µ, we can observe that p1
(1)p1

(2) =
d2(−a+d)

a+d
< 0 due to a = α

µ−λ
> d = α

µ
. Thus, only solution

p1
(2) is positive. The corresponding solution p

(2)
2 is given as

follows

p2
(2) =

d2
(

3a+2d+
√
a
√

5a+4d
)

2(a+d)2
. (14)

C. Stackelberg Game

We now investigate the duopoly market where we model

the strategic interaction between the cloud broker and public

provider as a Stackelberg competition [36], [37]. We assume

that the cloud broker is the game leader and the public provider

is the game follower. In the Stackelberg game, the cloud broker

has the so-called first-move advantage, which means that the

public provider adapts its decisions to maximize its revenue

by anticipating the cloud broker’s response. Then, we use

backward induction to derive the Stackelberg equilibrium of

the prices, which are denoted by (p
sg
1 , p

sg
2 ), in a duopoly as

follows.

Follower public provider’s Revenue Maximization: First,

given the cloud broker’s service price p1, the public provider

aims to determine an optimal price p2 by solving the following

problem:

max
p2≥0

U2 = λwa
2 p2 (15)

By using the first order condition U2
∂p2

= 0, we obtain an express

optimal price p∗2 as a function of p1 as the best response

procedure described in (8) as follows

p∗2 = p1 +d−
√

d2 + p1d. (16)

Leader cloud broker’s Revenue Maximization: Knowing

the public provider’s best-response price p∗2 , the cloud broker

determines its price p1 by solving the following problem

max
p1≥0

U1 = λwa
1 p1 (17)

= p1

[

λ− (p1− p∗2)µ
2

(p1− p∗2)µ+α

]

.

= p1

[

λ− (
√

d2 + p1d−d)µ2

(
√

d2 + p1d−d)µ+α

]

.

Stackelberg Equilibrium Summary: The maximization

(17) can be solved by finding the root of the first derivation

U ′1(p1) = 0. The root (i.e., the Stackelberg solution p
sg
1 )

can be found by using a standard root-finding algorithm

such as the bisection method with logarithmic complexity

[38]. Using (16), we have the Stackelberg equilibrium price

p
sg
2 = p

sg
1 +d−

√

d2 + p
sg
1 d. Thus, the Stackelberg equilibrium

of prices is obtained by using backward induction.

V. SERVICE SELECTION GAME OF CLOUD USERS

In this section we introduce the evolutionary game in

order to study the dynamic behavior of cloud users who

decide which service (i.e., from the public provider or cloud

broker) to use based on the observed state of the system

(i.e., delay and prices). First, we provide some preliminaries

of the evolutionary game. Then we formulate the service

selection of cloud user as a evolutionary game in which we

apply replicator dynamics to study the dynamic behavior of

cloud users. Finally, we use population evolution approach to

implement a service selection algorithm of cloud users.



A. Preliminaries of Population Game

The population is a group of individuals (i.e., players) in

which the number of individuals can be finite or infinite.

The individuals from one population may choose strategies

against individuals in another population. An evolutionary

game defines a foundation to obtain the equilibrium solu-

tion for the game of the populations. In this section, we

briefly introduce theoretic concepts of evolutionary games and

replicator dynamics [11] which are recently used in network

selection game [29], [39], [28].

In a dynamic evolutionary game, an individual from a

population (i.e., a player in the game), who is able to reproduce

(i.e., replicate) itself through the process of mutation and

selection, is called a replicator. In this case, a replicator with a

higher payoff (or lower cost) can reproduce itself faster. When

the reproduction process takes place over time, this can be

modeled by using a set of ordinary differential equations called

replicator dynamics. This replicator dynamics is important

for an evolutionary game since it can capture the essence of

selection (e.g., proportion of individuals who choose different

strategies), given a particular point in time.

In replicator dynamics, it is assumed that an individual

chooses pure strategy i from a finite set of strategies where

the total number of available strategies in this set is I. Let

ni denote the number of individuals choosing strategy i, and

let the total population size N = ∑
I
i=1 ni. The proportion of

individuals choosing strategy i is xi =
ni
N

, and it is referred to

as the population share. The population state can be denoted

by the vector x= [x1, ...,xi, ...,xI ]. The replicator dynamics can

be defined as follows:

ẋi(t) = xi(t)σ [πi(t)− π̄(t)] , i= 1, ..., I, (18)

where πi(t) is the payoff (or cost) of the individuals choosing

strategy i at time t, and π̄(t) is the average payoff of the entire

population and σ is the rate of strategy adaptation. Based

on the replicator dynamics, the evolutionary equilibrium is

defined as the set of fixed points of the replicator dynamics

that are stable. This evolutionary equilibrium is a desirable

solution to the evolutionary game since when the population of

players evolves over time (i.e., based on replicator dynamics),

it will converge to the evolutionary equilibrium. Furthermore,

at this evolutionary equilibrium, none of the individuals wants

to change its strategy since its payoff (or cost) is equal to the

average payoff of the population.

B. Formulation of Population Game

The evolutionary game for the service-selection problem in

a heterogeneous market can be described as follows.

We consider a evolutionary game G with Q non-atomic

set of players, which is defined by a strategy set denoted by

S= {s1,s2}, identical for all players; s1 means that the player

chooses the service from the cloud broker, and s2 means that

the player chooses the service from the the public provider.

Corresponding to the strategy, the proportion of individuals

choosing the cloud broker’s service x1 is equal to x1 =
λ1
λ

and

the proportion of individuals choosing the public provider’s

service is x2 =
λ2
λ
= λ−λ1

λ
.

The cost of the individuals choosing the cloud broker’s

service C1 is equal to C1 =
[

α
µ
+ p1

]

, and the cost of the

individuals choosing the public provider’s service is C2 =
[

α
µ−λ2

+ p2

]

. Thus, the average cost of the entire population

C̄ is equal to

C̄ =
λ1

λ
C1 +

λ2

λ
C2. (19)

C. Replicator Dynamics of Service Selection Game

The service selection game is repeated, and in each period

(i.e., in each generation), the user observes the cost of other

cloud users in the same area. Then, in the next period, the

user adopts a strategy that gives a lower cost. The proposed

replicator dynamics provides a means to analyze how players

can “learn” about their environment, and converge towards

an equilibrium choice. Replicator dynamics is also useful to

investigate the speed of convergence of strategy adaptation to

reach a stable solution in the game [11], [29], [28].

Here, the aim of each cloud user is to minimize his cost.

Hence, we can formalize the service selection game as follows:

ẋ1(t) = x1(t)σ
[

C̄(t)−C1(t)
]

, (20)

where ẋ1(t) represents the derivative of x1 with respect to time.

A similar equation can be written for cloud user choosing the

public provider, thus we can express the replicator dynamics

for such cloud users as follows:

ẋ2(t) = x2(t)σ
[

C̄(t)−C2(t)
]

. (21)

Based on this replicator dynamics of the users, the number

of users choosing service from either the public provider or

cloud broker increases if their cost is below the average cost.

We can observe that if we have ẋ1(0)+ ẋ2(0) = 0 at starting

time, then at every time t we obtain ẋ1(t)+ ẋ2(t) = 0.

D. Implementations of The Service Selection Algorithm

We present population evolution approach for dynamic

evolutionary game-based service selection by each individual

user in a heterogenous market cloud. This approach is based

on population evolution in which cost information of cloud

users using different providers is exchanged between two

group of cloud users (e.g, by a third party who collect

cost information of all cloud users or by an information

exchanging mechanism). The service-selection decision of

each user is based on its current cost and the average cost of

all users. This service-selection algorithm based on population

evolution approach can be described in Population Evolution

Algorithms (Algorithm 2). In future work, we will propose

a reinforcement-learning-based approach, in which the cloud

users learn the performances and prices of different cloud

providers by interaction to make the optimal decision for

the service selection without information exchanging between

cloud user groups.



Algorithm 2 Population Evolution Algorithms

1: Choose randomly the rate of strategy adaptation σ > 0.
2: All cloud users choose randomly the service from the

cloud broker or public provider.

3: loop:

4: A user computes cost Ci (i = 1,2 ) from the average delay

and price. This cost information is informed to the other

user group.

5: Based on the exchanging cost information, the average

cost C̄ = λ1C1+λ2C2
λ

is calculated in each user group.

6: if Ci < C̄ then

7: if rand < σ(C̄−Ci)/C̄ then

8: Choose service j, where j 6= i.

9: else

10: Keep service i.

11: end loop: for all cloud user in two groups (who are choos-

ing service from the cloud broker or public provider).

VI. PERFORMANCE EVALUATION

In this section, we analyze and discuss the numerical results

obtained from solving pricing and service selection games in

different scenarios. At first, we measure the sensitivity of the

provider’ utilities and prices, as well as cloud users’ equilib-

rium arrival rate and costs, for different service rates µ. Then,

we evaluate the convergence to evolutionary equilibrium of the

service selection game with Population Evolution Algorithms.

A. Pricing and Service Selection Games

We first consider a heterogenous cloud system with the

parameters as follows: α = 0.5, total cloud user arrival rate

λ = 100 and service rates µ are given in range of 110 to 190.

Figure 6 shows the equilibrium utility of the cloud broker

(U1) and the public provider (U2), respectively, in the two

scenarios (the cloud broker and public provider participate in

Noncooperative Strategic Game (NSG) and Stackelberg Game

(SG)). It can be seen that in NSG the equilibrium utilities of

the cloud broker are less than the equilibrium utilities of the

public provider. However, in SG, since the cloud broker takes

first-move advantage, the equilibrium utilities of the cloud

broker are higher than the equilibrium utility of the public

provider.

In addition, the difference between the equilibrium prices set

by the cloud broker and public provider in these two scenarios

can be showed in Fig. 7. It shows that the gap between two

competitive prices in NGS are less than those in SG. It can

imply that the price competition in NSG is fairer than that

in SG. Fig. 8 (a) and (b) provide better appreciation of the

difference between the prices. Beside prices, the intensive

competition between the cloud broker and public provider in

SG makes the cost of the cloud user increase as depicted in

Fig. 9. Further more, we can observe that when the service

rate µ increases, both the cost of cloud users and the prices set

by the providers decrease. The reason is that the increasing of

service rate µ implies the reducing of the delay cost of users

at both the cloud broker and public provider.
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Fig. 6. Comparison of the utility of the provider in Stackelberg Game(black
color) and Noncooperative Strategic Game (green color).
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Fig. 7. Difference in the equilibrium prices p1 and p2 in the NSG and SG
scenarios.

We further investigate the changing of the cloud broker in

two mentioned game scenarios. As shown in Fig. 6, the utilities

of the cloud broker in the NSG are higher than those in the

SG, however, the difference between utilities in two scenarios

decreases while the service rate µ increases. Fig. 10 brings a

interesting fact that in NSG, the service rate µ does not affect

the equilibrium arrival rate λ1 of user at the cloud broker.

However in SG scenarios, when the service rate µ rises up,

the equilibrium rate λ1 also increases.

B. Population Game Numerical Results

Impact of Delay in Population Evolution Algorithms: At

the time when a user makes the decision on service selection,

current information at a certain time t about an average cost

(i.e., C̄ in ) may not be available. Therefore, a user must rely
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Fig. 8. Comparison of the equilibrium prices of the provider in Stackelberg
Game(SG) and Noncooperative Strategic Game (NSG).



120 140 160 180

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14  Cost C
1
=C

2
 NSG

 Cost C
1
=C

2
 SG

Service rate µ

Fig. 9. Difference in the equilibrium cost of the cloud user in the NSG and
SG scenarios.

120 140 160 180

0

10

20

30

40

50

60

Service rate µ

 λ
1
 NSG

 λ
1
 SG

Fig. 10. Comparison of the equilibrium user arrival rate at the cloud broker
in SG and NSG.

on historical information, which again, may be delayed for a

certain period. This delay can occur due to the information

exchange latency among user groups. Thus, we assume that a

user make a service selection at time t bases on the information

at time t-τ (i.e., delay for τ units of time). In this case, the

replicator dynamics can be modified as follows

ẋi(t) = xi(t− τ)σ
[

C̄(t− τ)−Ci(t− τ)
]

, i= 1,2. (22)

The convergence of Population Evolution Algorithms with

different values of τ is shown in Fig. 11. We investigate

the impact of τ on the dynamics of strategy adaptation.

When τ ≥ 1, we observe a fluctuating dynamics of strategy

adaptation. For small of value τ = 3, the difference between

dynamics of strategy adaptation without delay and that with

delay is very little as time increases. The larger the delay

is, the more the fluctuation there will be. We can observe

that if τ > 10, the dynamics of strategy adaptation of users

never reaches the evolutionary equilibrium as presented in Fig.

11 (b). The reason is that the decisions of users tend to be

inaccurate when information is out-of-date.

VII. CONCLUSION

In this paper, we study the price competition in a heteroge-

nous market cloud computing formed by public providers and

cloud brokers (all also known as cloud service providers) with

two stages of competition. In pricing competition between

the cloud service providers, we derive the equilibrium prices

in two game models: Noncooperative Strategic Game and

Stackelberg Game. At the same time, we study the dynamic of

(a) Delay time τ = 3. (b) Delay time τ = 10.

Fig. 11. The convergence of Population Evolution Algorithms with different
values of τ. The solid line is Population Evolution Algorithms without delay
(i.e., τ = 0).

cloud users in service selection game by using the evolutionary

game model. We use the Wardrop equilibrium concept and

replicator dynamics to compute the equilibrium and character-

ize its convergence properties in the service selection game.

Performance evaluation demonstrates that our game model can

represent the main characteristics of the heterogenous market

cloud computing pricing and service selection. Throughout the

numerical results, we found that the advantage for the cloud

broker to set the price firstly is significant by observing the

revenue comparison in the Stackelberg Game and Noncoop-

erative Strategic Game. We also have proposed an population

evolution approach to implement the evolution of cloud user

to enforce them to converge to the equilibrium choice. Here,

the service selection algorithm based on population evolution

utilizes information from all users to achieve fast convergence.

In future work, we will implement the reinforcement-learning-

based approach, in which the cloud users learn the perfor-

mances and prices of different cloud providers by interaction

to make the optimal decision for the service selection without

the centralized controller.
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