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Abstract—Live streaming of large-scale events such as the
Olympic Games with a huge number of viewers is challenging,
as the streaming infrastructure needs to scale fast and big,
and often in an unpredictable manner. Peer-to-peer (P2P) live
streaming (Peercasting) has proven to be beneficial in these
scenarios, as resources are scaling inherently with the number of
nodes. However, churn behavior in a node’s neighborhood may
result in fluctuating downstream bandwidth and thus freezing
(stalling) playback. Related work tries to mitigate this effect
by using layered video codecs, focusing on single-dimensional
scalability in mesh-pull based systems. Yet, the benefits of multi-
dimensional scalability (resolution, frame rate, and quantization)
combined with coexisting pull-/push mechanisms introduced by
modern hybrid P2P streaming architectures have not been studied
in detail. Consequently, this work proposes a new scheduling
algorithm taking these aspects into account. The evaluation shows
large benefits for end-users by reducing the frequency of stalls
by 90% even under extreme conditions.

I. INTRODUCTION AND MOTIVATION

Delivery of video content is the predominant traffic source
of today’s Internet and is predicted to further increase in
volume by several recent studies [3], [12]. This trend is
rooted in the rapid proliferation of new devices and access
technologies, e.g., tablets and smart TVs, as well as fibre and
4G connectivity. A large fraction of video traffic is caused
by large Video on Demand (VoD) networks such as YouTube
or Netflix and Content Delivery Networks (CDNs) such as
Akamai. Besides VoD, there is also an increasing demand
for streaming large-scale live events to a large audience, e.g.,
the Olympic Winter Games! in Sochi. These events have
high requirements in terms of load and scalability on the
underlying infrastructure. Moreover, it is necessary to fulfil
these requirements in a short time frame, i.e., the infrastructure
has to scale big and fast.

As TP multicast did not prevail in Internet Service Provider
(ISP) networks, most streaming content is distributed via
unicast today. Thus, bandwidth at the delivering Data Center
(DC) or CDN increases linearly with the number of users.
Especially services facing high (and/or unpredictable) traffic
spikes can benefit from P2P approaches, because each client
consuming the content also acts as a relay for other peers.
Examples for P2P streaming deployments are the PPLive
network [15], the recently released BitTorrent Live [4] system,
and Akamai NetSession [19].

However, the advantages of P2P live streaming in terms
of scalability and resource usage are often countered by the

Uhttp://www.internetphenomena.com/2014/02/sochi-streaming-canadian-
mens-hockey/, last visited 02.05.2014

fluctuating bandwidth induced by peers joining and leaving the
network (peer churn). As the transmitted video content usually
has a more or less stable bit rate, fluctuation in bandwidth may
lead to a degradation of quality by causing violated playback
deadlines (stalling of the video), which is seriously affecting
user’s Quality of Experience (QoE) [5]. A more QoE friendly
solution than letting the video stall is the adaptation of the
video quality to the available bandwidth with layered video
codecs (e.g., H.264/SVC [13]).

However, this approach induces interesting challenges for
scheduling regarding the architecture of hybrid P2P live
streaming systems. Hybrid P2P live streaming systems often
employ an architecture using two delivery mechanisms in
combination: a tree/push based delivery mechanism is used
for stable peers, while pieces of data (chunks) not delivered
via the tree are requested using a pull based mesh [18], [16].
As modern video codecs allow scaling the video quality along
multiple dimensions (e.g., resolution, frame rate, and frame
compression [13]), an effective scheduling algorithm does not
only have to deal with push and pull based scheduling, but
also has to decide simultaneously, which video quality along
which dimension is to be delivered using which mechanism.

To address these challenges, this paper proposes a novel
scheduling algorithm to cope with multiple delivery mecha-
nisms of hybrid P2P streaming architectures as well as with
layer selection along multiple dimensions at the same time.
The proposed algorithm applies multiple layer quality filtering
phases, accounting for the available bandwidth and video
quality in a peer’s neighborhood as well as user preferences.

The remainder of this paper is organized as follows: Section
IT provides background information on the topic. Section III
describes the scheduler’s design, which is evaluated in Section
IV. Finally, related approaches are discussed in Section V,
followed by the conclusion and outlook on future work in
Section VI.

II. BACKGROUND

The proposed scheduling algorithm utilizes a hybrid live
streaming overlay and a layered video codec as outlined in
the following.

A. Hybrid Overlay

The scheduler design presented is based on the TRAN-
SIT [16] P2P live streaming overlay. The basic system ar-
chitecture of the overlay is depicted in Figure 1. TRANSIT
implements a hybrid tree-over-mesh approach, in which a Flow
Manager manages delivery via a multi tree topology using one
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Fig. 1: Overview on streaming architecture.

tree per video layer and a Request Manager manages delivery
via a mesh topology. The Flow Manager is an instance of
a push based scheduling approach. Therefore, an agreement
(flow) between a sender and a receiver is negotiated. The
sender sends any chunk that was negotiated to be delivered to
the receiver in silent consent. If chunk delivery fails (e.g., due
to the sender leaving the network ungracefully), the contract is
renegotiated with another party. As chunk delivery using flows
relies on stable peer relations, the Request Manager handles
all chunks that cannot be delivered via flows. Therefore, the
Request Manager allows peers requesting and downloading
single chunks of data from the overlay network based on
frequently exchanged information on possessed chunks (Buffer
Maps), thus serving as an instance of a pull based scheduler.
This paper adds the building block of Quality Adaptation to the
system, which decides based on information from the network
and the buffer, which data is to be scheduled for download at
which point in time. For additional details, see [16].

B. The Scalable Video Codec Extension of H.264

Most modern video transmission systems are based on
fixed bitrate video codecs. These codecs do not allow imple-
menting quality adaptation, as the video can only be played
back if the entire data of the video is downloaded. Opposed to
that, layered video codecs allow splitting a video into multiple
layers. Layering the content allows to encode multiple quality
versions into a single stream instead of encoding a separate
stream for every quality layer. In particular, the Scalable Video
Coding (SVC) extension of the H.264 standard [13] is used in
this work, as the codec is standardized and mature encoders
and decoders exist.

The H.264/SVC codec specifies scalability along three di-
mensions: frame resolution (spatial), frame rate (temporal) and
frame quantization (quality). Figure 2 illustrates an example
for a layered video that has been encoded with three different
layers along each dimension. Since each layer is built on top
of its predecessors to reduce redundancy, the so-called base
layer ((s,t,q) = (0,0,0)), i.e., the smallest layer along all
dimensions, is essential for video playback. If more layers
are available, the received video quality is increasing at the
expense of bandwidth required to download the data. This
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Fig. 2: SVC cube model with 3 different spatial, temporal and
quality settings (reproduced from [1]).

structure implies that layers are not independent of each other:
if a layer (s,t,q) = (2,2,3) is to be played back, all layers
{(s,t,q)|s < 2,t < 2,q < 3)} have to be present as well.

The possibility to change the layer during playback and
adapting it to the current available bandwidth without opening
new connections or wasting bandwidth by buffering other
video representations make H.264/SVC a good candidate for
P2P live streaming systems.

III. SCHEDULER DESIGN

Before the proposed scheduler’s rationale and design is
described in detail, the definitions and terminology used are
clarified. As we will frequently compare layers, we define a
number of operators (<’, >’, <’, >’) to do so. We give a
formal definition for the <’ operator here; the other operators
are defined and used accordingly.

A layer (s1,t1,q1) is defined to be smaller (<’) than
another layer (s2,t2,¢2), if the following condition holds:

(s1,t1,q1) < (s2,t2,q2) :=
§51 < S2NAty <taNq1 <o

Moreover, we define the set L /(4 ) to contain all pos-
sible layers smaller (<’) than (s,¢,q). We implicitly assume,
that there is no layer (s,t,q), for which (s,¢,q) <’ (0,0,0)
holds true, i.e., the smallest possible layer is the base layer.

For the proposed scheduler design, the adaptation phase
terminology of [1] is adopted and extended. Namely, the
scheduling algorithm is divided into three phases: the Initial
Quality Adaptation (IQA) phase, the Progressive Quality Adap-
tation (PQA) phase, and the Final Layer Selection (FLS) phase.

e The IQA determines an initial layer selection by setting
an upper bound for the highest SVC layer. Therefore,
the SVC cube is annotated with the marginal bandwidth
requirements applied by the respective layer. Candidates
are excluded, if the required bit rate is too high to receive
the layer given the theoretical capabilities of the current
interface. Moreover, layers could additionally be filtered
by the resolution of the local screen or the computational
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Fig. 3: SVC video buffer model (simplified, depicting a single dimension of the video).

capabilities of the device. As this process is trivial and
only has to be executed once before playback starts, it is
not discussed in detail in this work. Instead, a working
IQA is assumed to exist, delivering a maximum layer
(s,t,q)1oa suitable for the device and the theoretical
maximum throughput of the device’s interfaces.

e The PQA is introduced to adapt layer selection during
runtime. Instead of the static local resources, real time
information is extracted from the network and used to
limit the range of allowed layers dynamically. However,
this adaptation is done on the pre-filtered output of the
IQA. Thus, PQA will never exceed the layer boundaries
determined by IQA, i.e., (s,t,q)poa < (s,t,¢)1QA-

e The described IQA/PQA phases are filtering phases that
do not necessarily yield a single layer as a result. Thus, in
the FLS phase, an algorithm finally selects the layer that
matches best the user’s preferences. Possible options can
be to prefer either higher resolutions, frame rates or better
frame quality settings.

The output of the filtering phases is a layer (s, ¢, ¢) defining
a maximum layer to be scheduled, that is passed to the Flow
Manager and the Request Manager, which then try to negotiate
the respective flows and request to download the respective
chunks. In the following, the PQA phase and the FLS phase
are described in detail under the presence of push- and pull-
based delivery mechanisms.

Algorithm 1 REDUCEBYTHROUGHPUT(L)

Require: L as the set of layers to be reduced, where L C
Le(stq)iga
Ensure: Set L does not violate the constraints set by the
available bandwidth from the neighborhood.
: for all (s,t,q) € L do
// Filter according to throughput from neighborhood.
if S1zE™ (s,t,q) > BANDWIDTH, then
L« L\{(s,t,q)}
end if
end for
: // Return filtered layer set.
return L

SR AN A S ol ey

A. Progressive Quality Adaptation

The playback quality, i.e., the layer that can be played back,
is influenced by two environmental parameters during runtime.
First, there is the availability of download bandwidth from the
neighborhood of a peer. Second, the availability of layers in
the neighborhood is crucial. These parameters are independent
of each other: it might be possible for a peer to achieve a
high theoretical download bandwidth, while not being able to
download high layers because they are not available. At the
same time, all layers might be available in the neighborhood,
but the neighboring peers do not provide enough bandwidth
to download these layers. Thus, a good scheduler has to take
both parameters into account and has to adapt according to
their variations. Moreover, the importance of layers has to be
taken into account. Besides pure quality adaptation, freezing
(stalling) of the video has to be prevented. Research in the
area of Quality of Experience has shown, that a freezing video
has a very severe effect on the QoE of end-users [5]. Thus,
if playback is about to stall, the download of lower layers,
especially the base layer, has to be preferred over higher layers.

Taking these considerations into account, the PQA is
designed as depicted in Figure 3: First, the layers are excluded
that exceed the current throughput received from the neigh-
borhood. This reduction is handled by Algorithm 1, which
requires an enumeration of all possible layer combinations as
an input. Afterwards, each candidate layer (s, ¢, q) is tested. If
the aggregated size

SI1ZET (s,t,q) = Z SIZE(s’.t’,q")

(s’,t",a")e
Ll (s.tia)

of all layers up to the layer in question exceeds the
current download bandwidth received from the neighborhood
(BANDWIDTH ), it is removed from the set.

In order to account for the layer availability, layers are
scheduled according to the number of future Requests in a
streaming session, which is estimated from the playback buffer.
Intuitively, Requests are used for filling missing layers ("holes
in the buffer”) which cannot be delivered using stable Flows
from the neighborhood. As described in Algorithm 2, the
number of future requests is estimated by doing a buffer look



ahead using two sliding windows over the BUFFERCOUNT
primitive, which is defined as follows:

k

Z(Sv ta Q)i'

i=j

BUFFERCOUNT((s, t,q), [j: k]) =

In this definition, (s,t,q); is 1, if the i-th chunk in
the buffer can be decoded and played back, i.e., all lay-
ers (s',t',¢"); <' (s,t,q) were already downloaded, and 0
otherwise. Intuitively, BUFFERCOUNT counts the number of
playable blocks in the buffer along a certain layer, taking into
account, that even if data is present, it might be worthless if
the layers below are missing. Notably, the definition ensures an
immediate reaction if the base layer is missing. In that case,
BUFFERCOUNT evaluates to 0 no matter which layers were
already downloaded.

The BUFFERCOUNT primitive is used to define two sliding
windows. The first sliding window is the hard playback
window, spanning H future chunks after the current playback
position p. Whenever a chunk is missing in this window, the
layer is discarded immediately (line 3 in Algorithm 2). The
hard playback window is complemented by the soft playback
window. This window spans S future blocks starting at position
p + H. If the amount of already downloaded blocks in the
window for a certain layer is smaller than a threshold C,
the layer is excluded from future downloads. Selecting too
high values for H, S, C' will reduce the video playback quality
because the further the buffer is investigated, the less likely it
will be filled with data and the lower will be the selected layer.
On the opposite side selecting these parameters too small will
lead to more layer switches because the algorithm may select
a too high layer that is not available in the near future. In such
a case, the algorithm is forced to switch back to a lower layer,
frequently.

So far, the algorithm takes into account network through-
put from the neighborhood and layer availability, but does

Algorithm 2 REDUCEBYAVAILABILITY (L, H, S, C)

Require: L as the set of layers to be reduced, where L C
L i t,q); QA H as the size of the hard playback window,
S as the size of the soft playback window, C' as the max.
number of missing blocks in the soft playback window.

Ensure: Set L does not violate the hard and soft playback
window condition.

1: for all (s,t¢,q) € L do

2:  // Check hard condition, p refers to playback position.

3. if BUFFERCOUNT((s,t,q), [p;p + H]) < H then

4 L L\{(s,t,9)}

5:  end if

6: I/ Check soft condition, p refers to playback position.

7. if BUFFERCOUNT((s,t,q),[p + H;p+ H + S5]) < C
then

8: L+ L\{(s,t,q)}

9: end if

10: end for

11: // Return filtered layer set.
12: return L

Algorithm 3 REDUCEBYWEIGHT(L, wl][])

Require: L as the set of layers to be reduced, where L C
Loi(s,t,9)104> @ two dimensional array wl][] containing
adaptation weights.
Ensure: Final layer [ has the highest weight of all layers € L.
1: 1+ (0,0,0)

for all (s,t,q) € L do
/I Calculate weight.
if WEIGHT((s, t,q),

[+ (s,t,9)

end if

end for

return [

w) > WEIGHT((s, t'.¢'), w) then

not implement the preference for lower layers as discussed
previously. Flows can account for the reliable delivery of
important layers, as the concept is designed to be used for
stable peers in the neighborhood. Thus, Flows are used to
download with a preference for lower layers, which leads to
the Flow Manager filling up the buffer from bottom to top by
trying to negotiate Flows for the respective layers. This strategy
mitigates the effects of missing blocks obstructing playback in
the lower/base layer(s). Moreover, the waste of bandwidth is
limited by the bottom-up strategy, as situations are prevented,
where a peer downloads a high layer without possessing all
smaller layers.

B. Final Layer Selection

Since the PQA is designed as a filter running along all
three dimensions of the SVC video at the same time, there
might still be more than one selectable layer after PQA is
applied. The FLS algorithm determines the final layer to be
played back. Therefore, possible transitions between layers
along each dimension of the SVC cube are annotated with
weights to express the preferences of the user in terms of layer
adaptation along the respective dimension (see Figure 4). As
the weights are set per dimension, they can be stored easily in
a two dimensional array data structure:

w[][] = {{ws1, wsa, ...}, {wr, wea, ...},

{wg1,wq2,---}}.. . }}

Following the example array depicted in Figure 4, a user
has a preference to switch to a higher temporal layer from

wsl ws2

spatial CIF SD HD
temporal | 15 HZ W 30 Hz 2 4l 50 Hz
Q1 wql Q2 wq2 Q3
quality

Fig. 4: Layer transition weight model with three spatial,
temporal and quality levels.



the base layer first, and prefers a higher frame quality from
there on. Setting the weights array allows to specify compact
profiles for different device types, e.g. mobile devices. The
source server can distribute a number of profiles together with
the other streaming meta data once before streaming starts,
where the peer picks a profile suiting the device’s properties.
After selecting the appropriate weight array, the FLS calculates
a weight for each layer using the WEIGHT function:

WEIGHT((s.£,),w) = 3 (w[0][i)+
1=0
Sl + Y (wl2H)
=0 k=0

Whenever more than one layer is left by the PQA filter,
the FLS algorithm selects the layer for which the WEIGHT
function returns the highest value (see Algorithm 3).

C. Flow Probing

The scheduler described so far only reduces layers, but does
not provide a way to scale up the video. To provide this feature,
the capabilities of the neighborhood have to be probed, as the
upper limit with respect to throughput and layer availability
cannot be known in advance. For that purpose, again the
inherent properties of Flows are utilized by increasing the
maximum layer after IQA, PQA, and FLS filtering by one
layer in one dimension following the gradient of the WEIGHT
function (Flow Probing). If the probed flow can be negotiated
with a peer from the neighborhood, this indicates two things:
the delivering peer has enough spare capacities to serve the
layer and has an own incoming flow for the respective layer,
thus justifying an increase of the maximum allowed layer to
be scheduled.

Note that increasing the layer increases the measured
bandwidth capacity (BANDWIDTH ) used by Algorithm 1, thus
closing the quality adaptation feedback loop.

IV. EVALUATION

The proposed scheduler is implemented on top of TRAN-
SIT as outlined in Section II-A, while the evaluation is
conducted making use of the event-based PeerFactSim.KOM
[14] simulation framework?.

A. Evaluation Setup

The bandwidth distribution model of the peers in the
system is based on the annual bandwidth penetration mea-
surements of the OECD [9] (see Table I for details). In
order to apply stress to the system, the upload and download
bandwidths of high bandwidth peers were divided by two,
which provokes a sufficient bandwidth bottleneck across the
network to make frequent layer re-scheduling necessary: while
the overall available download bandwidth stays constant, the
overall upload bandwidth is cut down by 40%. The system
is fed by two source servers providing 30 MBit/s upload

Zhttps://sites.google.com/site/peerfactsimkom/, last visited 3.8.2014.

bandwidth each. For connections between peers, a statistical
latency model with a normally distributed delay of 100 ms and
a variance of 50 ms is used.

The assignment of bit rates to SVC layers is based on
bit rate measurements of an SVC encoded video. The video
scales along the spatial and temporal dimension (see Table II),
as the quality dimension was found to have minor impact on
the visual quality while not influencing the bit rate per layer
heavily. The layer scheduling parameterization was optimized
in a separate parameter sensitivity study by varying one
parameter at a time. The look ahead values H = 3, S = 7,
and C' = 4 were found to be optimal across all layers.

The overlay was optimized towards the workload in a sep-
arate parameter sensitivity study by varying one parameter at
a time independently of the other parameters. As an outcome,
peers serve at most 32 incoming and 32 outgoing connections
per peer, where a connection may stay inactive for at most 15
seconds, before it is replaced by a new one. Moreover, buffer
maps are exchanged every 2 seconds to inform neighbors on
possessed video data.

To model churn adequately, Peers join and leave the system
based on a measurement trace® of the PPLive streaming system
measured by Vu et al. [15]. The trace contains more than
37°000 distinct hosts, which can hardly be simulated even
when using modern hardware. Thus, the workload is scaled
down to 200 present peers, preserving the joining and leaving
behavior and the typical diurnal pattern. The number of 200
peers is chosen as it allows for moderate simulation duration
while allowing to achieve significant results, as shown in
Section IV-C. When joining the system, each peer draws
an upload/download bandwidth and an IQA layer from the
distribution shown in Table I. One hour of the trace containing
a flash-crowd like joining behaviour is simulated.

B. Evaluation Metrics and Modes

For the evaluation of the scheduling algorithm, four met-
rics covering the temporal and quality aspects of the video
playback are defined:

e The Stalls Count measures the average number of stalling
events per minute, where a lower count indicates better
performance, as fewer layer switches indicate a more
stable performance of the scheduler. If stalling occurs, not
only the frequency of stalling events is of interest, but also
the average Stalls Duration in seconds.

3http://p2pta.ewi.tudelft.nl/datasets/t1407, last visited 29.4.2014

temporal layer (¢)
0 1 2 3
0| 731 | 1100 | 1483 1616
spatial | 1 | 1603 | 2445 | 3425 | 3878
layer (d) | 2 | 2772 | 4328 | 6378 | 7836
3 | 4660 | 7296 | 10882 | 13957

TABLE II: SVC bitrates per layer in kBit/s.



Type Down BW | Up BW | Max. Peer Count | (s,%,¢)r0a
Low 15300 2250 112 (56%) (1,1,0)
Mid 42000 3150 60 (30%) (2,3,0)
High 96400 52670
28 (14%) 3,2,0)
High (stress) 48200 26335
Server - | 30000 | 2 -

TABLE I: Peer bandwidth specifications in kBit/s and node count per bandwidth class [9], rows marked by (stress) are reduced

values for applying stress to the system.

e The Playback Percentage measures the ratio of the time
a peer spent playing back the video (¢,) compared to the
time span the peer was present in the system (Z,). It is
defined as:

t
pp=-"L
ts

Ideally, this metric is near 100% indicating permanent
playback and no stalling.

e The Relative Received Video Quality metric measures the
received video quality by comparing the bandwidth of the
received layers to the bandwidth of the layer defined by
the IQA (see Tables I/II). It is defined as:

S1ZE ((s,t,9))

RRVQ =
¢ S1IZE* ((s,t,q)104)

If a peer is able to receive a value of 100%, the peer was
able to permanently download the selected IQA layer.

e The Layer Switch Count measures the number of layer
switches. A small number of layer changes is desirable, as
frequent changes can have a negative impact on the QoE
[20].

For evaluating the scheduler design, three different PQA
modes are compared representing a varying range of the
aggressiveness of layer adaptation:

e Disabled: The layer scheduling is disabled for the entire
experiment. If the scheduler is unable to receive the IQA
layer, it is stalling. This mode serves as a base line for
comparison.

e Enabled: The adaptation is invoked with a low frequency
(every ten chunks, which translates to an invocation every
2.5 seconds). This mode emulates a prediction of future
stalls with a low precision.

o Schedule on Stall: The layer scheduling is invoked with
a high frequency (every chunk). Consequently, this mode
reacts immediately, whenever a stall is about to happen.

C. Evaluation Results

The evaluation results for the different modes and metrics
are based on 5 runs of experiments. All results are averaged
over 60 seconds of playback time over all peers and are
reported with 95% confidence intervals, if not stated other-
wise. As the evaluation setup contains heterogeneous groups
of nodes with respect to bandwidth capabilities and layer
selection, not only the average performance is studied, but also
the corresponding cumulative probability functions (CDFs) are
discussed to investigate the metrics’ distribution among peers.

The results clearly reflect the benefit of the scheduler’s
design for the measured metrics. First, the stall related metrics
are discussed as shown in Figure 5. While modes other than the
Disabled/Enabled mode provoke frequent stalling, the Sched-
ule on Stall mode reaches more than 95% Playback Percentage
on average (see Figure 5a), which is an improvement of 60
percentage points over the Disabled mode. The stability of the
result is reflected in the comparably small confidence interval
and the corresponding CDF depicted in Figure 5b. The latter
shows a fraction larger than 95% of all peers to reach a
minimum of 95% Playback Percentage in the Schedule on
Stall mode, while the other modes can reach a comparable
performance for less than 20% in Enabled mode and 10% in
Disabled mode only.

The Playback Percentage as a metric does not reflect the
frequency and length of stalling events directly. Thus, the Stalls
Count and Stalls Duration have to be studied as well. Figure
5c shows the CDF of the Stalls Duration metric for all three
modes. Notably, the CDF shows that the Schedule on Stall
mode is able to limit the maximum stalling time to less than
two seconds, whereas the Enabled/Disabled mode can only
guarantee 20 seconds and 48 seconds respectively. The CDF
also shows the number of peers not facing stalling events at
all, which is reflected by the y-intercept. In Schedule on Stall
mode, this fraction of stalling free peers is as high as 80%,
while in Enabled and Disabled mode only half as many peers
can enjoy stalling free playback. The average Stalls Count is
depicted in Figure 5d. The metric decreases from 0.25 stalls
per minute to 0.025 stalls per minute, which is an improvement
of roughly 90% at an increased stability as indicated by the
confidence interval.

However, these improvements come at the cost of a lower
video quality. Figure 6a depicts the video quality related
metrics which will be discussed in the following. The Relative
Received Video Quality drops for about 20 percentage points



when comparing the Disabled and the Schedule on Stall mode,
while the Enabled mode’s performance is in between. This
performance is expected and caused by the adaptation of the
quality by the PQA/FLS. At the same time, the confidence
intervals indicate that the performance is not deviating largely
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Fig. 5: Evaluation results of stall related metrics (5 runs, 95%
confidence intervals, sampling interval 60s over all nodes).

from the average, which shows that PQA/FLS do not induce
layer switches over a large span of layers, thus keeping the
quality deviation small during playback. The corresponding
CDF depicted in Figure 6b confirms this result by showing
a lower Relative Received Video Quality in Schedule on Stall
mode than in Enabled mode. Nevertheless, both modes can
achieve a Relative Received Video Quality near 100% for more
than 50% of all peers. The Disabled mode is not depicted
in this figure, as it always achieves 100 % Relative Received
Video Quality at the cost of frequent stalling. It is reasonable
to assume, that the frequency of layer switches has an impact
on the perceived Quality of Experience. Thus, the effect of
the scheduling strategy on the number of layer switches was
studied in Figure 6¢. As expected, the Disabled mode does not
cause any layer switches. Generally speaking, the number of
layer switches is below 0.3 switches per minute on average for
all modes, i.e., on average there are more than three minutes
between a layer switch. Surprisingly, the Enabled mode causes
a higher number of layer switches than the Schedule on Stall
mode, even though the Schedule on Stall mode is invoked at a
higher frequency and should thus lead to a higher adaptation
rate. This result indicates that the Schedule on Stall mode
implements a more foresighted switching policy, performing a
more careful evaluation of the bandwidth and layer availability
conditions than the Enabled mode.

Summing up, the stalling related metrics show a large
performance benefit regarding the frequency and length of
stalling events. Moreover, the amount of peers not stalling at
all can be roughly doubled. Moreover, the evaluation of video
quality related metrics revealed two general tradeoffs: first,
stalling can be reduced in frequency and length by adapting
the video quality. Second, the investigation of the Layer Switch
Count showed that it is better to perform the adaptation with
a high frequency, as fewer layer switches are caused at a
comparably small drop in Relative Received Video Quality, but
for a largely increased performance with respect to Playback
Percentage.

V. RELATED WORK

The inherent dependencies between video layers of codecs,
such as H.264/SVC, enabled the design of various centralized
and decentralized adaptation mechanisms. The introduction of
layered video codecs showed to be especially promising for
P2P live streaming-based video streaming scenarios.

Regarding decentralized approaches in mesh-pull based
VoD systems, the work presented in [8] provides an analytical
model to predict throughput and quality of peers in SVC-
based streaming systems. Complementing work by Abboud
[1] shows how quality adaptation can be implemented for
VoD streaming. The authors propose a two-stage adaptation
mechanism for heterogeneous clients and show that stalling
events can be reduced and even avoided by reducing the video
quality at the clients in a controlled manner. The approach
was further extended by [11] to also take different QoE
aspects into consideration in the adaptation process. While
these mechanisms were proposed for mesh-pull based VoD
streaming scenarios, the work presented herein aims at live
streaming using hybrid streaming topologies and push and pull
based delivery mechanisms at the same time, which requires a
significantly different algorithmic design. Moreover compared
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to [8], our work provides a realistic simulative evaluation in a
carefully selected simulation setup based on validated models
and user traces.

Other relevant related works such as the work by Bradai
et al. [2] or Medjiah et al. [7] do investigate quality adap-
tation in a live streaming scenario, but do so using mesh-
pull based systems. However, live streaming over mesh-pull
based systems causes performance degradation, as the topology
cannot account for the fast delivery of new content [18], [16].
Moreover, the work of Bradai et al. [2] focuses at keeping
the numbers of video layer changes low and the amplitudes
of adaptations small, following the observations by Zink et
al. [20]. While this work addresses an important problem
for SVC-based quality adaptations, it does not address the
requirements of state-of-the-art hybrid streaming systems.

Moreover, different aspects of SVC-based quality adapta-
tions have been studied in centralized, non-P2P live streaming
contexts. Zhai et al. [17], for example, propose an SVC-based
live streaming system for wireless, heterogeneous clients,
aiming at maximizing the QoE for the end user. Kim et al. [6]
go one step further and also move the decision for quality
adaptations to a central component, basing adaptation decisions
on estimations of the perceived quality. While these approaches
show the potential of quality adaptations, in the work presented
in this paper, the goal was to run the quality adaptations
autonomously at the clients in a fully distributed scenario.

VI. CONCLUSIONS AND OUTLOOK

In this work, a novel scheduling algorithm for the distribu-
tion of scalable video content was proposed and evaluated. The
proposed design is capable of handling SVC content scaling
along multiple dimensions as well as chunk delivery over push
and pull based mechanisms at the same time, thus fulfilling the
needs of modern hybrid P2P live streaming architectures.

The scheduler is implemented atop of an existing hybrid
streaming system [16] and evaluated in event-based simulation
experiments. The simulation setup was chosen carefully and is
based on validated models and user traces to be as realistic as
possible. A set of metrics is defined reflecting the performance
of the systems with respect to stalling events and video quality.

The evaluation revealed two trade-offs: the dynamic re-
duction of video quality can increase the performance of
the stalling related metrics, i.e., the frequency and length
of stalling events can be reduced to a large extent. The
excellent performance (90% lower Stalls Count, 40 percentage
points higher Playback Percentage) can be achieved even
under stressful bandwidth conditions, i.e., a cut down of the
overall available upload bandwidth by 40%. On the other hand
quality adaptation comes at the cost of video quality. However,
decreased video quality was found to be less influental on QoE
than stalling [20]. Second, the frequency of the invocation of
the quality adaptation has an impact on the number of quality
adaptations. As opposed to the expectations of the authors, a
more frequent invocation leads to less layer switches, as the
quality adaptation acts in a more foresighted way.

Future work on this topic will focus on an even more
concise integration of QoE aspects, e.g., by integrating vi-
sual impairment measurements between layers as they can
be measured using the Video Quality Metric (VQM) [10],
[11]. Impairment measurements can be integrated into the
final layer selection as transition weights to perform a layer
selection matching the user’s perceived quality. Moreover, the
scheduling approach presented in this work can be applied
to different transport mechanisms with small modifications.
Especially novel transport approaches like Dynamic Adaptive
Streaming over HTTP (DASH) could be used as a replacement
for flows and requests.
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