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Abstract—Hybrid Software-Defined Networks (SDNs) are
growing at a remarkable speed, so network administrators need
to deal with the configuration of a plethora of devices including
OpenFlow elements, traditional equipment, and nodes supporting
both OpenFlow and traditional features. The OpenFlow Manage-
ment and Configuration Protocol (OF-CONFIG) is positioned as
a solid candidate for the remote configuration of OpenFlow de-
vices, but the fact that OF-CONFIG relies on NETCONF for its
transport constrains its potential considerably. Indeed, the lack
of comprehensive and standardized data models has hindered
the utilization of NETCONF itself in traditional networks, and
will likely confine OF-CONFIG to an elementary set of config-
urations until the expected data models arrive. In this paper,
we present a semantic-based approach that eases and automates
the configuration of network devices while complementing the
capabilities of OF-CONFIG and NETCONF. Our main contri-
butions can be summarized as follows. First, we have formalized
the semantics of the switch/router configuration domain using
the Web Ontology Language (OWL). Second, we have developed
an Ontology-Based Information Extraction (OBIE) system from
the Command-Line Interface (CLI) of network devices. Third,
we have defined a learning algorithm that enables automated in-
terpretation of CLIs’ configuration capabilities in heterogeneous
(multi-vendor) network scenarios. The potential of our approach
is demonstrated through experiments carried out on different
network elements.

I. INTRODUCTION

With network programmability in the spotlight, Software-
Defined Networks (SDNs) have rapidly become a major trend
in the ICT field. Telecom providers and device vendors concur
that SDNs will lay down the foundation for next-generation
networks, given their potential for achieving higher flexibility
and openness while dramatically reducing costs. A paradigm
shift of this nature can clearly transform network management
practices, and pave the way for reaching the desired goal of
network automation. The OpenFlow protocol [1], and most re-
cently the OpenFlow Management and Configuration protocol
(OF-CONFIG) [2], have become key components for control-
ling and managing SDNs. OpenFlow standardizes the interac-
tions between an SDN controller and the switches under its
control. However, it does not provide the functions that are re-
quired for configuring queues, ports, assigning IP addresses or

any other configuration toward the device. The OF-CONFIG
protocol was recently defined by the Open Networking Foun-
dation (ONF) precisely to that end.

A crucial part of the OF-CONFIG specification is that the
configurations are transported on NETCONF [3] —a proto-
col which also provides mechanisms for the configuration of
devices in traditional networks. Unfortunately, NETCONF it-
self has not gained momentum yet, so it remains to be seen
if it will finally become the protocol of choice [4]. In this
regard, industry sources state that nearly 95% of network de-
vices are still configured through proprietary Command-Line
Interfaces (CLIs) [5]. The reason for this is the lack of com-
prehensive and widely accepted data models. This gap was
recently filled by YANG [6], a candidate language for de-
veloping standardized data models for NETCONEF. Still, four
years after its standardization, only few YANG data models
have found broad acceptance [7].

Another relevant aspect is that SDN is certainly not neces-
sary for all parts of the network [8]. Moreover, a full replace-
ment of the underlying infrastructure is neither affordable nor
feasible for many administrators, which indicates that SDNs
will need to coexist and interact with traditional networks for
several years. For this reason, hybrid approaches to SDN —a
mix of SDN-enabled and traditional network devices— are po-
sitioned as strong candidates to ease the transition to new and
more flexible network environments [9], [10]. Accordingly,
legacy infrastructures will continue to play a crucial role in the
SDN future, and will likely give place to new challenges and
opportunities in the management field. Although OpenFlow
and the elementary configurations supported in OF-CONFIG
can suffice for managing OpenFlow devices, network config-
uration tasks clearly entail much more than configuring flows.
Consider for instance requirements such as the configuration
of usernames and administrative privileges for authenticated
access through CLIs, the configuration of a link-state routing
protocol (e.g., OSPF), or a switching protocol (e.g. MPLS).
Accordingly, the heterogeneity of hybrid SDNs will require
of a flexible management model where configurations are not
only performed on a per-flow basis.



In this context, this paper presents a semantic-based ap-
proach for complementing the capabilities of OF-CONFIG
and NETCONF for the remote configuration of network de-
vices. The main goal is to develop a non-disruptive solution
that supports the configuration of hybrid devices, while com-
plying with key drivers for SDNs, e.g., abstraction and au-
tomation of management tasks. To this end, we propose an
Ontology-Based Information Extraction (OBIE) System from
the CLI of network devices. Overall, our approach exploits
the knowledge already available in CLIs, in an effort to au-
tomatically reconcile the semantic and syntactic differences
between heterogeneous configuration environments. Our con-
tributions are as follows. First, we formalize the semantics
of the switch/router configuration domain using the Web On-
tology Language (OWL). Second, we present our OBIE sys-
tem from the CLI of network devices. Third, we develop an
ontology-based learning algorithm that enables automated and
highly precise interpretation of CLI configuration capabilities
in heterogeneous (multi-vendor) network scenarios.

The remainder of this paper is organized as follows. Sec-
tion II briefly motivates our approach in the context of current
research. Section III introduces our semantic approach and de-
scribes the architecture and learning algorithm of our OBIE
System. Section IV presents the experimental results carried
out over the configuration space of two widely used routers.
Finally, Section V concludes the paper.

II. RELATED WORK

The research community has devoted considerable efforts to
overcome the complexities in network management [11]. Some
of these efforts have explored alternative fields to standard-
ization which can further assist in networking. For instance,
ontologies from Artificial Intelligence (AI) offer a promising
path to achieve interoperability in domains where standards
have not succeeded. In the networking domain, several initia-
tives have also explored the Al path to target network manage-
ment [12], [13], [14], [15], [16], [17]. Given the broad scope
of network management and the numerous functions that it en-
tails, many of these solutions approach different aspects of the
problem; for example, the need to unify underlying network
management data models [16], autonomic network manage-
ment [15], [17], integration of management data [14] or the
issue of multi-vendor configuration management [12], [13].
For an in-depth study on the application of semantic tech-
nologies to the network management domain we refer readers
to [18].

With respect to ontologies applied for configuration man-
agement, the work in [12] proposes the use of ontologies
to describe a NETCONF workflow. However—with the so-
mentioned limitations of NETCONF—herein we focus on the
use of CLIs for the configuration of network devices. More-
over, the research in [13] is the one mostly aligned to our
work. In that paper, an ontology-driven framework is proposed
to address the semantic heterogeneity of network manage-
ment domains. Their main contribution is a semantic similar-
ity function that enables mappings between ontologies. They

further apply their solution to the router configuration domain
and model CLI commands on ontological structures. However,
their framework assumes that ontologies are given in advance
for each device, but the task of building ontologies is already
challenging and sufficiently complex by itself.

Despite of the numerous initiatives regarding the application
of ontologies and Al-based techniques to approach network
management, the exploitation of semantic technologies con-
tinues to be a research challenge. There are still many paths to
be explored in order to benefit from such technologies. More-
over, none of these works have explored the field of OBIE as a
means to enable interoperability in the network configuration
domain. We strongly believe that a solution which can assist in
the configuration of network devices whenever OF-CONFIG
or NETCONF are not suitable, is less a matter of develop-
ing new ways of managing the network or adding new proto-
cols that boost complexity, but more of adapting well-known
techniques that have proven to be absolute trends for years
in the configuration field. For this reason, legacy Command-
Line Interfaces can help bridge the gap between traditional
and SDN-based networking.

The rationale behind our approach is that almost every net-
work element —either legacy or SDN-enabled— features a
CLI for configuring the device, and thereby control and man-
age the technologies and protocols that run through them. CLIs
are often large and heterogeneous in content, structure and se-
mantics. However, they provide information —encoded in the
form of natural language— aimed to help and guide network
administrators in the manual use of the configuration environ-
ment. Indeed, this information could be automatically acquired
and transformed into useful configuration knowledge. The no-
tion of extracting knowledge from already available text-based
resources has been a field of increased interest among re-
searchers of many other domains as a means to enable nu-
merous applications (e.g., question-answering, decision sup-
port systems, etc.). To the best of our knowledge, CLIs have
never been explored from an OBIE perspective in the network
management arena.

III. APPROACH

As stated earlier, our central hypothesis is that configuration
knowledge can be automatically acquired from already avail-
able CLIs, by exploiting both (i) the information provided in
the “help” feature, and (ii) the knowledge inherent to the hi-
erarchical arrangement of commands. To this end, we have
developed an Ontology-Based Information Extraction (OBIE)
System, which relies on shallow Natural Language Processing
(NLP) tools and other semantic technologies to exploit the
information natively provided in CLIs. Furthermore, we have
developed an ontology for the switch/router configuration do-
main which will be used to guide the Information Extraction
(IE) process. Overall, our system aims to identify relevant in-
formation from the CLI in an effort to determine the semantics
of the configuration space.

We anticipate that the methodology developed in this paper
is general in scope, so it can be extrapolated to other domains



wherein the configuration environments are distributed, hetero-
geneous, command-based, and most importantly, hierarchical.
For instance, our general approach can be applied for the con-
figuration of distributed medical equipment in a health facility,
printer stations in large corporations, etc.

A. Architecture Overview

The general architecture of our OBIE system is shown in
Fig. 1. Observe that our system takes two inputs, namely, (i)
the switch/router CLI —as natively provided by vendors— and
(ii) the switch/router configuration ontology —specified by us.
Furthermore, the output of our system is a device-specific on-
tology, which is the result of populating the domain-ontology
with instances of configuration commands according to the se-
mantics of each CLI space. These device-specific ontologies
are further stored in a repository to enable potential function-
alities of third-party applications, e.g., a Network Management
System (NMS) requesting the commands for setting an inter-
face IP address for dissimilar device models.

Our system’s architecture is based on a modular design
which accommodates several components into two functional
blocks, namely, the offline and the online modes (cf., Fig. 1).
The offline mode resolves the semantic and syntactic dissim-
ilarities between CLIs, in an effort to automatically bring its
semantics to a common reference model. The way in which
we exploit CLI information to aid in the instantiation of com-
mands and how these disparities are actually resolved is the
core of our Semantic Learning Engine and will be further ex-
plained in Section III-D. The online mode provides an inter-
face to third-party applications (e.g., a Network Management
System) which can significantly benefit from a system that
abstracts the complexities of multi-vendor configuration en-
vironments. Without such a tool, network administrators are
forced to gain specialized expertise for every available device.
Overall, the offline and online modes aim to mitigate the ef-
forts related to the configuration of devices in heterogeneous
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environments. The execution of both functionalities completes
the configuration cycle, from the semantic definition of every
configuration space to the automatic retrieval of commands,
regardless of the underlying heterogeneity.

B. The Ontology for the Switch/Router Configuration Domain

The developed ontology for the switch/router configura-
tion domain represents the conceptualization of the domain
in the most generic and neutral way —i.e., regardless of ven-
dor’s specifics. The main driver for building such an ontology
is based on the fact that the knowledge expressed in CLIs
—apart from proprietary developments— is mostly related to
well-known concepts and technologies. This is mainly because
device manufacturers tend to keep their products close to stan-
dards, as a means to ease interoperability and comply with
regular configuration features. Nevertheless, the use of termi-
nologies to name commands and variables is what most likely
differs among vendors —either because different representa-
tions are used for the same semantics (a syntactic problem)
or the complete opposite, same terminological representations
are used for different semantics (a semantic problem). In light
of this, it is not what CLIs provide what mostly concerns net-
work administrators, but most importantly, the way in which
this knowledge is expressed —i.e., the use of dissimilar ter-
minologies and their corresponding semantics.

The ontology has been defined taking the knowledge pro-
vided by networking experts, in addition to information ex-
tracted from configuration manuals. For this reason, key con-
cepts and relations of the switch/router domain were unam-
biguously identified and formally encoded in OWL. Although
our solution is general in scope, the ontology must meet a
minimum of requirements. First, the domain lexicon is inte-
grated in the ontology. Second, the ontology must be defined
in two layers, namely, a resource layer and an operation layer
(cf., Fig. 2) —very similar to the approach followed by au-
thors in [19]. The former defines the entities, concepts and
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Fig. 1: General architecture of our OBIE system for switch/router command instantiation from CLlIs.



resources of the domain —both, physical (e.g., an interface
or a LAN port for the routing domain) and virtual (e.g., a
routing protocol or the OSPF hello interval). Moreover, the
latter defines the functional concepts of the domain, i.e., the
set of operations that can be performed over virtual and physi-
cal resources —e.g., configure a router host-name or remove a
static IP route, etc. Notice that concepts in the operation layer
are specified in terms of verb phrases (e.g., set, delete, config-
ure, show, etc.) and semantically associated to concepts in the
resource layer (cf., Fig. 2). In short, a resource represents a
component that can be supplied or consumed in an operation.

The resulting ontology represents over 600 resources and
near 320 operations [20]. We have developed our ontology,
based on the use of all OWL constructs (classes, individu-
als, properties, restrictions, etc.). We have defined hierarchical
(i.e., taxonomic “is-a” type of relations) and non-hierarchical
relationships between concepts, in an effort to improve the
semantics of the domain. Moreover, we have modeled user-
defined data-types using the pattern facet restriction feature of
OWL2 to define custom types to match regular expressions.
This feature will enable us to validate domain-specific types
of data, e.g., to identify ranges or an IPv4 address. Notice that
the knowledge encoded in the ontology will help us resolve
ambiguity. For example, we can determine if the occurrence
of a term corresponds to a certain concept by identifying an
address format or a measurement unit.

C. Off-line Functionality

The overall aim of the offfine functionality is to instanti-
ate configuration commands into their corresponding seman-
tic classes, in an effort to automatically build device-specific
ontologies from their CLIs. This mode is comprised of three
modules, namely, the CLI Parser, the Ontology Manager and
the Semantic Learning Engine (cf., Fig. 1).

The CLI Parser provides the functions to breakdown the
CLI into its structural parts, namely, commands (cmd) or vari-
ables (var) and help descriptors (help) (cf., Fig. 3). The reason
for doing this is that only commands and variables are aimed
to be instantiated. The information provided in the help de-
scriptors will be used to determine the semantics of each level
and assist in the disambiguation process. The fact that “helps”
are aimed to guide network administrators on the manual use
and interpretation of the CLI, makes this information likely to

Operation Resource <
S
R
[AN
\

Y
=
& Xy

Operationy  Jrresseecveeniil
o
o Operationy_q
\ .

Operation Layer

datatype, .v >
—— — —

Resource Layer

=+ Nol

=P T
= = 9 Datatype Properties . Datatype
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cmd var
configure set interfaces <interface-name> umit <interface-unit-number> family inet address <source>

configure Manipulate software configuration information
set Set a parameter
interfaces Interface configuration
<interface-name> Interface name
unit Logical interface

<interface-unit-number> Logical unit number

family Protocol family
inet Ipv4 Parameters
1 Interface address/destination prefix

address’
<source> Interface address/destination prefix

help

Fig. 3: Example of a typical router configuration statement.

reference common networking terminologies —instead of cus-
tom and vendor-related ones. All in all, the semantics provided
by vendors must converge at some point. Otherwise, their so-
lutions would be unattainable and impractical, and the learning
curve expensive. Though networking-related terms can occa-
sionally be misleading, an “IP Address” will have to be re-
ferred as such if vendors want to dominate in a market al-
ready flood by serious interoperability issues. Even if helps
do not explicitly provide a reference for disambiguation, the
context —i.e., information of contiguous levels— can help de-
termine a term’s sense. This feature will be further exploited in
our learning approach. Furthermore, the parser also browses
through the hierarchy in order to build the complete set of
executable configuration statements —i.e, valid sequences of
commands and variables which semantically represent one or
several configuration operations. Each of these statements are
target of instantiation within our system. A typical configura-
tion statement is shown in Fig. 3.

The Ontology Manager provides an interface to the domain
ontology. More specifically, it supports the functions required
to (a) load the ontology, (b) enable access to OWL constructs
—via the OWL API [21]— and (c¢) expose available configu-
ration operations via Web Services to third-party applications.

The Semantic Learning Engine includes the algorithms for
extracting configuration knowledge from heterogeneous CLIs.
This module can be further differentiated in four components,
namely, (i) Data Pre-processor, (ii) Lexical Matching, (iii) Se-
mantic Analysis, and (iv) Decision Maker (cf., Fig. 1). The
approach to Information Extraction (IE) will be described in
the next section.

D. An Ontology-Based Learning Approach

To achieve the overall goal of our system we target the pro-
cess of IE in two stages. In Stage 1, we look in the CLI for
(i) verb phrases and (ii) relevant concepts of the switch/router
domain with respect to particular components of the resource
layer of our domain ontology. In Stage 2, we bring this knowl-
edge together and reason over it, in an effort to determine the
operation that best defines the semantics of a level, with re-
spect to the components of the operation layer. In order to
ease explanations, we will consider the configuration state-
ment shown in Fig. 3 through all this Section. Notice that the
sequence of commands and variables semantically represent
the configuration of an interface IP address.

The first component in the IE workflow is the Data Pre-



Processor which combines shallow NLP tools for basic data
pre-processing. The process includes the following: a Part-
Of-Speech (POS) Tagger for verb phrase identification, a To-
kenizer that separates data into tokens and Removes Stop
Words, and a Stemmer, which reduces inflectional forms of
a word to its common base form. Notice that the informa-
tion present in the CLI is likely to be short and concise —
sometimes even insufficient to be self-explanatory. The lack
of verbosity and proper grammar restricts the content of CLIs
to (i) concepts (e.g., Level, and Levels in Fig. 3) and (ii) verb
phrases (e.g., Level; in Fig. 3). This significantly simplifies
the scope of the semantic search.

After that, we perform Lexical Matching, i.e., we make ex-
tractions with respect to particular components of the domain
ontology. Consider the ontology to be a semantic graph (cf.,
Fig. 4 (a)) where nodes represent concepts and edges relations
between concepts. The output of this stage is a set of “acti-
vated” nodes for every identified entity in the CLI —the notion
of “activated” nodes is depicted in Fig. 4 (b)). Lexical match-
ing allows both partial and exact matching. In the case for
which a term matches several ontological concepts, we keep
the Least Common Subsumer (LCS), i.e., the most concrete
taxonomic ancestor. To illustrate this, consider Level, in our
example. The CLI information for this level is “Interface Con-
figuration”. Accordingly, candidate concepts (lexical match-
ing) will be: (inter face), (ethernet — inter face), (100G —
Inter face), (10G — Inter face), and (inter face — name).
From the ontological structure, we know that these concepts
have a subsumption relationship. The (ethernet—inter face),
(100G — Interface) and (10G — Interface) concepts are
subtypes of (inter face), while (inter face —name) is an at-
tribute (i.e., an ontological data property) of the latter. In the
absence of information we select the LCS, i.e., we generalize
to the (inter face) concept. Moreover, if exclusive properties
of a concept are discovered in subsequent levels, we can fur-
ther select a specification of the concept. This functionality
is performed by the inference stage of the Semantic Analy-
sis. Notice that there are cases for which candidate concepts
do not have a LCS. In these cases, concepts are considered
disjoint, i.e., only one can accurately define the semantics of
the given CLI term. Further clustering and semantic related-
ness will aid in the disambiguation for these scenarios. To
illustrate this case consider the following. For Levelg in our
example, the lack of verbosity in the CLI can generate ambi-
guity between the ontological concepts, (mac— address) and
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(ip — address). Although in principle we lack information to
disambiguate between both concepts from a lexical perspec-
tive, we know in advance that only one can properly define
the semantics of the given term. For this reason, we identify
them as disjoint concepts and further semantic analysis will
allow us to select the best candidate concept.

It is important to realize that even if concepts are not iden-
tified by lexical matching, mainly because of the use of cus-
tom or dissimilar terminologies, the Semantic Analysis can
identify relevant concepts by inference. Therefore, we do not
make limited use of the ontology —such as names of classes—
moreover, we use the ontological structure to enhance our as-
sessment. Notice that due to CLIs intended purpose, it is rea-
sonable to think that they cannot be conceptually radical as
they are expected to converge at some point to domain ref-
erents (e.g., protocols and standards). The Semantic Analysis
stage can be further differentiated into, clustering, inference
and semantic relatedness computation, as shown in Fig. 4.

Clustering and Inference are iterative stages where “acti-
vated” resources are grouped into semantic clusters (cf., Fig. 4
(c)). We form clusters between directly connected resources of
adjacent levels. Notice that the notion of nodes being part of
fully interconnected clusters is based on the premise that com-
mands are arranged in the hierarchy by association —i.e., com-
mands become more specific down in the tree structure. Ac-
cordingly, domain concepts in contiguous levels are expected
to be semantically related to a certain extent —directly or not.
The degree to which entities are actually related will depend
on the granularity of the CLI —which varies for every vendor.
For this reason, clustering is not sufficient and we require a
means to measure the degree to which they are semantically re-
lated. Furthermore, we perform semantic inference (cf., Fig. 4
(d)) with a two-fold purpose. First, to identify relevant con-
cepts which were not identified by lexical matching but which
can be derived from a semantic analysis. For this, we reason
over equivalent axioms of the ontology, which will allow us to
“activate” a concept whenever a set of conditions is fulfilled
for a defined class. For example, if we identify the (system),
(date) and (time) concepts (cf., nodes m, o and p in Fig. 4
(b)), we can infer from the equivalent axioms of our ontology
that we are referring to the system “(clock)” and further “ac-
tivate” this concept (cf., node n in Fig. 4 (d)). Observe that
this is an iterative process, so after node n is activated, nodes
m, o, p, and n will be clustered together. The second purpose
of the semantic inference is to generalize or specify already
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Fig. 4: Semantic Analysis: Step by Step.



“activated” concepts based on context information. For exam-
ple, if the entity (inter face) was activated for a certain level,
and further IE identifies “exclusive” properties of a child con-
cept (e.g., (ethernet — inter face) ), we infer that, the most
specific concept is most likely to be the asserted entity.

Next, we compute the semantic relatedness as a means to
determine the degree to which candidate resources are asso-
ciated by meaning, and thus, select the concepts with higher
relation. As mentioned earlier, due to the hierarchical nature
of CLIs, we assume that maximum interrelated concepts are
most likely representative of an executable sequence of com-
mands. To exemplify this, let us consider the example shown in
Fig. 5, where the resources “MAC_Address” in cluster C¢ and
“IP_Address” in cluster Cg are candidates for the CLI term
“address”. Observe that, both resources —and accordingly, the
clusters to which they belong to— are disjoint, as only one on-
tological class can represent the semantics of the term. From a
lexical perspective, the succinctness of the CLI is what gener-
ates ambiguity between both concepts. However, based on the
contextual background, the concept “IP_Address” seems to
be a better candidate, as it is semantically related to a higher
degree to concepts identified in adjacent levels (i.e., higher
node density). Moreover, semantic relatedness contributes to
the problem of word sense disambiguation, i.e., picking the
most suitable sense of the word and constraining the potential
interpretation of terms in our system. In the next lines, we will
explain our relatedness measurement R.

Let G(C, R) be a directed graph, where the vertex C repre-
sents a cluster € G, and the edge R represents a relationship
among two adjacent clusters (cf., Fig. 6). Let G, C G rep-
resent a connected subgraph of G, and C;, be the it" cluster
€ Gj. As depicted in Fig 6, the ontological class | within
C,i, shall be denoted as c . Equation (1) shows the related-
ness measurement R that we developed, which consists of two
components: the connection density d(Gy), and the maximum
information content coverage Z(GY).

Z(Gr) (1

The density component d(G}) is shown in (2), and it is
basically a measurement of the semantic connectivity of graph
Gp. It is computed as the relation between the number of
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Fig. 5: The rationale behind the quantification of the
Semantic Relatedness.
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Fig. 6: An example of Semantic Relatedness.

“activated” entities along the shortest path between any pair
of clusters in graph Gy, and the total number of connections
(i.e., the number of relations between entities) in those shortest
paths.
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More specifically, let C; and Cj be a pair of clusters in Gy,
and let 73(%,(:1C ) denote a path between a pair of entities

L€ ¢, and ¢} € C]. The shortest path between two clus-
ters is defined as S”P(Ck,CJ) = min P(c!,c)”), V cil, c? in
clusters Ci, and Cy., respectively. To illustrate this, consider
the paths between the clusters C{ and C; as shown in Fig. 6.
In this case, the shortest path between any pair of entities
(c}cl,ci” ), Le., paths with source in cluster C,i and termina-
tion in C}, or vice-versa, is SP(CL,C}) = [(ci?, ), (z, ¢3)].
Now, let the function A(P) return the total number of “acti-
vated” entities (i.e., the ontological classes) in path 73 In our
example, A(SP(C;,C})) = 2, which are ¢;® and ¢, Ob-
serve that the source of a path P is always an actlvated”
entity —recall that the clusters are composed of activated en-
tities only— hence the number of “active connections” along
a path P is (A(P)—1) (cf. (2)). Similarly, the function H(P)
in the denominator of (2) returns the total number of hops
in path P. For instance, in the example shown in Fig. 6,
H(SP(CE,C3)) = 2. Observe that when the clusters Cj. and Cj,
are not adjacent, the shortest path can traverse other clusters.
Hence, in a connected graph, the number of activated entities
always satisfies A(SP(CL,Ci)) > 2

The second term of the relatedness measurement R is the
Information Content Z(G},), which is shown in (3).

[Ck|

= ZZt%mgo}j 3)

i=1 =1

This term represents a measurement of the knowledge cov-
ered by the ontological classes in their corresponding clusters.
Let i denote the number of CLI terms that triggered the
activation of an entity c € Cj, in the semantic graph Gj. Ob-
serve that in (3), the contrlbutlon of an entlty cy, to the dornaln
knowledge is weighted by two factors, m and 0 . Let, m



be the matching factor of the [th entity, which is 1 for entities

identified by perfect match; otherwise, its value is chosen as
(8711), with e the total number of entities identified for the
same CLI term. In other words, in case of partial match, the
weighting factor m}f represents the probability of being any
of the e entities identified for the same CLI term —including
none of them (+1).

In the example shown in Fig. 5, e = 2 for the entities
triggered by the term “address”, with equal probability from
the information content perspective of being “IP_Address”,
“MAC_Address”, or none. Moreover, the other weighting fac-
tor, i.e., oil, is a measurement of the “occurrence” of a candi-
date entity in the CLI, over the total number of occurrences of
its exclusive disjoint entities. This measurement is computed
during the IE process at the lexical matching stage.

Observe that we compute the semantic relatedness V G, C
G, that is, over the total number of connected cluster sub-
graphs of GG. As indicated in (1), the relatedness measurement
that we chose is the maximum obtained V G,. It is worth men-
tioning that, even though at first sight our model might look a
bit intricate, its computation is actually quite straightforward.
The nature and hierarchical structure of CLIs typically yields
a small number of interrelated clusters, and more importantly,
as outlined in Fig. 1, this subsystem operates in offline mode,
so the only and fundamental goal is the accuracy of the OBIE
process. Indeed, the results that we present in Section IV con-
firm the strengths of our model and the approach proposed in
this paper. Also observe that, although the ontology and some
of the descriptions made in this Section are application-specific
—i.e., they consider particular features of CLI environments
for routers —the essence of our model can be generalized and
applied to other contexts, especially, those that rely on hierar-
chical CLIs for device configuration.

Finally, in the Decision Maker (cf., Fig. 4) we select the set
of resources that best define the semantics of the CLI, as those
belonging to the clusters with highest semantic relatedness.
Furthermore, we combine these resources with the identified
verb phrases and look for the most suitable atomic operations
on a per-level basis. Afterwards, we instantiate commands and
variables into the domain-ontology and chain them accord-
ing to the hierarchical structure of the CLI. When the system
has navigated over the complete CLI, the specific-ontology is
stored in a repository according to the device model and OS
version for further online queries from external (third-party)
applications.

E. On-line Functionality

As stated earlier, the online functional mode supports the
semantic retrieval of configuration statements. It semantically
resolves configuration requests on the basis of heterogene-
ity and automatically retrieves the sequence of commands for
a given device model. It provides a web-based interface for
third-party applications willing to outsource the task of config-
uration adaptation to our system. Moreover, the online process
supports advanced functions that enable format adaptation for
well-known domain concepts. For example, it automatically

performs subnet format adaptation. Notice that this knowledge
is embedded in the domain ontology and adaptation functions
are automatically triggered whenever an input differs from the
expected type.

To illustrate the online functionality, consider the following
use case. An NMS that targets programmability in multi-layer
networks (e.g., IP over Optical) is configured to automatically
offload the traffic of a gold client over a new path whenever
the traffic in the primary path goes beyond a certain threshold.
In order to achieve this, current solutions rely on manually set
configuration scripts —a strategy commonly used to simplify
recurrent tasks— which depends on the underlying infrastruc-
ture. However, a solution of this type can actually outsource
the configuration of the devices involved to our OBIE system,
and request the required configuration in runtime —regardless
of the underlying infrastructure— thus, decoupling network
programmability from the specifics of the current network set-
ting. Therefore, any change in the network (e.g., new devices,
operating system upgrades, etc.) will not affect regular ongo-
ing processes. The online functionality has already been de-
veloped, tested and successfully validated in the framework of
an European initiative, enabling management programmability
in the context of multi-layer and multi-vendor networks [22].

IV. EVALUATION

In order to evaluate the performance of our OBIE system,
we have carried out experiments over the configuration spaces
of two different network elements. One, a proprietary (i.e.,
commercial) router and the other, an open-source routing soft-
ware, namely, Juniper (Model M7i - JUNOS 10.4.R13.4) and
Quagga (Release 0.99.21), respectively. We downsized the set
of commands of the Juniper router to have a comparable set
with respect to Quagga, including the most common set of
features. Notice that, though the number of commands for
a network device can be significantly large, the ones used in
practice are a relative small set. For this reason, we thoroughly
selected a set of 180 commands from each CLI, which encom-
pass a broad set of functionalities —i.e., not only protocol-
specific configurations (e.g., OSPF, SNMP) but device-related
functions as well (e.g., user account settings).

Overall, our system populates the domain ontology with in-
stances of commands and variables according to the semantics
derived from the CLI. In the evaluation, we measure the per-
formance of both stages of our IE process (cf., Section III-D),
namely, resource identification (Stage 1) and operation infer-
ence (Stage 2). The main motivation for reporting performance
on both stages is to test the success of the proposed approach.

Regarding implementation, modules were developed in
Java, as it suits the needs of integration with already available
libraries for ontology management (OWL API [21]) and NLP
(NLP Stanford [23]). Our system is evaluated using standard
OBIE measurements, because traditional measurements are in-
adequate when using ontologies due to their binary behavior
when determining the correctness of an instantiation. When
making ontological classification, decisions are more obscure,
i.e., we can have “degrees” of correctness, e.g., if the term



“OSPF” is classified as the concept (Standard_Protocol) in-
stead of (Routing_Protocol), we are clearly less wrong than
if classified as (Application_Protocol). For this reason, we
used the Balanced Distance Metric (BDM) [24] —a cost-based
component that measures the degree of correctness according
to the ontological structure.

The BDM scores were computed with the open-source
BDM Computation Processing Resource, which is part of the
General Architecture for Text Engineering (GATE) [25]. The
BDM per se does not provide the means for evaluation. For
this reason, we measured the Augmented Precision (AP), Re-
call (AR) and F-Measure (AF) as introduced in [24]. These
metrics combine traditional Precision, Recall and F-Measure
with the BDM. Overall, AP measures the correctness, AR the
completeness and AF the overall quality of the instantiations
—as the latter accounts for both metrics. In order to compute
these metrics, a domain expert has manually built a gold stan-
dard which sets the most adequate semantic annotations from
the domain ontology. We then compare extractions with the
gold standard and compute augmented metrics.

The performance results are shown in Table I. Notice that
we computed two sets of measurements, one for each stage
of the IE process. The first and second rows show the per-
formance metrics for the case of commercial and open-source
routers, respectively. The third row shows the overall perfor-
mance for both network elements. Notice that, the “overall”
measures are not the mean values for the Juniper and Quagga
experiments, but instead, we have merged both instantiation
results and recomputed performance metrics. In general, our
experimental results show that our system is capable of au-
tomatically extracting the semantics of the configuration en-
vironment from the CLI with high performance. Over 92%
of configuration commands are adequately classified into their
semantic categories.

Notice that the “miss-classification” of nearly 8% of the
total of configuration commands is not always due to the in-
ability of our system to take the right decisions. For instance,
some of the evaluation results are affected by CLI inconsis-
tencies, e.g., when vendor’s make assertions which are not
strictly aligned to the domain knowledge. To illustrate this,
let us consider the following example. A given CLI, arranges
the MPLS commands under the “Routing Protocol” hierar-
chy. However, in the literature, MPLS is not actually consid-
ered a Routing Protocol. Furthermore, our system identifies
the (Routing_Protocol) concept in the early stage of lexical
matching. However, further inference and clustering stages,
generalize it to the (Standard_Protocol) concept. The reason
for this is that the (M PLS) concept is identified in subsequent
levels and according to the ontology axioms it is not a “Rout-
ing Protocol”. This means that, most likely (M PLS) and
(Routing_Protocol) cannot be at the same time candidates
for a configuration statement. Given that the taxonomic an-
cestor of (Routing_Protocol) , (i.e., {(Standard_Protocol))
is semantically related to (M PLS) we do the generalization.
Notice that this example is not actually a problem of miss-
classification due to errors in our system, but rather a problem

Stage 1 Stage 2
AP AR AF AP AR AF
Commercial (Juniper)  90% 89% 90% 92% 94% 93%
Open-Source (Quagga) 90% 83% 86% 92% 88% 90%
Overall 89% 85% 81% 92% 91% 92%

TABLE I: Performance Results of our OBIE Process.

derived from an inconsistency between the literature and the
vendor’s interpretation of the domain’s knowledge. Thus, we
can conclude that the generalization feature of our system can
certainly help to identify and bridge the gap between the CLI
information and the domain knowledge model, whenever in-
consistencies take place. These exceptions are out of the scope
of this paper, and will be considered in our future work.

V. CONCLUSIONS

In this paper, we have presented an Ontology-Based Infor-
mation Extraction (OBIE) System from the Command-Line In-
terface (CLI) of network devices. Our solution aims to comple-
ment current OF-CONFIG and NETCONF protocols, when-
ever heterogeneity or data models hinder the remote configura-
tion of network devices. This is particularly the case of hybrid
SDN networks. To this end, we have developed an ontology
for the switch/router configuration domain which is used to,
(i) guide the IE process from the CLI, and (ii) enhance our
assessment by exploiting the ontological structure. We have
also developed an extraction method which relies on shallow
NLP tools, lexical matching, clustering techniques, ontology
reasoning and relatedness computation to perform the auto-
matic instantiation of CLI commands and variables into their
semantic categories. Based on the performance evaluation, we
can conclude that the use of ontologies in conjunction with
other semantic technologies for IE provides a promising line
of research that can help mitigating the efforts of network de-
vice configuration. Moreover, our solution has the potential to
enable autonomic networking, by assisting third-party appli-
cations in the execution of network device (re)configuration.
To the best of our knowledge, our work is the first one using
IE techniques from CLIs and ontologies enabling automated
configuration of devices. We consider that this is an innovative
solution in the field of network configuration management.

Our future work includes (i) enhancement of the learning
algorithm based on historical instantiations, i.e., perform se-
mantic disambiguation taking into account previous decisions;
(ii) performance evaluation over editable CLIs, i.e., evaluate
the performance of our system for augmented or customized
CLIs, for instance, by including meta-information (improve
verbosity); (iii) enhancement of the IE process from web-
based resources; (iv) considering that there would be good
suggestions already produced by our system holding for final
verification, integration of a human validation stage in the fi-
nal loop to improve the instantiation process to its maximum;
and finally, (v) semantic-web integration in order to provide
the ability to generate semantic contents of the switch/router
configuration domain for the Web.
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