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Abstract—Vendor lock-in is one of the major issues preventing
companies from moving their big data applications to the cloud
or changing between cloud providers. A choice in provider based
on used datastores can be advantageous at first, but with ever-
changing applications the chosen datastore may no longer be
optimal after some time. Namely, applications’ requirements
change due to frequent updates and feature requests, and
scalability issues arise as user numbers continuously evolve. In
this paper we propose a framework for the live transformation of
the schema and data of datastores. Using a canonical data model
the framework can be easily extended for additional datastores.
The framework performs the transformation on two different
levels. It uses a batch layer to transform a snapshot of the
datastore, while a speed layer transforms queries inserting new
or updated data into the datastore. A transformation is given
between MySQL and Cassandra as a proof-of-concept. We show
the correctness of the transformation and provide performance
results, in terms of transformation times and overhead.

I. INTRODUCTION

Vendor lock-in and interoperability issues are still consid-
ered to be top inhibitors to cloud adoption, according to a
survey by North Bridge among 855 respondents [1]. The
choice between cloud providers is in most cases difficult as
there are several large players such as Google, Microsoft,
and Amazon, but even more smaller players. Comparing these
public cloud providers is a tedious task and in order to help
future customers decide which cloud provider is best suited for
them, tools have been created for the automated comparison
of providers based on different requirements [2], [3]. For
example, Ruiz-Alvarez and Humphrey have an automated
approach of selecting the best storage service for a given
dataset of a particular application [3]. Once such a choice is
made, the migration to the cloud is a complex process. Firstly,
because of the size of current data sets, traditional processing
and storage solutions no longer suffice. Working with these
big data sets requires parellel software running in clusters of
tens, hundreds or even thousands of servers [4]. Secondly, this
process usually involves changes to the application, extensive
(re)configuration, and/or downtime. But as applications tend
to evolve with frequent updates and feature requests on the
one hand, and increasing user numbers on the other, their
requirements change and scalability issues arise. This leads
to a situation where the original, optimal choice of datastore
is no longer optimal, i.e. the performance of the applications
suffers from this choice. This might call for another migration,
even potentially to another provider, again a costly operation.

In this paper, we propose a new framework for live datastore
transformation as part of a new Platform-as-a-Service Tengu,
previously known as Kameleo [5]. The proposed framework
aims to migrate and transform the schema and data of any
datastore without any necessary changes to or downtime of
the application. It introduces the concept of dynamic storage
which allows the stored data to be stored in the optimal format
for the application, transforming the format when necessary,
i.e. when certain requirements are no longer met (e.g. query
time exceeds a certain threshold). This paper shows the
extensible approach for transforming datastores live and the
architecture to support it. A proof-of-concept implementation
is detailed showing the transformation between MySQL, a
relational database, and Cassandra, a NoSQL column-oriented
datastore. The authors want to emphasize that although data-
store is a term often used within the NoSQL domain, while
RDBMS prefers the term database, this paper uses datastore
as a general term for both.

The remainder of this paper is structured as follows: the
architecture of the framework is described in Section II,
while Section III details the transformation principles and the
corresponding workflow. The algorithm for the transformation
is stipulated in Section IV. In Section V, the implementation
details of the framework are provided. Section VI details
the experimental setup, whereas results can be found in Sec-
tion VII. The discussion of the results in regard to future work
can be found in Section VII-C. Section VIII gives an overview
of related work in the field of migration and transformation
of datastores. Finally, the main conclusions are presented in
Section IX.

II. ARCHITECTURE OVERVIEW

When applying a transformation on a datastore, it is im-
portant that the live application it supports, encounters no
or minimal impact on it’s operations. Secondly, the faster a
transformation can be completed, the better, as the data is
highly susceptible to redundancy and loss in this state. It
can be reasonably assumed queries will continue to arrive
while the transformation is in progress, considering a live
application. Reading information from the datastore during
the transformation is straightforward as these queries can be
handled by the original or source datastore (Dsrc), but queries
inserting new or modifying existing data also need to be
transformed, otherwise the transformed datastore (Dtrans) will



Fig. 1. General overview of the architecture with a batch layer and parallel
speed layer.

not contain the latest data and/or reflect the latest changes to its
data and structure. A simple solution would be to store these
queries and transform them as soon as the first transformation
is finished. However, during this second transformation new
queries would possibly still arrive as well, yielding an almost
infinite loop. Introducing a real time transformation for these
queries, parallel to the batch transformation, solves this issue.

For the sake of completeness, we mention that the Tengu
platform already provides a batch and speed layer architecture
as a service, the Lambda architecture [5], [6]. It is a specific
approach for Big Data analysis leveraging the computing
power of batch processing with the responsiveness of a real-
time computation system.

Figure 1 shows a general overview of the proposed architec-
ture. The batch layer uses a snapshot to transform the structure
and data present in Dsrc at that time, while the speed layer
transforms queries that add new data or transform existing data
or structure. The latter transformations are stored in sequence
until the batch layer is finished, after which the queries are
executed on the newly created Dtrans. It is important to
note that all queries arriving after the snapshot are still being
executed on Dsrc as well, since it is still being used for reads.
Once the batch layer is finished and while the stored queries
from the speed layer are executing on Dtrans, a changeover
process will be started. This stops all queries from being sent
to Dsrc and completes the changeover to Dtrans.

III. TRANSFORMATION AND WORKFLOW

A. Approach

Two main approaches can be identified when looking at
the actual transformation of a datastore: direct transformation
and transformation through a centralized data model. The first
approach is fairly straightforward as one datastore is directly
mapped onto another. Unique properties of a certain datastore
can be mapped onto specific traits of the other entirely.
However, for each new supported data model, this approach
would require a new implementation for transforming the
new data model into each of the already supported models.
Using a centralized data model would solve this issue by
first transforming the structure and data of each datastore to
the data model, after which it is transformed into the new
datastore. Supporting new datastores would then only require

Fig. 2. Canonical model for the structure of a dataset.

a transformation towards and from the abstract or canonical
model. While this solution does support the extensibility of
additional datastores being added, it also has several draw-
backs. Firstly, the solution requires an extra transformation
for every conversion between datastores introducing additional
overhead. Secondly, while transforming to the centralized data
model, it is not possible to assume anything about the unique
characteristics of Dtrans as the destination datastore is not yet
known at that point.

Within the centralized data model, two possibilities exist:
an abstract and a canonical model. An abstract model can
represent the most common characteristics shared by several
datastores, while the canonical model aims to support every
specific characteristic of each supported datastore. Although
the abstract data model allows a general representation of the
datastore’s structure and data, not all unique characteristics of
the datastores are supported and any related advantages are
also lost. With this in mind, the approach with a canonical
model is preferred. The complexity in developing such a
solution will be mostly contained in the first stage. Once
the canonical model is in place, adding support for new
datastores is significantly easier. Even if this approach per-
forms worse time-wise, compared to a direct transformation,
the architecture proposed in Section II still allows for the
application to operate with minimal impact. That is, during
the transformation, Dsrc is still the main datastore, i.e. it still
processes all the queries from the application, while the speed
layer transforms any queries that update or insert data in the
datastore.

Figure 2 represents a diagram of a proposed canonical
model, based on the Entity-Relationship (ER) model [7], for
the structure of a dataset. The central element in this canonical
model is the Entity. It represents a subject and is built up by
different Attributes. It can be compared to a table in SQL, but,
as demonstrated in Section V, not every table in SQL can be
mapped onto an Entity. An Entity also keeps information about
its primary keys and Attributes. Relations between Entities
can also be represented with a specific type, such as many-
to-one, many-to-many and one-to-one. Additional information
about relationships, such as cascading, can be stored here too.
Finally, a Collection combines several Entities, much like the
keyspace combines column families in Cassandra. While the



tuples (i.e. the actual representation of the data in the datastore)
are not mentioned in Figure 2, a tuple can be regarded as
a combination of singular pieces of information, related to
attributes as part of an entity (e.g. a row in a SQL table).

B. Workflow

This section summarizes the typical workflow of a transfor-
mation by the framework. The transformation process can be
described in four steps:

1) Initiate transformation: the transformation is initiated,
based on monitoring data or by request. A snapshot
is taken from Dsrc and passed on to the batch layer.
Until the handover, the final step, Dsrc acts as the main
datastore for the application(s), i.e. all queries are still
passed on to this datastore. However, all queries that
insert or update data in the datastore are also forwarded
to the speed layer as soon as the snapshot is initiated.

2) Transform structure: before the data can be trans-
formed, the batch layer transforms the structure or
schema of Dsrc. The speed layer is only collecting
queries, but not yet transforming them, as information is
needed about the transformed schema of the datastore.

3) Transform data: based on the transformed shema of
Dsrc, a new datastore, Dtrans, is set up. Both batch and
speed layer start transforming the data from the snapshot
and queries respectively.

4) Handover: as soon as the data from the snapshot
is transformed and put into Dtrans, the handover is
initiated. All queries are then redirected to Dtrans with
respect to any queries still in queue at the speed layer.

At this point, the application still queries in the language of
Dsrc which leads to the following possible scenarios:

• The application maintains the original language and every
query is translated by the speed layer. The application
thus remains dependant on the proposed architecture
with a minimal overhead introduced by the continuous
transformation.

• The application was prepared for this transformation and
changes its querying language to that of Dtrans.

• The application communicates to the datastore through
an abstract data layer, such as Hibernate ORM/OGM or
PlayORM

It is clear that in order to eliminate the need for the appli-
cation to change, the first option, continuous transformation
of the queries, is required. Although we mention the different
possibilities here, the further evaluation of these scenarios is
outside the scope of this paper and part of future work.

IV. TRANSFORMATION ALGORITHM

As discussed in Section III, based on the canonical model
approach, the transformation is divided into two parts: the first
part transforms Dsrc into a canonical model and in a second
phase from the canonical model into Dtrans. To clarify the
entire process, the transformation is drawn up for two specific
datastores. In the context of companies migrating to the cloud

and issues like vendor lock-in, an interesting use case is that
of a company with a classic RDBMS wanting to migrate to
a NoSQL datastore. MySQL, one of the most popular open-
source RDBMS solutions, and Cassandra, a popular NoSQL
column store, are selected for the proof-of-concept as Dsrc and
Dtrans, respectively. It is important to note that all concepts
used in MySQL are part of the ANSI SQL standard and can
therefore be applied to any ANSI SQL standard supporting
implementation.

A. SQL to canonical

The following schema shows how the different datastruc-
tures from SQL are mapped onto the canonical data model:

Database ⇒ Collection
Table ⇒ Entity

Column ⇒ Attribute
Foreign keys ⇒ Relationships

The first three structures are trivial: a database is a collection
of tables and thus entities. The tables have columns, which are
represented by the attributes of entities. Relationships between
tables in SQL and between entities in our canonical model
are however more complicated. In SQL the relationships are
defined through foreign keys, primary keys, and table use.
Three types of relationships exist: one-to-one, many-to-one
and many-to-many. For each type of relationship the use of
foreign keys are detailed below:

• One-to-One: a relationship where a record of a table is
connected to at most one record of the other table. In
MySQL this is usually defined be two tables having the
same primary key. In one of the tables, this primary key
is also the foreign key referring to the primary key of the
other table. For example, a table ”Customer” has a one-to-
one relationship with the table ”Address”. The primary
key of ”Address” is also its foreign key and refers to
the primary key of ”Customer”. Both tables thus have
the same primary key. Another possibility is to have a
foreign key in both tables referring to the other table’s
primary key. One-to-one relationships can also be used
for the inheritance between tables, but this specific kind
of relationship was not considered at this point.

• Many-to-One: a relationship where one record of a
table can be connected to multiple records of another
table, while the latter are only used in one relation
at most. To express this relationship, a foreign key is
used in the records on the ”many”-side. An example
is the relationship between a table ”Order” and a table
”Customer” where one customer can have many orders,
but an order is only related to one customer. In the
”Order” table therefore a foreign key is held, referring
to the primary key of ”Customer”.

• Many-to-Many: a relationship where records from both
tables can be in multiple relations between each other. In
MySQL it is not possible to express this relationship with
only foreign keys. A new table is therefore introduced



with only two foreign keys mapping records of the two
tables, sometimes identified by a single primary key if
needed. This map-table has a many-to-one relationship
with each of the other two tables. For example, the
relation between a table ”Orders” and a table ”Products”.
Orders can contain several products, but products can also
be in more than one order.

When a foreign key in a table is recognized during the
transformation to the canonical model, without any additional
information the only correct assumption that can be made
is that there exists some kind of relationship with this other
table. Therefore, in a first step this general relationship will be
translated into the canonical model and, after all tables have
been mapped onto entities, the specific types of relationships
can be defined in the canonical model as follows:

• A one-to-one relationship is thus detected if the local
attribute in the entity is also the primary key of that entity
or if the related entity also has a relationship referencing
the entity.

• The many-to-many relationship is more complicated
because of an additional table (i.e. entity) introduced by
MySQL. This map entity is only used as an aid to repre-
sent the many-to-many relationship between two ”true”
entities and therefore it will be referred to as a ”false”
entity. As mentioned before, it is reasonable to assume
this false entity only has two attributes, representing the
many-to-one relationships with the two true entities, with
the exception of a possible extra attribute serving as an
id. The false entity is now marked for deletion, but not
effectively removed as data stored in the original table
still needs to be transformed afterwards. Finally, a many-
to-many relationship is added to both true entities.

• Many-to-one relationships are the relationships that
remain and do not satisfy the previous conditions.

The entire datastore schema has now been transformed into
the proposed canonical model.

B. Canonical to Cassandra

The following schema shows how the canonical data struc-
tures are mapped on Cassandra:

Collection ⇒ Keyspace
Entity ⇒ Column family

⇒ Composite column
⇒ Super column

Attribute ⇒ Column
Relationships ⇒ ...

The analogy between collection and keyspace on the one hand,
and attribute and column on the other, is straightforward.
For the entities and their relationships this is less so. An
entity can be any of the following data structures: a column
family, a composite column and a super column. Although
super columns are no longer favoured as a result of their bad
performance, they are only mentioned here for completeness.

While relationships are not enforced in Cassandra, they can
be represented when present in the canonical model:

• All (true) entities are temporarily considered to be column
families

• One-to-one relationships are eliminated through inclu-
sion of one entity in the other as a composite column.
Which entity is included in the other is decided as
follows:

1) If one of the entities still has other relationships, or
more relationships compared to the other, this entity
includes the other.

2) If both entities have no or the same amount of
relationships, the entity with most attributes includes
the one with less attributes.

3) If both entities have the same amount of attributes,
one of the entities is randomly chosen to be included
in the other.

• Many-to-one relationships are represented by adding an
additional column family to the keyspace. This so called
”index” column family maps the ”one”-side column fam-
ily on the ”many”-side column family. For example, the
column family ”Order” has a many-to-one relationship
with the column family ”Customer”. It is easy to deter-
mine the customer related to a certain order as this is
saved in the column family. A harder query would be
to get all the orders for a certain customer. As Cassandra
strives towards fast lookup times, joining column families
is not an option and therefore an index column family
is added allowing these kind of fast lookups. The first
consequence of this approach is that more writes are
needed to add a record to the ”many” side column family
(e.g. ”Order”), but Cassandra is optimized to handle
these concurrent writes [8]. Secondly, the datastore is
denormalized and data is redundantly stored, which is
important to remember when querying or updating the
store.

• Many-to-many relationships can be similarly addressed
as the many-to-one relationships, but from both sides.
Therefore two index column families are created to again
ensure a fast lookup time. For example, the column
families ”Order” and ”Products” with a many-to-many
relationship. It is important to have easy access to all the
products that are related to an order, but also to all the
orders where a specific product is included.

The entire datastore schema has been transformed into a
Cassandra datastore and now the data can be transformed from
Dsrc to Dtrans based on the created canonical model. This is
done in a similar fashion by mapping the data from MySQL
onto the canonical model and then transforming it from the
canonical model to Cassandra. The speed layer also performs
this transformation in parallel to the batch layer for all the
INSERT or UPDATE queries that have been received during
the transformation of the structure.



Fig. 3. Instantiation of the framework with all the implemented technologies.

V. IMPLEMENTATION DETAILS

A. Technology choice and motivation

The proposed architecture in Section II requires an intelli-
gent controller-like component responsible for the communi-
cation between the batch/speed layer and handling input/output
for those respective layers. Several possibilities were consid-
ered, such as a Message Broker (MB), an Enterprise Service
Bus (ESB) and a Complex Event Processor (CEP).

A CEP takes actions based on certain events that occur
in the system, while a MB allows for the asynchronous
communication between applications. The ESB also allows for
the communication between applications, but takes a routing
approach based on a bus architecture. The CEP may not be as
suitable for the proposed architecture as we would have limited
control over the messages sent and received. While a MB may
suffice for the simple exchange of information between several
applications, an ESB allows for more control on the routing,
mediation and transformation of the processed messages.

Based on these considerations, the ESB was chosen as
central component. The most-used open source ESBs are
UltraESB, WSO2 ESB, Mule ESB and Talend ESB. All have
an active community with sufficient documentation provided
for new users. Performance testing of these open source ESBs
shows that on average both the WSO2 ESB and UltraESB have
the best performance compared to Mule and Talend [9], [10],
[11]. However, the UltraESB is less mature than the WSO2
ESB, having less iterations, and therefore the WSO2 ESB was
chosen for the implementation.

A choice also needs to be made regarding the batch layer
technologies. In order to achieve such a transformation of
a big data set, powerful computing frameworks are needed.
One of the best-known batch frameworks is MapReduce [12],
originally developed by Google, but made popular by its open-
source implementation Apache Hadoop. Another increasingly
popular batch framework is Spark [13]. Spark is proven
to execute certain programs up to 100 times faster than
Hadoop in memory or 10 times on disk. MapReduce is also
not the only approach to Big Data analysis. Solutions like
the HPCC Systems platform and PowerGraph leverage other
programming models to achieve this. However, considering
the proposed transformation, there is a distinct similarity with
the MapReduce model. The transformation to the canonical

Fig. 4. Setup of the implementation on the iLab.t Virtual Wall.

model can be considered as a map task, while the conversion
from the canonical model can be seen as a reduce task. Based
on these findings the batch layer in this proof-of-concept was
implemented in Hadoop MapReduce. A scalable workflow
management system, Oozie [14], was also installed on top
of Hadoop. Oozie also provides a REST API which can be
used by the ESB, allowing it to send commands to the Hadoop
cluster.

For the speed layer, the most notable candidates are Storm
and S4 [15]. Storm, recently introduced in the Apache Incuba-
tor project, provides a continuously running topology made up
of singular nodes, called bolts, thus creating custom analysis
streams. S4 was released by Yahoo in 2010 and also became
an Apache Incubator project in 2011. It consists of processing
elements, interconnected by streams and bundled in apps.
These apps are then deployed and run on nodes. This and a
publish/subscribe system of messages makes the framework
modular in such a way that apps can interconnect and be
assembled in larger systems. Based on the ability of Storm to
guarantee processing of the queries and the active community
surrounding the project, it was chosen for the proof-of-concept
implementation. Both Hadoop and Storm also use Java, which
means code is reusable accross both layers. The connection
between the ESB and Storm is handled by Java Message
Service (JMS) and ActiveMQ [16]. An overview of all the
chosen technologies can be found in Figure 3.

VI. EXPERIMENTAL SETUP

The implemented instantiation of the architecture was de-
ployed on the Virtual Wall. The iLab.t Virtual Wall facility 1 is
a generic test environment for advanced network, distributed
software and service evaluation, and supports scalability re-
search. The Virtual Wall contains 100 nodes with Dual CPU
(Quad core) with 12GB of RAM and 1x160GB disk.

Figure 4 details the deployment of our implementation on
the Virtual Wall. The setup of every node is done through
a combination of the JFed software 2 and the configuration
management tool Chef [17]. Once the experiment is deployed,

1http://ilabt.iminds.be/
2http://jfed.iminds.be/



Fig. 5. Structure of the proof-of-concept datastore.

scripts are started on all nodes for the installation of Chef. One
node is installed with a Chef server, while all other nodes
are installed as a Chef client. Through cookbooks and recipes
on the Chef server, the clients are then put into their roles
of ESB, Hadoop master, Hadoop slaves, Storm nimbus, and
Storm slaves. Oozie is installed on the Hadoop master, while
ActiveMQ is installed on the ESB node. Although a choice
was made to use Hadoop and Storm for the batch and speed
layer respectively, the ESB can support different technologies
and a new test environment can be deployed swiftly using
JFed, and Chef and its cookbooks.

The structure of the proof-of-concept datastore needs to
show the transformation can handle the different types of
relationships between entities. With this in mind the structure
in Figure 5 is created to serve as a proof-of-concept datastore.
It shows a datastore with information concerning a company
selling products, provided by a supplier and part of a category.
Orders map these products to customers and are handled by
an employee. The address of a customer is saved in a separate
table.

The original dataset contains 50 tuples in each of the
following tables: ”Address”, ”Category”, and ”Customer”.
Tables ”Employee” and ”Product” both contain 100 tuples,
while tables ”Order” and ”Supplier” contain 200 and 10
tuples, respectively. The table that maps the many-to-many
relationship between ”Order” and ”Product” saves 300 tuples.
This original setup is then extended linearly to match datasizes
of 5, 10, 15, and 20 Gigabytes (GB), where 1 GB of tuples
equals 11.5 million tuples. A 20 GB file is therefore equivalent
to over 230 million tuples.

VII. RESULTS

A. Batch layer

The batch layer is responsible for the transformation of the
structure of Dsrc to Dtrans and the data contained in the
snapshot. Table I details the average execution times for the
transformation of the structure of Dsrc in Hadoop. The first
job contains the map and reduce function responsible for the
initial transformation from MySQL to the canonical model
and the optimization step (cfr. Section V). In the second job,
the reduce step transforms the canonical representation into
Cassandra. Note that the execution times of map and reduce
do not add up to the total of each job because of overhead
introduced by Hadoop for sorting and routing the data. The
execution time of both jobs is also not dependent on the size
of the dataset as the structure remains the same.

Figure 6 shows the average execution times for the transfor-
mation of the data in Hadoop for increasing dataset sizes. As

Fig. 6. Average execution times and standard deviation for the transformation
of the data of the datastore in Hadoop for increasing dataset sizes.

expected, increasing the dataset size also increases the time
needed to transform the data. This increase follows a linear
trend. In Hadoop it is also possible to configure the number of
parallel reduce tasks in a job. Increasing the number of parallel
reducers decreases the execution time, however doubling the
number of reducers from 1 to 2 does not halve the execution
time. The time gain is even less when increasing the reducers
from 2 to 4. This is the result of a Hadoop overhead as it
needs to route and copy the data to the correct nodes of the
cluster. This becomes more complicated when more reducers
are used, and thus the time gain is lowered. The number of
map tasks can not be configured directly as Hadoop divides
large files in smaller chunks automatically to provide them
to a mapper and thus largely decides this autonomously. The
number of parallel map tasks in these tests is 4.

B. Speed layer

The speed layer, implemented in Storm, is responsible for
transforming INSERT and UPDATE queries for Dsrc into
queries for Dtrans. While we mention INSERT and UPDATE
queries as specific query types in ANSI SQL, it is clear that
this translates to any query type that inserts new or updates
data in any datastore. This process is identical to the data
transformation in the batch layer, but with the map and reduce
functions accommodated in bolts. Figure 7 depicts the total
time for the Storm topology to process the entire set of queries
for different query set sizes. In a first stage, every bolt in the
topology is limited to 1 executor/task, i.e. no parallel execution
of the bolts. A linear increase of the query set yields a linear
increase in execution time. This linear trend is confirmed when
observing the average overhead for one query passing through

TABLE I
AVERAGE EXECUTION TIMES FOR THE TRANSFORMATION OF THE

STRUCTURE OF THE DATASTORE IN HADOOP.

Job 1 Job 2
Map Reduce Total Map Reduce Total

Avg (s) 1.1818 7.0909 14.1818 1.3636 8.2727 15.2727
Std dev 0.6030 0.3015 0.7508 0.5045 0.4671 0.4671



Fig. 7. Average execution times and standard deviation for the transformation
of an entire query set in Storm for different query set sizes.

the entire Storm topology in Table II. The average processing
time of a query remains constant at around 52ms for increasing
query set sizes.

In a second test the number of executors and tasks per
bolt was doubled, allowing for parallelism in the bolts. The
total execution time in Figure 7 set shows a small gain for
all query set sizes. As with Hadoop, Storm also accounts for
some overhead for routing the queries through the topology. In
Storm, it is also possible to highly tune the parallelism of every
bolt in the topology independently. This is necessary because
of the varying tasks each bolt has to perform. Execution times
may vary between bolts and might lead to bottlenecks in
the topology. Simply doubling the capacity of each bolt may
therefore not halve the execution time. The results in Figure 7
can thus be seen as an upper limit for the execution times.
The average processing time per query remains unchanged
(cfr. Table II).

C. Discussion

While increasing the number of reducers in the batch layer
yields a decreasing execution time until a certain point, a direct
approach will almost always be faster as there is no additional
transformation to and from a canonical model. However, this
approach was chosen for the needed extensibility of the plat-
form in the heterogeneous storage environment. Additionally,
at this point in the transformation workflow, after the batch
layer transformed the schema of Dsrc, the speed layer is
running in parallel to catch up Dtrans to the most recent state
of Dsrc. The possible negative influence of this approach on
the live application(s) is also limited as Dsrc is still the main
datastore for all reads and writes during these transformations
and the only additional stress on Dsrc will have been the
moment where a snapshot of the datastore was taken.

After the transformation, and handover, the speed layer
may also be responsible for the continuous transformation
of queries, including search and range queries. Although this
scenario is outside of the scope of this paper, it is part of the
next step towards a system where application changes are no
longer required. The results, shown in Figure 7, bode well in
this regard with a limited overhead of around 52ms per query.

TABLE II
AVERAGE PROCESSING TIMES PER QUERY IN THE STORM TOPOLOGY.

1 executor/task 2 executors/tasks

5000 Avg (ms) 52.170 51.817
Std dev 0.140 0.093

10000 Avg (ms) 51.997 51.705
Std dev 0.119 0.078

15000 Avg (ms) 51.979 51.670
Std dev 0.137 0.059

VIII. RELATED WORK

This section discusses related work in the field of migration
and transformation of datasets.

The Extract Transform Load (ETL) principle is a process,
frequently used in data warehousing, where data is extracted
from an outside source, transformed according to several
rules into a predefined format and loaded into an operational
datastore or data warehouse. The proposed framework can be
considered as a type of ETL framework: the structure and data
are extracted from a source datastore, they are transformed and
loaded into a new datastore. While ETL processes focus on
data alone and are often part of a long term solution [18],
[19], the proposed framework transforms both structure and
data and loads it into a newly created datastore instead of an
already operational store. However, as the process shows a
large resemblance with any data transformation, this section
follows the different steps in the process, i.e. extract, transform
and load.

Before any transformation can be performed, the schema
and data of Dsrc needs to be extracted and migrated to
the framework. The migration of big data sets has already
been researched thoroughly. The obstacles posed by migration
have been approached in numerous ways, such as using
high-performance networks [20], having a workload-aware
strategy [21], or through a cost-minimizing approach [22].
Considering the cloud context, an additional obstacle arises as
many applications have to meet strict service-level agreements
(SLA), therefore the downtime of the applications needs to
be limited or eliminated entirely. Performing a data migration
with no downtime of the application is called a live migration.
With the growing popularity of the cloud, extensive research
has been done in this sub-domain of data migration [21], [23],
[24]. The Albatross technique for shared storage, developed by
Das et al. [23], uses an iterative technique where a snapshot
of the source datastore at the destination tries to catch up
by iteratively copying the changes. Elmore et al. propose a
technique for shared nothing datastores where pages of the
store are pulled on-demand by the destination [24]. Both
proposals do however assume several characteristics of their
respective datastores. As this framework aims to support
any datastore and therefore to be easily extensible, assuming
anything about possible datastores would limit the flexibility of
the framework significantly. While they perform no or limited
changes to a datastore’s structure or data, they also provide
some interesting insights into the ”live” aspect for the proposed
framework.



A domain directly related to transformation of schemas
and data, is schema matching and mapping [25]. Schema
matching is the task of finding semantic correspondences
between elements of two datastore schemas, while schema
mapping aims to find a query or set of queries to map a
source datastore into a destination datastore. Challenges in
the automation of this process have been largely related to
the heterogeneity, e.g. different technologies or semantics. The
advent of NoSQL datastores has not eased these issues due to
their own heterogeneity and flexible, or even schemaless, data-
models. Ontologies have provided a solution to the semantic
heterogeneity in the form of ontology matching [26], but many
other challenges exist. While this entire domain provides many
solutions for transforming data, it differs from the problem
this paper solves in the sense that both the data schemas are
known in advance in schema matching and mapping. In this
framework the schema of Dtrans is not known in advance,
but is derived from the information in Dsrc.

IX. CONCLUSION

This paper proposes an approach for the live transformation
of datastores through a canonical model. A new framework is
introduced, based on the concept of the Lambda architecture
with a parallel batch and speed layer. The framework is imple-
mented as an Enterprise Service Bus with Hadoop and Storm
as services for the batch and speed layer, respectively. This
prototype showcases an implementation of the transformation
between a MySQL database and a Cassandra NoSQL store.
Results show a linear trend in execution times for increas-
ing dataset sizes in the batch layer. Hadoop overhead also
limits the time gain when increasing the number of parallel
reducers. In the speed layer, Storm allows for a quick catch-
up by Dtrans after the batch layer has finished it’s schema
transformation and before the changeover from Dsrc. These
results are also promising for a situation where a continuous
transformation is necessary to avoid the application changes.
While the impact of this continuous transformation needs to
be evaluated further, these initial results prove that the speed
layer is able to limit the introduced overhead.

Other future work will focus on the integration of this new
framework into the Tengu platform for dynamic changeovers
between data models. Here, monitoring data will be used to
identify turning points in the performance of applications using
specific datastores in order to autonomously decide when a
transformation is needed.

ACKNOWLEDGMENT

This work has partly been funded by the IWT TWIRL
project (110580) and the iMinds (DMS)2 project (120442).

REFERENCES

[1] M. J. Skok, “The 3rd Annual Future of Cloud Computing,” tech. rep.,
North Bridge and GigaOM, 2013. http://goo.gl/mDmkst.

[2] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pp. 1–14, ACM, 2010.

[3] A. Ruiz-Alvarez and M. Humphrey, “An automated approach to cloud
storage service selection,” in Proceedings of the 2Nd International
Workshop on Scientific Cloud Computing, ScienceCloud ’11, (New York,
NY, USA), pp. 39–48, ACM, 2011.

[4] A. Jacobs, “The pathologies of big data,” Commun. ACM, vol. 52,
pp. 36–44, Aug. 2009.

[5] T. Vanhove, J. Vandensteen, G. Van Seghbroeck, T. Wauters, and F. De
Turck, “Kameleo: Design of a new Platform-as-a-Service for Flexible
Data Management,” in Proceedings of the 2014 IEEE/IFIP Network
Operations and Management Symposium (NOMS 2014), 2014.

[6] N. Marz and J. Warren, Big Data: Principles and best practices
of scalable realtime data systems. Greenwich, CT, USA: Manning
Publications Co., 2014. (Early Access Program).

[7] P. P.-S. Chen, “The Entity-relationship Model - Toward a Unified View
of Data,” ACM Trans. Database Syst., vol. 1, pp. 9–36, Mar. 1976.

[8] P. McFadin, “The Data Model is dead, long live the Data Model,”
DataStax Webinar, may 2013.

[9] D. Abeyruwan, “ESB Performance Round 6.5,” tech. rep., WSO2, jan
2013. http://wso2.com/library/articles/2013/01/esb-performance-65/.

[10] A. C. Perera and R. Linton, “ESB Performance Round 7,” tech. rep.,
AdroitLogic, oct 2013. http://esbperformance.org/display/comparison/
ESB+Performance.

[11] S. Anfar, “ESB Performance Round 7.5,” tech. rep., WSO2, feb 2014.
http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/.

[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
(Berkeley, CA, USA), pp. 10–10, USENIX Association, 2010.

[14] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan,
C. Peters, A. Neumann, and A. Abdelnur, “Oozie: towards a scalable
workflow management system for hadoop,” in Proceedings of the 1st
ACM SIGMOD Workshop on Scalable Workflow Execution Engines and
Technologies, p. 4, ACM, 2012.

[15] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Data Mining Workshops (ICDMW), 2010
IEEE International Conference on, pp. 170–177, dec 2010.

[16] B. Snyder, D. Bosnanac, and R. Davies, ActiveMQ in action. Manning,
2011.

[17] M. Marschall, Chef Infrastructure Automation Cookbook. Packt Pub-
lishing, 2013.

[18] S. Henry, S. Hoon, M. Hwang, D. Lee, and M. D. DeVore, “Engineering
trade study: extract, transform, load tools for data migration,” in Systems
and Information Engineering Design Symposium, 2005 IEEE, pp. 1–8,
IEEE, 2005.

[19] H. Agrawal, G. Chafle, S. Goyal, S. Mittal, and S. Mukherjea, “An
enhanced extract-transform-load system for migrating data in telecom
billing,” in IEEE 24th International Conference on Data Engineering
(ICDE 2008), pp. 1277–1286, IEEE, 2008.

[20] B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W. Poole,
and T. M. Ruwart, “A technique for moving large data sets over high-
performance long distance networks,” in Proceedings of the 2011 IEEE
27th Symposium on Mass Storage Systems and Technologies, MSST ’11,
(Washington, DC, USA), pp. 1–6, IEEE Computer Society, 2011.

[21] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai, “Workload-aware live
storage migration for clouds,” SIGPLAN Not., vol. 46, pp. 133–144,
Mar. 2011.

[22] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. Lau, “Moving big data
to the cloud: An online cost-minimizing approach,” Selected Areas in
Communications, IEEE Journal on, vol. 31, pp. 2710–2721, dec 2013.

[23] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross:
Lightweight elasticity in shared storage databases for the cloud using
live data migration,” Proc. VLDB Endow., vol. 4, pp. 494–505, May
2011.

[24] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, “Zephyr: Live
migration in shared nothing databases for elastic cloud platforms,” in
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, (New York, NY, USA), pp. 301–
312, ACM, 2011.

[25] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” the VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[26] J. Euzenat and P. Shvaiko, Ontology Matching. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.


