
Detecting Performance Interference in
Cloud-Based Web Services

Yasaman Amannejad, Diwakar Krishnamurthy, Behrouz Far
Department of Electrical and Computer Engineering, University of Calgary, Canada

{yasaman.amannejad, dkrishna, far}@ucalgary.ca

Abstract—Web services have increasingly begun to rely
on public cloud platforms. The virtualization technologies
employed by public clouds can however trigger contention
between virtual machines (VMs) for shared physical machine
(PM) resources thereby leading to performance problems
for the Web service. Past studies have exploited PM level
performance metrics such as Clock Cycles Per Instruction
to detect such platform induced performance interference.
Unfortunately, public cloud customers do not have access to
such metrics. They can typically only access VM-level metrics
and application level metrics such as transaction response
times and such metrics alone are often not useful for detecting
inter-VM contention. This poses a difficult challenge to Web
service operators for detecting and managing platform induced
performance interference issues inside the cloud. We propose
a machine learning based interference detection technique
to address this problem. The technique applies collaborative
filtering to predict whether a given transaction being processed
by a Web service is suffering adversely from interference.
The results can then be used by a management controller
to trigger remedial actions, e.g., reporting problems to the
system manager or switching cloud providers. Results using a
realistic Web benchmark show that the approach is effective.
The most effective variant of our approach is able to detect
about 96% of performance interference events with almost no
false alarms.

I. INTRODUCTION

Many Web applications such as Netflix and WordPress
have begun to exploit cloud computing due to the promise
of unlimited computing resources and the pay-as-you-use
model. A cloud system achieves resource virtualization
and sharing by executing multiple virtual machine (VM)
instances on each physical machine (PM) in data centers.
Unfortunately, such virtualized infrastructure can trigger
performance degradation when the VM instances contend
for shared PM resources, e.g., processor cores, cache, physi-
cal memory [1], [2], and other cloud resources, e.g., network
and storage. Furthermore, cloud management activities such
as VM migration can also cause performance deterioration.
Such performance interference issues can be problematic for
cloud-based Web services. Long response times resulting
from such interference can cause frustration to end users
of such Web services. This can in turn lead to financial
losses for the businesses operating these services as well
as the cloud providers. Cloud customers therefore need
management tools to detect performance interference so that
they can take mitigative actions such as using a different
type of VM instance from the provider or switching to a
different provider.

Earlier studies [2], [3], [4], [5], [6] have been focused
on exploiting host PM level metrics such as cache misses

and Clock Cycles per Instruction for detecting performance
interference. However, public cloud subscribers typically
have no access to PM level metrics. Cloud users can
typically collect only VM level metrics such as network
bandwidth utilization, memory consumption and CPU uti-
lization. Although such metrics may be useful in detecting
VM level performance degradations, a cloud user is still
unaware of the performance degradation due to problems
at the PM level [7], [8].

An alternative approach that does not rely on virtual or
PM level metrics is to monitor application level metrics
such as the response times for handling incoming Web
transactions. However, transaction response times alone are
not always good indicators of performance interference
within a cloud. For example, an increase in transaction
response times can occur simply due to a sudden increase
in Web service workload instead of a true performance
interference issue induced by virtualization.

This paper uses collaborative filtering, a machine learn-
ing technique used extensively to build recommendation
engines [9], [10], to detect cloud platform induced per-
formance interference. Collaborative filtering is applied on
transaction response time data collected by a Web ser-
vice. Specifically, a Collaborative Response time Estimation
(CRE) module is developed to estimate a reference re-
sponse time for every incoming transaction. This reference
response time shows the expected response time for that
transaction when the transaction does not suffer from inter-
ference. CRE uses the transaction type, the instantaneous
Web service load, and a long term history consisting of
past response time data for the service’s transactions to
calculate the reference response time. The historical data
can be collected online from the production environment.
The reference response time and the actual response time of
an incoming transaction are used for interference detection.
Specifically, any significant mismatch between these values
is used to raise a flag.

Since CRE’s estimation takes into account Web service
load, it has the ability to ignore response time increases that
can be solely attributed to workload surges. Furthermore,
by maintaining a long term response time history for each
type of transaction, CRE is able to estimate a reference
”no-interference” response time and hence detect any inter-
ference that inflates response time of the Web service.

We develop and evaluate three different variants of CRE.
Experiments using the RUBiS [11] Web benchmark in
a virtualized testbed indicate the effectiveness of CRE.
Specifically, all three variants of CRE significantly outper-
form an alternative technique that ignores Web service load

when estimating reference response times. Furthermore, the
most effective CRE variant was able to detect about 96%
of performance interference events with no false alarms.

This paper is structured as follows. Sec. II reviews related
work. Sec. III describes the architecture and the algorithms
used in our proposed approach. In Sec. IV, we elaborate
details of our experiments, and the results are reported in
Sec. V. Sec. VI provides conclusions and future work.

II. RELATED WORK

Several studies, e.g., [12], [13], have shown that current
VM technologies do not provide complete performance
isolation for VMs. VMs can compete for shared micro-
architectural resources such as Last Level Caches (LLC),
memory channels, storage, and network devices and this
can manifest as performance problems within the VMs.

A vast majority of work on mitigating performance
interference has focused on using PM level performance
metrics to detect inter-VM contention. Blagodurov et al.
propose an approach that uses PM level metrics such as
LLC miss rates to detect and mitigate interference [4].
Similarly, Novakovic et al. design a contention mitigation
system called DeepDive that uses PM level metrics [5].
Mukherjee et al. developed a software probe that executes
a micro benchmark program on a PM [2]. To detect con-
tention, execution time of the benchmark is compared with
it’s execution time when it runs alone on the PM.

All of the above approaches need direct access to the PM
and therefore they can only be used by cloud providers.
Cloud subscribers typically do not get such access to
PMs. In this work, we seek a solution from subscriber’s
perspective and hence we propose a solution that relies only
on information that subscribers would be able to access.

Casale et al. [8] propose a subscriber centric solution
for detecting CPU contention in public clouds for batch
applications. By continuously monitoring the execution
times of a set of batch benchmarks within a VM, and
using baseline benchmark execution times and the CPU
steal metric the authors are able to predict whether the
VM is being affected by interference. In contrast to their
work, our work focuses on interactive Web applications
and generalizes to non-CPU resources as well. Maji et al.
develop a subscriber centric interference detection technique
for Web applications [14]. However, their approach requires
30 hours of offline training. In contrast, as we show in Sec.
V-I our approach is robust to the lack of training data.

Our method has some similarities with techniques used
to detect outliers in datasets [15], [16], [17], [18] proposed
by others. However, the key difference from these methods
is that our method is able to differentiate between workload
surges and performance interference.

III. METHODOLOGY

We first describe the general architecture of our inter-
ference detection system in Sec. III-A. Sec. III-B provides
more details about the algorithms used in our approach.

A. Cloud Customer Driven Interference Detection
We propose a cloud customer driven interference detec-

tion approach. As a result, our method does not need either
PM level information or information from VM instances

not belonging to the customer. Our method only requires
transaction response time data from the Web service being
monitored. Fig. 1 shows the architecture of the system.
The VM instance hosting the Web service is called the
monitored instance. The CRE module also resides on the
monitored instance. We note that it is also possible to host
CRE on a separate instance, e.g., a load balancer instance
attached to the Web service. The CRE module intercepts
an incoming (resp. outgoing) transaction from an end user
(resp. the Web service) and forwards the transaction on to
the Web service (resp. the end user). This proxy approach
allows us to monitor Web service transaction response times
without the costly need to instrument a Web service by
modifying its source code. As shown in Fig. 1, the PM
hosting the monitored instance may host other instances
(VMSoI) that may act as Sources of Interference (SoI) to
the monitored instance. The primary aim of CRE is to detect
such performance interference.

Fig. 1: Cloud customer oriented interference detection

We consider a Web service that supports n distinct types
of transactions, e.g., browse, search. Each transaction type
is assigned a unique id in the range 1 to n. The CRE module
continuously tracks the instantaneous load Lt of the system
at any given time t. We define the load Lt using the type and
number of transactions being processed at time t by the Web
service. Specifically, we denote Lt as an n-dimensional
vector where the jth element in Lt, Lt[j], shows the number
of transactions of type ’j’ executing on the server at time t.
The CRE module also relies on a repository D containing
historical response time data for different transaction types
when the transactions are not impacted by interference in
the cloud. For a given transaction type k and load Lt, a
query to D returns a vector of historical response times
HLt

k . Each element of HLt

k is a past response time of a
transaction of type k under load Lt.

The repository D can be obtained in multiple ways. For
example, it can be obtained by running a copy of the Web
service in isolation on a PM and subjecting the service to
synthetic workloads. Many cloud providers such as Amazon
Web Services (AWS) allow customers to create instances
that have sole access to a PM, e.g., the ”dedicated” instances
of AWS [19]. While these instances are typically expensive,
they can nonetheless be run for a brief period to collect data
for the repository. If running such instances is not feasible,
then the repository can use historical Web service response
times collected over a long duration to estimate the no
interference response times. Specifically, as per the central
limit theorem [20] the mean response time of a transaction

type k is likely to be very close to the true mean if the
sample size of response time values is large. A large sample
size can ensure that the mean response time does not get
biased significantly by transient performance interference
problems induced by the cloud platform. We explore both
of these scenarios for obtaining D in Sec. IV.

The CRE module operates as follows. CRE creates a
handler thread for each incoming transaction. The handler
thread intercepts an incoming transaction to the Web ser-
vice, records the time t that request was intercepted, records
the transaction type k, and obtains the current load of the
server Lt (Step 1 in Fig. 1). These inputs are extracted for
estimating a mean reference response time for the incoming
transaction under no performance interference. Next, the
handler thread forwards the incoming request to the Web
service (Step 2 in Fig. 1). The Web service completes the
transaction and the response to this transaction is intercepted
by the handler thread in 3. The handler thread now records
the time the response was intercepted and uses this with
the timestamp recorded in 1 to obtain the actual response
time rLt

k of the transaction. Data obtained in 1 and the
actual response time is then recorded in the repository and
a unique identifier id is generated for the new record (Step
4 in Fig. 1). Each record in the repository is hence a tuple of
〈id, k, rLt

k ,Lt〉. In parallel to 4, the handler thread forwards
the response to the end user in 5. Estimation of the reference
response time and interference detection (Steps 6, 7 in Fig.
1) occurs when the new record is added to the repository
and will be discussed next.

The mean reference response time rrefLt

k of the in-
coming transaction is estimated as follows. The inputs
extracted by the handler thread in 1 in conjunction with
data in D is used to offer a mean reference response time
estimate. Specifically, the CRE engine collects historical
response times (Step 6 in Fig. 1) observed for the incoming
transaction type under the load Lt observed in 1. If such in-
formation does not exist, then the module collects response
times under Lt from other transaction types that are similar
to k. The response times collected from the repository
are then used to compute the mean reference response
time rrefLt

k for the incoming transaction. We note that
the load dependent nature of the reference response time
estimate allows CRE to differentiate between performance
interference issues and workload surges. Further details of
the CRE engine are discussed in Sec. III-B.

Interference detection is done in 7 by comparing the
mean reference response time rrefLt

k with actual trans-
action response time. A significant deviation between the
reference and actual response times is used to flag a perfor-
mance interference. We developed three different variants
of CRE that differ in the way the deviation between the
actual and reference response times is quantified. These are
described in detail later in this section. If the CRE engine
raises a flag for a set of transactions, records pertaining to
those transactions are removed from the repository in order
to not affect future estimations of reference response time
(Step 8 in Fig. 1).

B. Collaborative Response time Estimation (CRE)
Algorithm 1 and Algorithm 2 show pseudo code of

key functions used by CRE. Details of these functions are
presented next.

Algorithm 1: Main methods of CRE
Method: Reference Response Time Estimation
Input: k, Lt

Output: rrefLt
k

HLt
k ← query repository (k,Lt)

if (HLt
k is not null) then

rrefLt
k ← calculate mean response time of HLt

k
else

NLt
k ← find similar neighbor transactions for Lt

foreach i ∈ NLt
k do

HLt
i ← query repository (i,Lt)

rrefLt
i ← calculate mean response time of HLt

i
end
rrefLt

k ← weighted mean of rrefLt
i , using Eq.(1)

end
————————————————————–
Method: Similarity Calculation
Input: T (List of transaction types)
Output: S (Similarity matrix)
foreach i in 1..k do

foreach j in 1..k do
S[i, j]← similarity (T [i], T [j]), using Eq.(2)

end
end
————————————————————–
Method: Interference Detection
Input: threshold, C, M
//calls one of the variants of the flag interference //interface
Flag Interference (threshold, C, M)
————————————————————–
Method: Update Repository
Input: idList
Output: D (updated repository)
Remove rows with id ∈ idList

Reference response time estimation - As discussed
previously, CRE needs to estimate the mean reference
response time of a given transaction k at a given load Lt. As
shown in Algorithm 1, if transaction k has experienced load
Lt earlier, the repository would contain historical records
for k under Lt. The response time estimation is simply the
average of the past response times recorded for k under Lt,
i.e., the mean of the elements of HLt

k .
The estimation is more complicated when transaction k

has not encountered load Lt. For this scenario, we identify
NLt

k as the set of other transactions similar to transaction k
that have encountered Lt. We then aggregate the response
times of each of these transactions at Lt to estimate the
mean reference response time. We note that this is similar
to the operation of recommendation engines [9], [10] that
predict items that a Web shopper maybe interested in based
on the items other shoppers similar to that shopper have
purchased in the past. We use the adjusted weighted sum
formula proposed by Breese et al. [21] for estimation. Eq.
(1) shows the aggregation formula we used for calculating
the mean reference response time from the response times
of the similar transactions.

rrefLt

k = rref∗k +

∑
i∈NLt

k

(rrefLt
i − rref∗i)× S[k, i]∑

i∈NLt
k

|S[k, i]|
(1)

As shown in Eq. 1, for each similar transaction i the
difference between the mean response time of transaction

Algorithm 2: Flag Interference
Method: Instantaneous Approach
Input: threshold, −, −
Output: Detection result: N/I, k
while new record is added to D do

//each record is a tuple of 〈id, k, rLt
k ,Lt〉

〈id, k, rLt
k ,Lt〉 ← fetch newrecord

rrefLt
k ← Reference Resp. Time Estimation (k, Lt)

if ((rLt
k - rrefLt

k) > threshold× rrefLt
k) then

//idList contains ids of suffering records
append id to idList
Update Repository (idList)
idList← null , result← I, k

else
result← N

end
end
————————————————————–
Method: Hysteresis Approach
Input: threshold, C, −
Output: Detection result: N/I, k
while new record is added to D do
〈id, k, rLt

k ,Lt〉 ← fetch newrecord
rrefLt

k ← Reference Resp. Time Estimation (k, Lt)
if ((rLt

k - rrefLt
k) > threshold× rrefLt

k) then
ck ← ck + 1
//idListk contains ids of records of //transaction k
suffering interference
append id to idListk
if (ck == C) then

Update Repository (idListk)
result← I, k , idList← null

end
else

result← N , idList← null
end
ck ← 0

end
————————————————————–
Method: Mean-based Approach
Input: threshold, −, M
Output: Detection result: N/I, k
while new record is added to D do
〈id, k, rLt

k ,Lt〉 ← fetch newrecord
rrefLt

k ← Reference Resp. Time Estimation (k, Lt)
update meanM (rrefk) with rrefLt

k

update meanM (rk) with rLt
k

mk ← mk + 1
append id to idListk
if (mk == M) then

if ((meanM (rk) - meanM (rrefk)) > threshold
× meanM (rrefk)) then

Update Repository (idListk)
mk ← 0
idList← null, result← I, k

else
mk ← 0
idList← null , result← N

end
end

end

i over all system loads, i.e., rref∗i , and its historical mean
reference response time at load Lt, i.e., rrefLt

i , is weighted
by the degree of similarity between the transactions k and
i i.e., S[k, i]. As shown in Eq. 1, the weighted sum is
then used to adjust the load independent mean transaction
response time of k, i.e., rref∗k . Any negative values of

the weighted sum are set as 0. If no transaction has seen
Lt in the past, we simply use the mean of response times
experienced by transaction type k over all recorded values in
the repository. This situation can be improved by identifying
loads similar to Lt and using response times for similar
transactions under such similar loads. We defer this as future
work.

Similarity Calculation - CRE considers two transactions
to be similar if they have similar response times under the
same loads. Different similarity measures have been used
in literature [22], [23], [24]. We use the Pearson correlation
coefficient (PCC), which is one of the commonly used
similarity measures. Using PCC, the similarity between
two transactions k and i is defined by Eq. (2).

S[k, i] =

∑
e∈Eki

(rrefe
k − rref∗k)× (rrefe

i − rref∗i)√ ∑
e∈Eki

(rrefe
k − rref∗k)

2 ×
∑

e∈Eki

(rrefe
i − rref∗i)

2

(2)
In this equation, similarity between transactions k and i, is
calculated based on the mean response times of these two
transactions for all common loads Eki they have experi-
enced before. Common loads are loads at the Web service
that both k and i have experienced in the past. The similarity
value between each pair of transaction types is calculated
and used within Eq. (1) to estimate the mean reference
response time. Similarity values can be in the range of
[−1, 1] with 1(resp. −1) indicating perfect positive(resp.
negative) correlation between two transactions. Similarity
values are updated periodically during the lifetime of CRE
to reflect newer response time measurements.

Interference Detection- The interference detection algo-
rithm acts in transaction granularity level and uses rrefLt

k
to flag whether it is a normal, i.e, N , event or an interfer-
ence, i.e., I , event. It takes as input a threshold parameter
that quantifies the degree of permissible mismatch between
the reference and actual response times. The threshold
parameter can take values from 0 to 1. The lower the
threshold value, the lesser is CRE’s tolerance for a mis-
match. This threshold should be set by the Webservice
manager. We evaluate three different variants to flag an
interference event. These variations are shown in Algorithm
2 and are discussed next.

1) Instantaneous approach - For a given transaction
and system load, the mean reference response time rrefLt

k

is compared with the actual transaction response time rLt

k .
An interference event is flagged if the difference between
the reference and actual response times exceeds a tolerance,
which is computed as the product of the threshold param-
eter and the mean reference response time rrefLt

k .
2) Hysteresis approach - Similar to the instantaneous

approach, an internal flag is raised when the mismatch
between the mean reference response time and the actual
transaction response time exceeds the tolerance for a given
transaction. However, an interference event is raised only
when a chain of C continuous flags are raised for that
transaction. We note that the hysteresis approach with
C = 1 corresponds to the instantaneous approach.

3) Mean-based approach - This approach takes as input
an aggregation parameter M . For any given transaction k,
it computes the mean of the actual response times for the
last M records of the transaction (i.e. meanM (rk)). It also
computes the mean of the mean reference response times for

those M records of the transaction (i.e. meanM (rrefk))1.
An interference event is flagged if the difference between
these two mean values exceeds a tolerance, which is
computed as the product of the threshold parameter and
the mean of the past M mean reference response times
meanM (rrefk). We note that the instantaneous approach is
a specific form of the mean-based approach where M = 1.

The above three approaches present different trade offs
with respect to the speed and accuracy of decisions. The
instantaneous approach enables agile decisions. However,
there is a potential for mistaking a routine stochastic vari-
ation in a transaction’s response time as a performance
interference induced by the cloud platform. The other two
approaches seek to mitigate this problem by delaying their
decisions.

Repository evolution- As mentioned previously, CRE
assumes an initial repository containing historical transac-
tion response times in order to estimate no interference
mean reference response times for a given transaction under
a given load. We refer to the initial dataset in the repository
as the training data. A good training dataset should be
representative of the typical workloads experienced by the
Web service. The training phase should be long enough to
capture fluctuations in system load. Since it is not practical
to have all possible system loads in the training data, we
evolve the repository by continuously adding response times
of completed transactions along with their associated load.
As described previously, when CRE finds that a transaction
is undergoing performance interference, data corresponding
to that transaction is removed from the repository using the
model update function of Algorithm 1. This reduces the
likelihood of such abnormal response times from biasing
future estimates of mean reference response times. Further-
more, the growth in size of the repository is controlled by
periodically discarding old entries.

IV. EXPERIMENT SETUP
In this section, we describe our experiment settings as

well as the performance measures for characterizing the
effectiveness of CRE.

A. Experiment Testbed
Fig. 2 shows the testbed used for this study. Tab. I lists

key hardware and software settings of the testbed.

TABLE I: Hardware and Software Settings
CPU Two 6-core Intel Xeon 1.6 GHz E5645
Memory 32 GB RAM per socket
Cache L1: 256 KB, L2: 1MB, L3: 12 MB
OS (Guest and Host) Ubuntu 12.04
Kernel (Guest and Host) 3.2.0-26-generic shared kernel
Hypervisor KVM qemu-kvm-1.1.2 shared
Web server Apache 2, version 2.2
Application Server PHP version5.3.6
VM monitored vCPU: 2, Memory: 4GB
SoI VM instances vCPU: 1, Memory: 1GB

We use a dedicated physical machine (PM1) to host the
Web service under study, the CRE module, and the SoI VM
instances. PM1 contains 2 sockets, i.e, socket 0 and socket
1, each containing 6 cores. The VM instance hosting all tiers
of the Web service, VMMonitored, is configured with with 2
virtual CPUs (vCPUs) and 4 GB of RAM. This instance has
exclusive use of 2 cores of socket 0. The rest of the 4 cores
in this socket are used to host SoI VM instances. An SoI
instance is configured with 1 VCPU and 1 GB of RAM.

1We drop the Lt in the notation for these means since the last M
records for a transaction may pertain to different loads.

As shown in Fig. 2, each SoI instance has exclusive use
of 1 of the cores of socket 0. An SoI instance contends for
shared socket resources, e.g., the L3 cache, memory, and the
PM’s Network Interface Card (NIC) thereby interfering with
the Web service instance. From Fig. 2, the CRE module is
installed as a separate instance running on socket 1 of PM1.

Fig. 2: Experiment testbed

We run the RUBiS benchmark [11] as our Web service.
RUBiS emulates the behavior of an auction server that
lets users browse and bid for items. We use the RUBiS
browsing transaction mix in our experiments. This trans-
action mix supports 14 different transaction types. The CRE
module is implemented as an add-in to the open source
LittleProxy [25] proxy server available under an Apache
2 license. The CRE threshold parameter is a user input
and as an example we set it to 0.05 in our experiments. We
use the top 5 similar neighbors for response time estimation
(Eq. 1). Similarity values are configured to be updated every
1-hour to reflect newer response time measurements.

As shown in Fig. 2, we use a separate PM called PM2
to generate synthetic workloads to the RUBiS Web service.
Both PMs are connected by a Fast Ethernet switch that
provides dedicated 1 Gbps connectivity between them. We
use the open source httperf [26] Web request generator
to submit workloads to the server. httperf can be con-
figured to issue concurrent user sessions to a server under
test. In our tests, we use a non-stationary session arrival
process to emulate the bursty workloads observed typically
by popular Web services. Specifically, new sessions are
submitted such that the session inter-arrival time, i.e, the
time elapsed between the arrivals of successive sessions to
the Web service, follows an exponential distribution. The
mean session inter-arrival time is modulated such that there
is a steady increase in the session arrival rate followed by
a steady decrease. Fig. 3 shows a snapshot of the per-core
utilization of the Web service caused by this workload.

 0

 20

 40

 60

 80

 100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

C
o
re

 u
ti

liz
a
ti

o
n
 (

%
)

Time (sec)

Core 0
Core 1

Fig. 3: Core utilization of the monitored VM instance

B. Experiment Factors
Tab. II lists the various experiment factors and their

different levels. Default levels of the factors are shown
in bold. The Average Response time Estimation (ARE)
technique uses the load independent mean of the historical
response times of a transaction type to offer a mean
reference response time estimate for a transaction of that
type. It is used as a baseline to compare our CRE approach,
which considers service load while estimating reference
response times. From Tab. II, we consider as a factor the
benchmark running within an SoI instance. The RAMspeed
[27] benchmark places stress on the L3 cache, which is
shared between the Web service and SoI instances. The
Iperf [28] benchmark consumes the network bandwidth of
the NIC shared between the Web service and SoI instances.
We set the Iperf server to run on PM2, and the Iperf client
to run on an SoI VM instance of PM1. In our setting, Iperf
utilizes about 90% of the 1 Gbps bandwidth between PM1
and PM2. We also vary the number of SoI instances from
1 to 4 as shown in Tab. II to study the behavior of CRE
under increasing levels of interference.

TABLE II: Experiment factors
Factor Value
Estimation technique {CRE, ARE}
Inference detection variant {Instantaneous, Hysteresis, Mean}
Hysteresis factor (C) {1,2,3,4,5}
Mean approach aggregation (M) [1-10]
SoI benchmark {RAMspeed, Iperf}
of SoI instances (I) {1, 2, 3, 4}
Training data pollution {0, 10, 20, 30, 40, 50}%

Finally, we consider two different ways of initially
populating CRE’s repository with training data. The first
method involves obtaining the data from the Web service
when the monitored instance gets exclusive use of the
PM. With the other method, the training data is obtained
when the monitored instance shares the PM with an SoI
instance. Hence, the training data in this case is biased
by performance interference. We refer to this as Training
data pollution. We consider experiments where 0%, i.e., no
interference, to 50% of the response times in the training
data are polluted by interference.

C. Metrics to Evaluate CRE
CRE is a binary classifier, which receives an input and

decides whether there is performance interference or not.
Therefore, standard metrics for evaluating the performance
of classifiers can be used to evaluate our method. We use
True Positive Rate (TPR) and False Positive Rate (FPR)
in our evaluations. TPR is the ratio of the number of
transactions flagged by CRE as suffering from interference
to the actual number of transactions that suffer from in-
terference. FPR is the ratio of the number of transactions
CRE wrongly classified as suffering from interference to the
total number of transactions not affected by interference.

To calculate TPR, we need a ground truth of the
actual number of transactions suffering from interference.
We establish the ground truth as follows. As part of each
experiment run, we submit the same workload to the Web
service twice, once with SoI and once without SoI. We
then compare both sets of transaction response time data.
We divide each set into batches of 500 requests. For each
batch in both sets, we compute the mean response times
for the 14 different RUBiS transactions. Next, we check
whether the mean response time of a transaction type in
any given with SoI batch is greater than the mean response
time of that transaction type in the corresponding without

SoI batch. If so, all transactions of that type in the with SoI
batch are marked as suffering from interference.

We use the without SoI set to calculate FPR. Specifi-
cally, we enable CRE when there is no SoI and obtain the
number of interference flags raised by CRE. This represents
the number of transactions that are wrongly classified by
CRE as suffering from contention.

D. Experiment Process
As is standard practice, we use 10-fold cross validation

[29] while evaluating CRE. The RUBiS workload that we
use consists of around 50, 000 requests. We partition the
input workload to 10 subsets of around 5, 000 requests
each. Each experiment is run 10 times. Each run employs
9 subsets as training data and the remaining subset as
validation data over which CRE makes its predictions. We
use a different subset for the validation phase across runs.
As discussed previously, the validation phase in each run
is executed twice, once with SoI and once without SoI, to
calculate TPR and FPR. The reported TPR and FPR
values are the average of our 10 runs.

V. RESULTS

A. General observations
The RUBiS workload that we use is CPU intensive, as

previously shown in Fig. 3. The workload causes a very
light disk utilization of 6.7%. We verify using the Iperf
tool that a bandwidth of 1 Gbps can be sustained between
PM1 and PM2. The RUBiS workload utilizes only about
1% of this bandwidth. We also check the overhead of CRE.
It is important that CRE does not substantially increase the
actual response times of the Web service. To check this,
we submitted a set of requests with and without the CRE
module. On average, the response times increase by 4%
because of CRE (Min = 3.1%, Max = 4.6%). Although this
is negligible when compared to the extent of interference
induced response time degradations that we observe in
this system, our future work will focus on optimizing the
CRE implementation further to reduce this overhead. The
observed results from all experiments show maximum 95%
confidence interval width of 0.042 and 0.028 for TPR and
FPR, respectively.

B. Effect of performance interference
Fig. 4 shows the impact of interference on mean trans-

action response times. This set of experiments used RAM-
Speed as the SoI. The number of SoI instances I is set to
0, 2, and 4. To eliminate the impact of load fluctuations
for the sake of simplified analysis, these experiments use
a workload with a fixed mean session inter-arrival time, in
contrast to our other experiments which use non-stationary
session arrivals. As a result, the per-core utilization does
not fluctuate significantly.

From the figure, the presence of SoI increases the mean
response time of all 14 RUBiS transactions. Furthermore,
response time degradation increases with increased con-
tention from the SoI instances. These results motivate the
need for a technique that detects such interference. Since
the load did not fluctuate significantly in these experiments,
it is possible to use the long term mean response time of
a transaction as a reference to detect transient performance
interference effects. However, we show in subsequent sec-
tions that CRE’s load dependent predictions are needed for
more realistic workloads with fluctuating session arrivals.

 0

 5

 10

 15

 20

 25

 30

Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7 Tr8 Tr9 Tr10 Tr11 Tr12 Tr13 Tr14

R
es

p
o
n
se

 t
im

e
(m

s)

Transaction Types

I=0
I=2
I=4

Fig. 4: Negative impact of performance interference

C. Effectiveness of CRE with default factor levels
For this experiment, we use the default levels specified

in Tab. II. Recalling, CRE is configured to use the in-
stantaneous inference detection method, there is one SoI
instance executing RAMSpeed, and the training data has
0% pollution. This experiment serves as a baseline for
us to quantify other enhancements such as the hysteresis
and mean-based inference detection methods. Results show
that CRE achieved TPR = 0.86, and FPR = 0.11. The
95% confidence interval for TPR and FPR is (0.83-0.89)
and (0.08-0.13), respectively. Analyzing the results on a
per transaction basis, CRE is effective for all transactions
with the TPR in the range of ([0.70− 0.96]). Variation in
FPR is larger since the values are in the range[0.0−0.44].
Since there is more historical data to learn about popular
transactions, CRE’s accuracy is high for highly popular
transactions but lower for unpopular transactions.

D. Impact of estimation method (CRE vs. ARE)
In this experiment, we compare CRE with ARE. As

mentioned earlier, with ARE reference response time for
a transaction is estimated as the average of past response
times of that type of transaction without considering system
load. For this experiment, we used the default levels as
defined in Tab. II. Results show that CRE with a TPR =
0.86 significantly outperforms ARE with a TPR = 0.59.
However, ARE has a better FPR of 0.03 when compared to
CRE’s FPR of 0.11. As we discussed earlier, CRE’s use of
the instantaneous method can confound routine stochastic
variation in a transaction’s response time with response time
variations due to performance interference thereby leading
to false positives. We next explore methods to reduce CRE’s
FPR.

E. Impact of the hysteresis parameter C
For this experiment, we set the detection approach to

hysteresis and explore the impact of various values for the
hysteresis parameter C. The rest of the settings are at the
default levels shown in Tab. II. Fig. 5 shows the results of
this experiment. We note that C = 1 corresponds to the
instantaneous method results shown in the previous sub-
section. From the figure, an increase in C decreases FPR.
FPR decreases from 0.11 for C = 1 to 0 for C = 5. A high
C value allows CRE to better distinguish between usual
stochastic variation in transaction response times, e.g., an
occasional spike in response time, from sustained variations
triggered by performance interference. Unfortunately, a high
C value also reduces TPR slightly, as shown in Fig. 5.
This shows that there are a small number of scenarios where
the hysteresis approach of requiring C continuous threshold
violations to raise an interference flag is not effective.

From the results, a reasonable compromise seems to
be a setting of C = 3, which has a TPR and FPR of
0.82 and 0.02, respectively. Since the choice of C may be

workload dependent, a cloud customer may need to conduct
controlled tests using synthetic workloads within a non-
production environment to select an appropriate value.

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

1 2 3 4 5

Effect of hysteresis factor (C)

TPR
FPR

Fig. 5: Performance of CRE with different C values

F. Impact of the aggregation parameter M
We now explore the effectiveness of the mean-based

detection approach with various values of the aggregation
parameter M with other experiment factors at their default
levels. Fig. 6 shows results for both CRE and ARE with
this approach. From the figure, both TPR and FPR
improve with increases in M . By changing the value of M
from 1 to 10, TPR has improved from 0.86 to 0.96, and
FPR has decreased from 0.11 to about 0. Simultaneous
improvements to both TPR and FPR with increasing
M makes this approach more appealing than the hystere-
sis approach. The improvement to both FPR and TPR
shows that using mean values smooths out any routine
stochastic response time fluctuations while preserving the
impact of sustained interference. As mentioned previously,
the improved performance of the mean-based approach over
the instantaneous approach comes at the expense of agility
in decision making. A cloud customer needs to pick an
appropriate value of M depending on how fast they need
to react to potential performance problems.

 0

 0.2

 0.4

 0.6

 0.8

 1

M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

Aggregation parameter (M)

CRE-TPR
CRE-FPR
ARE-TPR
ARE-FPR

Fig. 6: Impact of the aggregation parameter M

We also repeated this experiment with the ARE method.
From Fig. 6, increasing the value of M improves the TPR
and FPR of ARE as well. Comparing the TPR results
of CRE and ARE shows that CRE is more effective than
ARE for all values of M . Furthermore, CRE requires a
lower value of M to obtain a given degree of accuracy.
For example, the TPR reaches to 0.95 for M = 5. In
contrast, the TPR for ARE saturates only beyond M = 8.
These results indicate that CRE is more agile than ARE.
The time that elapses between the instant an interference
problem manifests itself to the instant an interference flag
is generated is lesser for CRE than for ARE.

G. Impact of multiple SoI instances
We next study the TPR of CRE under increasing levels

of interference, which we trigger by running multiple SoI

instances. We increased the number of SoI instances I from
1 to 4, and used the default levels for the other factors. We
note that FPR is not impacted by this experiment since it is
calculated based on experiment runs without SoI instances.
Results show that TPR improves when there is stronger
interference. The values of TPR for 1, 2, 3, 4 SoI instances
are 0.86, 0.88, 0.89, 0.91, respectively. This suggests that
CRE is particularly effective for detecting cloud induced
problems that severely impact end user response times.
ARE fares poorly in this scenario as well, since it does
not consider workload fluctuations.

H. Impact of SoI type
We next characterize the ability of CRE to generalize to

interference problems other than contention for the memory
hierarchy of the PM. We compare the mean-based method
for RAMSpeed and Iperf as the SoI instance. Other exper-
iment factors are kept at their default levels. As mentioned
previously, Iperf is a network-intensive tool which places
stress on the shared network. In our setting Iperf utilizes
90% of the bandwidth between PM1 and PM2. This causes
the mean response time of the Web service to increase by
57%. From Fig. 7, CRE is able to detect the performance in-
terference imposed by the bandwidth sharing. Iperf inflates
the response time less than RAMSpeed, therefore, the TPR
and FPR are slightly less than those for RAMSpeed. The
TPR is 0.90 and the FPR is almost 0.0 for M = 5. CRE’s
power stems from its use of response time for interference
detection. The technique is likely to detect any type of
interference that leads to an increase in response time of
the Web service.

 0

 0.2

 0.4

 0.6

 0.8

 1

M=1 M=2 M=3 M=4 M=5

Aggregation parameter (M)

TPR-Iperf
FPR-Iperf

TPR-RAMspeed
FPR-RAMspeed

Fig. 7: Performance of CRE for RAMspeed and Iperf

An interesting observation from this experiment is that
all Web service VM instance level utilization metrics are
normal even while the Web service’s performance is being
impacted by Iperf. There was no increase in the resource
utilizations of the Web instance. This shows that VM level
utilization metrics are not always helpful in identifying
performance interference thereby motivating the CRE ap-
proach.

I. Impact of training data pollution
As discussed in Sec. III-B, CRE needs training data for

its predictions. CRE starts predictions assuming that the
training data is not impacted by interference, i.e., there
is no training data pollution. In real word applications
running on the cloud, it might be difficult to gather such
interference-free training data. In this experiment, our focus
is on the sensitivity of CRE to training data pollution.
We run multiple experiments using the default levels and
only varying the amount of pollution in the training set.
When increasing training data pollution from 0% to 50%

in increments of 10%, the TPR values are 0.86, 0.83,
0.79, 0.77, 0.75, and 0.73. We note that having 50%
pollution is a stress case for CRE. It is very unlikely that a
production cloud system hosting a high volume Web service
will be experiencing interference problems half the time.
Nonetheless, CRE performs well even for this stress case
by detecting 73% of interference events.

We argue that even when the initial training data is
impacted by pollution, CRE is able to adapt itself over the
course of time. To show this, we start from the point where
50% in the training data. We then continuously measured
TPR during the validation phase when the Web service
continues serving requests. A RAMSpeed SoI instance is
also executed on the PM hosting the Web service such
that 50% of the transactions in the validation phase are
impacted by interference. In the validation phase, periods
of interference alternate with periods of no interference.

Fig. 8 shows the result of this experiment. In the figure,
we indicate the size of original training data with S and
report the TPR whenever the repository grows by S/2
records. From the figure, CRE can gradually adapts itself
when the system is running. TPR increases from 0.73
to 0.80 even though 50% of transactions in the vali-
dation phase are impacted by interference. As described
in Sec. III-B, CRE does not update the repository with
response times of requests impacted by interference. This
ensures that the quality of data in the repository contin-
uously improves thereby resulting in progressively better
TPRs.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S S+S/2 S+S S+3S/2 S+2S S+5S/2

Size of Repository

TPR-RAMspeed

Fig. 8: Evolution of CRE TPR with time

VI. CONCLUSIONS

We propose a machine learning based solution called
CRE for detecting cloud induced performance interference
problems in a Web service. CRE is a customer oriented
approach and relies only on Web transaction response times
and does not require access to performance metrics of PM
in the cloud. CRE does not require an explicitly authored
performance model of the system for its estimations. It
adapts itself autonomously using a repository of past his-
torical transaction response times. Results show that CRE
is effective in detecting performance interference.

Future work will focus on refining CRE. Specifically, the
effectiveness of CRE can be impacted when the number
of transaction types and possible system loads grow. For
such scenarios, it is possible to use clustering techniques to
reduce the number of transaction types and system loads.
We will also focus on validating CRE with other types of
applications and also in public cloud environments. Finally,
we will also work on developing techniques that can work
in tandem with CRE to mitigate the impact of interference
for cloud-based Web services.

REFERENCES
[1] G. Kousiouris, T. Cucinotta, and T. Varvarigou, “The effects of

scheduling, workload type and consolidation scenarios on virtual
machine performance and their prediction through optimized arti-
ficial neural networks,” Journal of Systems and Software, vol. 84,
no. 8, pp. 1270–1291, 2011.

[2] J. Mukherjee, D. Krishnamurthy, J. Rolia, and C. Hyser, “Resource
contention detection and management for consolidated workloads,”
in Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on, pp. 294–302, IEEE, 2013.

[3] S. Fu, “Performance metric selection for autonomic anomaly detec-
tion on cloud computing systems,” in Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE, pp. 1–5, IEEE, 2011.

[4] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware
scheduling on multicore systems,” ACM Transactions on Computer
Systems (TOCS), vol. 28, no. 4, p. 8, 2010.

[5] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini,
“Deepdive: Transparently identifying and managing performance
interference in virtualized environments,” tech. rep., 2013.

[6] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni,
“Anomaly? application change? or workload change? towards auto-
mated detection of application performance anomaly and change,”
in Dependable Systems and Networks With FTCS and DCC, 2008.
DSN 2008. IEEE International Conference on, pp. 452–461, IEEE,
2008.

[7] Q. Zhu and T. Tung, “A performance interference model for
managing consolidated workloads in qos-aware clouds,” in Cloud
Computing (CLOUD), 2012 IEEE 5th International Conference on,
pp. 170–179, IEEE, 2012.

[8] G. Casale, C. Ragusa, and P. Parpas, “A feasibility study of host-
level contention detection by guest virtual machines,” in Cloud
Computing Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on, vol. 2, pp. 152–157, IEEE, 2013.

[9] F. Ricci, L. Rokach, and B. Shapira, Introduction to recommender
systems handbook. Springer, 2011.

[10] M. Y. H. Al-Shamri, “Power coefficient as a similarity measure for
memory-based collaborative recommender systems,” Expert Systems
with Applications, vol. 41, no. 13, pp. 5680–5688, 2014.

[11] “Rubis rice university bidding system.” [Online]. Available: http:
//www.cs.rice.edu/CS/Systems/DynaServer/rubis.

[12] T. Xu, X. Sui, Z. Yao, J. Ma, Y. Bao, and L. Zhang, “Rethinking
virtual machine interference in the era of cloud applications,” in
High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Comput-
ing (HPCC EUC), 2013 IEEE 10th International Conference on,
pp. 190–197, IEEE, 2013.

[13] Y. Koh, R. C. Knauerhase, P. Brett, M. Bowman, Z. Wen, and
C. Pu, “An analysis of performance interference effects in virtual
environments.,” in ISPASS, pp. 200–209, 2007.

[14] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigat-
ing interference in cloud services by middleware reconfiguration,”
in Proceedings of the 15th International Middleware Conference,
pp. 277–288, ACM, 2014.

[15] J. P. Magalhaes and L. M. Silva, “Detection of performance
anomalies in web-based applications,” in Network Computing and
Applications (NCA), 2010 9th IEEE International Symposium on,
pp. 60–67, IEEE, 2010.

[16] J. P. Magalhaes and L. M. Silva, “Anomaly detection techniques
for web-based applications: An experimental study,” in Network
Computing and Applications (NCA), 2012 11th IEEE International
Symposium on, pp. 181–190, IEEE, 2012.

[17] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: unsupervised behavior
learning for predicting performance anomalies in virtualized cloud
systems,” in Proceedings of the 9th international conference on
Autonomic computing, pp. 191–200, ACM, 2012.

[18] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni,
“Anomaly? application change? or workload change? towards auto-
mated detection of application performance anomaly and change,”
in Dependable Systems and Networks With FTCS and DCC, 2008.
DSN 2008. IEEE International Conference on, pp. 452–461, IEEE,
2008.

[19] “Amazon Web services.” [Online]. Available: http://aws.amazon.
com/ec2/purchasing-options/dedicated-instances/.

[20] R. Jain, “The art of computer system performance analysis: tech-

niques for experimental design, measurement, simulation and mod-
eling,” New York: John Willey, 1991.

[21] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings of
the Fourteenth conference on Uncertainty in artificial intelligence,
pp. 43–52, Morgan Kaufmann Publishers Inc., 1998.

[22] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Rec-
ommender systems survey,” Knowledge-Based Systems, vol. 46,
pp. 109–132, 2013.

[23] A. Rajaraman and J. D. Ullman, Mining of massive datasets.
Cambridge University Press, 2011.

[24] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 17, no. 6, pp. 734–749, 2005.

[25] “LittleProxy.” [Online]. Available: http://www.littleshoot.
org/littleproxy/.

[26] D. Mosberger and T. Jin, “httperf—a tool for measuring web server
performance,” ACM SIGMETRICS Performance Evaluation Review,
vol. 26, no. 3, pp. 31–37, 1998.

[27] “RAMspeed.” [Online]. Available: http://alasir.com/software/
ramspeed/.

[28] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs,
“Iperf: The tcp/udp bandwidth measurement tool,” [Online]. Avail-
able:https://iperf.fr/, Last access: Sep 11, 2014.

[29] S. Geisser, “The predictive sample reuse method with applications,”
Journal of the American Statistical Association, vol. 70, no. 350,
pp. 320–328, 1975.

