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Abstract—In this paper, we consider an application provider
that executes simultaneously periodic long running jobs and needs
to ensure a minimum throughput to guarantee QoS to its users;
the application provider uses virtual machine (VM) resources
offered by an IaaS provider. Aim of the periodic jobs is to
compute measures on data collected over a specific time frame.
We assume that the IaaS provider offers a pay for only what you
use scheme similar to the Amazon EC2 service, comprising on
demand and spot VM instances. The former are sold at a fixed
price, while the latter are assigned on the basis of an auction. We
focus on the bidding decision process by the application provider
and model the bidding problem as a Q-Learning problem, taking
into account the workloads, the maximum completion times since
jobs start, the last checkpoint, and the past spot prices observed.
In Q-Learning, a form of model-free Reinforcement Learning,
the player is repeatedly faced with a choice among N different
actions, which will determine immediate rewards or costs and will
influence future evolutions. Through numerical experiments, we
analyze the resulting bidding strategy under different scenarios.
Our results show the application provider ability to refine its
behavior and to determine the best action so to minimize the
average cost per job, also taking into account checkpointing issues
and QoS constraints.
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I. INTRODUCTION

Cloud computing is one of the most disruptive and success-
ful phenomena of the last years. Many companies are exploit-
ing commercially available services provided by Infrastructure
as a Service (IaaS) providers, that allow to either scale out
or in computing capabilities as need changes, through rapid
allocation or deallocation of virtual computing and storage
resources. laaS services let users offer fresh applications
without the need of managing the underlying infrastructure.

IaaS providers usually make resources available as Virtual
Machine (VM) instances to customers, and the pricing is often
governed by a pay-as-you-go model with a per-hour granularity
and fixed price (on demand VMs). If resource utilization can
be forecasted in advance, then IaaS customers can also reserve
flat VM, paying a long-term reservation fee in addition to a
per-hour price depending on the effective resource usage, of
course cheaper than the on demand price. Since flat and on
demand instances do not always saturate the IaaS provider
capacity, it can sell the spare capacity as spot VMs via an
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auction, as in the case of Amazon’s Elastic Cloud Computing
(EC2) [1].

An important class of applications that can exploit the dif-
ferent VM purchasing options is represented by periodic, long
running jobs. Examples of such applications include Sensor-
Clouds for industrial automation, environmental monitoring,
and healthcare [2], [3]. For such applications, the Quality of
Service (QoS) levels can be expressed in terms of sustainable
minimum throughput, since each job periodically needs to
compute measures on data collected over a specific time frame.

In this paper, we consider an application provider that
executes periodic batch jobs and uses the VM resources offered
by an IaaS provider. The application provider makes available
its computation with QoS constraints, consisting in a minimum
throughput. The spot bidding requires the application provider
to specify the maximum price to pay for a spot VM; then,
the TaaS provider sets the spot price. When the application
provider bid is lower than the spot price, it will get no resource.
Otherwise, the application provider will obtain the requested
VM, paying the spot price set by the IaaS provider. On the
contrary, on demand VMs are always sold at a fixed price.

Since the IaaS provider can revoke spot VMs without no-
tice for price and demand fluctuations, the application provider
needs to face this unreliability through fault-tolerance and
backup mechanisms. A well-known mechanism is checkpoint-
ing [4], which consists in saving the VM state on a reliable
storage and resuming it to restart. We focus on the bidding
strategy and assume a periodic checkpointing, performed after
a fixed time frame of continuative computation.

In this paper, we study the bidding strategy of the appli-
cation provider under the realistic assumption that, at each
hour, it has no knowledge of the behavior of other laaS
users, their number, the future spot price as well as the
recent spot price history not directly experienced. Hence, we
assume the application provider can only learn the bidding
strategy through experience over time. To this end, we resort
to Reinforcement Learning (RL) techniques [5].

Specifically, we formulate the bidding strategy as a Q-
Learning problem [5]. In Q-Learning, the player is repeatedly
faced with a choice among N different actions, which in
our setting represent possible bids; every time it submits
its decision, it receives an immediate cost or a reward, the
system state changes, and the taken action continues to have



consequences over future evolution. Such type of problems
is particularly suitable to our setting, since it requires no
knowledge of price probability distribution and is forward-
looking, thus making possible to take maximum completion
times and total costs into account. By observing the incurred
immediate and following costs that depend on the chosen
actions, the application provider learns over time the bidding
strategy which minimizes the average job cost, considering
workloads, maximum completion time, past spot prices ob-
served and when the last checkpoint occurred, in order not to
waste computation. To the best of our knowledge, Q-Learning
has not yet been applied to such cloud resource allocation
problems, as well as Reinforcement Learning. Related works
regarding spot instances provisioning for batch applications
did not focus on the learning problem and the full initial
uncertainty of spot price transition probability distribution,
as we do. This paper also differs from our previous works,
where we proposed approaches based on Stackelberg games [6]
and N-armed bandit problems [7], considering short terms
computations in settings in which one shot mechanisms are
needed rather than forward-looking. However, these models
are not adequate for long run estimations.

We study the effectiveness of the bidding strategy through
simulation experiments under various settings. Specifically, we
assess the application provider behavior under an IaaS provider
pricing policy based on Amazon EC2 traces, with different
checkpoint frequencies and in various scenarios. We compare
our strategy with alternative policies based on blind requests
of spot and on demand VMs, and with a Markov Decision
Process (MDP) approach [8], in which the model is solved
offline and price transition probabilities are known a priori.
Our results reveal that, by applying Q-Learning, the application
provider succeeds, hour by hour, in refining its behavior, while
respecting the QoS constraints and minimizing the costs, with
a performance better than blind approaches and comparable
with the MDP-based policy. We consider EC2 since it is a
popular service and offers to its users the option to combine
on demand, fixed price, and reliable VMs along with spot,
auction-based, and unreliable VMs. However, our approach is
quite general and can be conveniently adapted to many other
pricing schemes.

The rest of the paper is organized as follows. In Section II
we introduce Q-Learning, while in Section III we provide the
problem statement and define the system model. We describe
our solution to the bidding problem in Section IV. In Section V
we analyze through numerical experiments the behavior of
the bidding strategies. In Section VI we review some related
research efforts. Finally, we draw some conclusions and give
hints for future work in Section VIIL.

II. PRELIMINARIES: Q-LEARNING

Q-Learning is a form of model-free temporal difference
(TD) reinforcement learning developed by Watkins [5], [9]. It
provides agents with the capability of learning to act optimally
in Markovian domains by experiencing the consequences of
actions, without a map of the domains or a priori distributions
knowledge.

The basis of each Q-Learning problem simply consists of
an agent, a set of states S, and a set of possible actions per

state A;. When, at time ¢, the agent selects an action a, in state
s¢, the system moves from state s; to state s;4; according to
some transition probabilities. The execution of action a; in
the specific state s; provides the agent with a reward (or cost)
r¢+1. In the following we describe the @* function and how
it is approximated by the () function.

A. Q* Function

A common way to evaluate the set of rewards (or costs) col-
lected by the agent on time is to consider the total discounted
reward (or cost), given by R = >_, v'r;. The ~ term represents
the discount factor, which quantifies the importance given to
future values and is in the range [0, 1]. If v is 0, then only the
current value of r; is considered. If ~ is 1, then future values
will all have the same weight. The total discounted reward
can be useful both in the case of finite (i.e., the set of decision
epochs in which an action is selected is finite) and infinite
horizon.

The agent aims at maximizing its total reward (or minimiz-
ing the cost), by learning, decision after decision and transition
after transition, the optimal action for each state.

Let Q* be the function which associates to a state-action
pair the expected total future discounted reward (or cost)
that the agent will incur applying action a in state s and
thereafter following an optimal policy. If the agent had a priori
knowledge and knew the values of Q*, then it could select, at
time ¢, the optimal action a* in state s; as:

a® = argmaz,Q* (s, a) €))

B. Q Function Approximation and Action Selection

Actually, the agent needs to approximate Q* through a @
function, based on rewards (or costs) empirically observed.

At any time t, there is at least one action o/ =
argmax,Q(ss, a) (the minimum in case of costs rather than
rewards): the greedy action. When the agent chooses it, then
it exploits its experience. On the other hand, when the agent
selects one of the non-greedy actions, then we say it is
exploring: it is improving the estimation Q(s¢, a;) of the non-
greedy action’s value. Generally, exploitation is the best way
to maximize the expected reward (or minimize the expected
cost) on a local time frame, while exploration lets refine the
experience information base and react faster to dramatical
environment changes; nevertheless, this strongly depends on
the system model, the state space, and the action set. Hence,
it is clear that how to learn the best actions and still optimize
values requires to carefully trade-off between exploitation and
exploration. As discussed more extensively in [7], the agent
can obtain this trade-off via the e-greedy heuristic [5], with
various effects for different settings. This heuristic is governed
by the e parameter, which ranges from 0 (full exploitation) to
1 (full exploration).

C. Q Function Update

Each time the agent performs an action a, in state s; and
gets a reward (or a cost) 441, it updates the estimation of Q*
for that state-action pair:

Q(st,ar) = Q(st,a1) + a[rey1 + ymazaQ(ses1,a) — Q(st, ar)]
= (1 — )Q(st,ar) + afrit1 + ymaz.Q(sir1,a)] (2)



The « term represents the learning rate with which new
information will overwrite the past one. Setting o to 0 prevents
the agent from learning, while 1 shortens the historical horizon
to one step. According to [5], such update mechanism dra-
matically simplifies the algorithm analysis: convergence only
requires that all pairs continue to be updated.

III. SYSTEM MODEL

We consider an application provider which executes si-
multaneously periodic long running jobs by taking advantage
of VM resources offered by an IaaS provider. For a clearer
description, we first introduce the model considering only a
single periodic job, executed on a single VM; then, at the end
of Section IV we show that the same model also applies to
the general case whereby multiple jobs can be executed at the
same time using multiple VMs.

A. VM Pricing Model

The IaaS provider offers to its customers on demand and
spot VMs, using a pricing model similar to Amazon’s EC2 [1]
(we assume the application provider already exploits reserved
flat VM, so that it can request only on demand and spot VMs).
On demand VMs are offered at a fixed price J per hour, while
spot VMs at a price o per hour. However, o is not fixed,
but it rather varies over time according to the IaaS provider
pricing strategy and the user bids. For the sake of simplicity,
we assume the IaaS provider offers only one size of VM, i.e.,
all VMs have the same capacity.

B. Periodic Jobs

We assume that the periodic job is characterized by a
fixed workload W, corresponding to the actual execution time
needed to complete it. The application provider guarantees
QoS constraints in terms of a minimum throughput 1/D,
where D, D > W, is the maximum job duration after its
execution starts. As in [10], after a job instance has completed,
a new one is submitted; job submissions occur at frequency
1/D. Examples of such applications are represented by Sensor-
Clouds [2], [3], infrastructures that virtualize multiple physical
sensors as a “virtual sensor”. Sensor-Clouds provide a flexible
and reconfigurable Cloud platform for next-generation moni-
toring and community-centric applications. Another example
of periodic jobs is provided by a monitoring application for a
call center agent [11], which receives audio chats and performs
in real time speech recognition and analysis.

Since data must be collected and processed also aggregat-
ing statistics for a minimum time W, this problem cannot be
significantly speeded up; time is needed in place of computing
capacity: the job has to run at least for the W workload.
Results must be provided within the completion threshold D;
of course, a job instance can be completed within any time
lower than D with no difference.

C. Checkpoints

Since spot VMs are less reliable than the other kinds
of VMs and can be abruptly revoked at any time owing to
their dynamic pricing mechanism, the application provider

should consider checkpointing strategies so to mitigate the
spot unreliability [10], [12], [13]. Checkpointing consists in the
periodic storage of the entire state of the VM on a stable and
reliable storage layer. In this way, if a VM executing the job
is dropped, then the previous VM state can be restored. In this
paper, we consider periodic checkpointing, that is checkpoints
are taken with a frequency f., within a period of continuous
activity, based on the nature and the granularity of operations
and results to checkpoint. For example, if f., is 0.5 per
hour, a checkpoint will occur after 2 consecutive hours of
computation. For the sake of simplicity, we assume that the
average overhead O for a single (checkpoint, resume) pair
is fixed, though the actual CPU time could slightly vary. O is
independent of f,,: the effort to save and restore the VM state
is always the same.

D. Workload Execution and QoS Constraints

Once W and checkpoint frequency have been fixed, it is
easy to determine how many checkpoints will be performed
(n¢p) and to add this effort to W to obtain the total workload
Wo, given by Wo = W + n¢,O.

QoS is a generic concept, featured by several attributes in
different settings. We consider throughput and cost as suitable
attributes to define QoS. Since D is the maximum job duration
after its computation starts, the application provider guarantees
QoS constraints in terms of a fixed throughput 1/D.

E. Provisioning Scheme

We assume that every hour the application provider can
allocate and deallocate spot or on demand VMs relying on
future spot price predictions and considerations about when
the next checkpoint will be performed. The IaaS provider
implements some auction mechanism for spot VMs. Hence, the
application provider competes for spot resources by submitting
to the IaaS provider a bid, which defines the maximum per VM
price it is willing to pay. Once an application provider submits
a bid and gets a spot resource, it cannot change the bid value
any more and the price will remain fixed, until it drops or
loses the VM. Spot prices are very variable and can be lower
or quite higher than the on demand price for the corresponding
VM size [14]. As a consequence, to get spot VMs could turn
very convenient compared with on demand VMs, or, on the
contrary, it could be really expensive. The application provider
goal is to minimize its costs, while respecting QoS constraints.
Therefore, it has to optimally decide whether to request a spot
or on demand VM and, in case of spot VM, which bid to
submit. In the next section we present the strategy we propose
to undertake such a decision.

IV. BIDDING APPROACH

We model the bidding problem as a Q-Learning problem,
considering the workloads, maximum completion time, last
checkpoint, and past spot prices observed. In the following,
we describe the key elements of the Q-Learning problem.

A. State Space

The state space S is the set of all possible states the ap-
plication provider can go through. Each state s € S takes into



account all information needed to summarize in a consistent
manner the situation that the system is incurring. We model
each state as a 4-ple s = (n,m, 1, &) where:

o nel0, ﬁ) is the amount of computation performed
since last checkpoint;

® T € [Mmin, Tmaz) 1S the last spot price registered;

e 1 € [0,Wp] is the amount of computation time still
needed to complete the task. For example, if W = 5h
and 2 hours have been already executed, 1) = 3h;

e £ €[0,D—Wy] is the slack time in addition to . For
example, if still 2 hours of execution are needed and
the job must be completed within 4 hours, £ = 2h.

B. Actions

Given a state s € S, the set of available actions A(s)
basically depends on the amount of net slack time & — 7,
defined as the slack time minus the amount of computation
performed since the last checkpoint. It can be viewed as a
measure of the urgency in finishing a job. When it drops
to 0, to ensure the QoS constraint the only possible action
Gon_dem 18 to request an on demand VM: the application
provider cannot take the risk of requesting a spot VM and
losing the computation because of a spot price increase, since
it would result in a violation of the QoS constraint. Conversely,
if £ —n > 0 the agent can choose to submit or not a bid
for a spot VM, depending on the expected spot price and the
amount of performed computation from the last checkpoint. If
the application provider decides to submit a bid, it has also to
determine how much to bid. However, Tang et al. [10] proved
it is enough to consider only two choices, that are 0 and the
bid for a spot VM equal to the price of an on demand VM,
corresponding to the maximum amount the agent is willing to
pay (denoted by a@yuax bia)- This is due to the fact the bid is
supposed not to influence the final spot price, either when the
spot price is market-driven (many players take part into the
auction) or not. Moreover, the player actually pays the spot
price and not its bid. Thus, if on the basis of the last spot price
observed, last checkpoint and maximum completion time, the
player wants to get a spot VM, it is enough to bid as much as
a fixed maximum amount.

More formally, given a state s € S, the set of possible
actions A(s) can be defined depending on the slack time as
follows:

e when there is slack time, ie., s is s.t. £ —n > 0,
A(s) = {0,amaz_piay- If a spot VM is already
running, a = 0 corresponds to drop it;

e when the slack time is over, i.e., sis s.t. £ —n =0,
A(S) = {aon_dem}~

To minimize the average job cost while ensuring the minimum
throughput constraint, the agent has to carefully plan its
bidding strategy.

C. Costs

For the application provider, it is critical to complete
the job within D since the job computation started avoiding

violations of this QoS constraint. The focus of the optimization
strategy can be thus put on the VM cost minimization. There-
fore, the application provider goal is to minimize the average
cost per job on the long time, given by the sum of the single
costs 7; paid till the job completion.

When a single action a; consists in requiring an on demand
VM, then the application provider will get the resource and
pay the fixed price J, and one hour of computation will be
executed; obviously, such computation could still be wasted
if no checkpoint will be performed in the meanwhile. On the
contrary, if a; consists in requiring a spot VM and submitting
a bid, then the future evolution will depend on the spot price
6 set by the TaaS provider, i.e., the auctioneer.

Let a; a single bid submitted by the application provider:

e If a; < 64, then no spot VM will be obtained. This
could be yet profitable, and the application provider
could intentionally lose the opportunity to get a VM. It
happens when 6, is likely to be high or not convenient;

e if a; > 6y, then the VM will be obtained, at the price
of 4, instead of a;. One hour of computation will be
executed, but computation could still be wasted if the
VM is terminated before a checkpoint.

D. Action Selection

The bidding mechanism exploits Q-Learning and associates
to each state-action pair a value function @, representing an
approximation of the future costs the application provider will
incur till the job completion. The application provider goal is
to minimize the cost per job: each hour, given the state s, the
best action will be the a’ s.t.

a' = argmin,{Q(s¢,a)} 3)

As explained in Section II, exploitation consists in selecting
a’, while exploration in applying another action independently
on the () minimization argument.

E. State Transitions and Q) Function Update

Let w; = 1 if, through action a, in state s; at time ¢, a VM
has been obtained, 0 otherwise. Let 6, be the spot price set at
time ¢ by the IaaS provider. State s;4; is given by:

Ne1 = we(ne + 1) mod fep

Tt41 = o

Vg1 = P —we +0e(1—wy) = Py — oy + 1 — wy

§r1 =& —(m+1)(1—w) =& +wime — i +wi — %4)

The @ function will be then updated according to Eq. 2.

F. Parallel Loads

Although we introduced the model for a single periodic
job and a single VM, we note that it can be easily extended
to deal with parallelism. Indeed, multiple periodic jobs with
same or different W and D can be executed, still leveraging
on a common () function; the state space dimension is given
by the maximum possible 7,1, and some states are never
explored for certain jobs. Moreover, a number Ny, > 1
of VMs exploited at the same time can be considered: the
action selection criterion does not vary, costs are proportional
to Ny s, times, state transitions and () function are the same.



G. Algorithm Overhead

The proposed Q-learning bidding algorithm can be effi-
ciently implemented. To choose the action, when there is no
margin (i.e., when £ —n = 0) there is no selection since the user
just buys an on demand VM; on the other hand, when £ —7 > 0
the user bids for one spot instance and only needs to compare
Q(St, Amaz_bia) With Q(s¢,0) to find out whether it is better
either to bid the maximum value (@ = @yqz big) OF to nNOt
bid at all (¢ = 0). The state and the Q-functions are updated
via simple algebra according to Equations (4) and (2). The
memory required to store the Q-function is O(]S|x |A|), which
is reasonably small given the time granularity we consider and
does not depend on the number of jobs and VMs. Finally, the
update time is O(1) since only one entry is updated at each
time step.

V. EXPERIMENTAL RESULTS

In this section we investigate through numerical experi-
ments the behavior of the Q-Learning based bidding strategy.
We analyze our strategy against a trace-driven laaS provider
pricing policy, based on spot instance prices of Amazon
EC2. We measure the effectiveness of the proposed bidding
strategy (named Q-L in the following figures) by comparing
its achieved costs with the costs incurred by always blindly
bidding the 100%, 85%, and 75% of the maximum spot price
and paying the current spot price (named Spot100, Spot8S,
Spot75, respectively), and by applying a precautionary policy
(named On demand), which always requests on demand VMs
at a fixed price without participating to the spot auction.
We also compare the Q-L strategy against an offline policy
computed by solving a suitable Markov Decision Process
(MDP) [8] where the underlying Markov process transition
matrix, which captures the price fluctuations over time, is
estimated using past price history; such a comparison makes
it possible to assess Q-L accuracy as well. The MDP can
be solved via standard techniques; the solution is in general
time-consuming and not suitable for an online implementation,
especially in a non stationary environment where the policy
should be recomputed as conditions change over time. As an
additional performance metric, we also analyze the job average
completion time.

We consider an application provider that applies the Q-
Learning bidding strategy, and assume that it executes on a
VM a periodic job, characterized by a fixed workload W
to be completed within a time period of length D. Periodic
job instances are executed one by one, and a new instance
is submitted after the previous one completed. The overhead
for a (checkpoint,resume) pair is given by O = 15min.
It is worth highlighting that, since on demand VMs are
used to ensure timely completion in case of no slack, QoS
constraints are always met (as described in Sec. IV-B). In all
the considered scenarios, in which 500.000 jobs are executed,
we set the same parameters for Q-Learning: o = 0.1, v =1,
and ¢ = 0. The last setting corresponds to no exploration:
since actions for spot VMs are only two and with completely
different effects, exploration does not perform better. Values
for o, <, € were chosen in order to have a good trade-
off between learning effectiveness and convergence speed, as
demonstrated by results we do not include in this paper for
space reasons. Higher values of a give faster adaptation by

assigning a lower weight to history; v < 1 discounts new
values, but is usually less appropriate for finite horizons; a
lower e determines convergence speed. The spot prices set
by the laaS provider are randomly generated according to
price transition probabilities obtained through a real Amazon
EC2 trace, whose values refer to historical data collected from
10/01/2012 to 06/30/2014 for a us-east-m1.large instance [15]
and are in the range [0.016%,5.59]; thus, results are based
on spot prices given by a dynamic, large scale competition.
Furthermore, the cost of on demand VMs per hour is equal
to 0.175$ in all scenarios, i.e., Gmaz_pia = 0.1758. This value
corresponds to the price of an Amazon EC2 us-east-m1.large
instance [16] and is quite lower than spot price spikes. The
player considers 5 price ranges for the last spot price regis-
tered: (0,0.025%], (0.025%,0.05$], (0.05%,0.1%], (0.1$,1.0%],
(1.08, 5.53]. Experiments only focus on a single job since the
same holds when multiple parallel jobs are executed, except
that convergence of the algorithms is faster.

First, we study the performance of the bidding policy for
different deadlines (Scenario A). We set W = 4h and f., =
1/2h, while we consider different values for D: 6h, 9h, 12h.
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QLD Spot100 D=9 Spot75 D=9
Q-L D= Spot100 D=12 22 Spot75 D=12 s
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Figure 1. Scenario A: Average total cost per job

Figure 1 shows the effectiveness of the bidding strategy
in terms of average total cost per job. We observe that the
average costs achieved by Q-L are analogous to those of MDP
and this confirms the effectiveness of the Q-Learning based
strategy. In some cases, Q-L is even more convenient than
MDP: while the latter is computed offline according to an
approximation of spot prices based on the price ranges, the
former considers the actual values collected at runtime. Costs
decrease as D increases, due to a larger slack and a more
relaxed deadline. In addition, costs with Q-L are always far
lower than those incurred with the blind policies. Compared
with the Spot100 policy, we observe a reduction over 35% for
D = 6h, about 200% for D = 9h, about 235% for D = 12h;
values are similar for the Spot85 and Spot75 policies. Given
the On demand policy, results point out costs over 70% lower
for D = 6h, about 280% lower for D = 9h, about 325% lower
for D = 12h. Thus, the higher D, the more the advantage
over blind policies, since the application provider has more
opportunities (i.e., more time) to take advantage of the price
fluctuations and wait for lower spot prices.

Table I shows the average completion times for all policies,
when D varies. When D is higher, completion times increase
accordingly.

Figure 2 shows the fraction of times the different actions



Table 1. SCENARIO A: AVERAGE COMPLETION TIME PER JOB (H)

l | D l
[ Policy || 6h | 9h [ 12h |
Q-Learning 4.7133 5.6927 6.5523

MDP 4.7368 5.1832 5.4237
Spot100 4.500 4.500 4.500
Spot85 4.501 4.503 4.503
Spot75 4.502 4.505 4.506
On demand 4.500 4.500 4.500

are chosen under Q-L. When D is low, due to the strict time
budget, the more likely actions are Gz pid (max bid) and
Gon_dem (On demand). As D increases, the fraction of times
action 0 (corresponding to no bid) is chosen increases, while
the provider decreases the number of times it resorts to on
demand instances. The frequency of the spot action maximum
bid increases at first, when it is preferred to the on demand
action (from D = 6h to D = 9h), but then it diminishes as
the no bid action becomes more convenient due to the looser
deadline (from D = 9h to D = 12h).
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Figure 2.  Scenario A: Fraction of times actions no bid (0), max bid, on

demand are taken

Finally, Fig. 3 shows the convergence of the Q-Learning
average cost for the different deadlines.

D=6 —— D=9 -—---- D=12 --------
0.6 T T T T T T T
& 055 | 1
.-?l 0.5 | B
5 0457
= 04
1%}
g 035
:‘%‘, 0.3
5 025
015 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000
# jobs completed
Figure 3. Scenario A: Q-Learning convergence

We now turn our attention to checkpoint frequencies
(Scenario B): given W = 6h and D = 10h, we consider
different checkpoint frequency values f.,: 1/1h, 1/2h, 1/3h.
The overhead for a (checkpoint,resume) pair is fixed and

Table II. SCENARIO B: AVERAGE COMPLETION TIME PER JOB (H)

l | Jep l

[ Policy [ 1/h ] 1/2h [ 1/3h |
Q-Learning [[ 8.6325 [ 82451 | 7.6416
MDP 8.2785 | 7.9456 | 7.4933
Spot100 7.750 6.750 6.500
Spot85 7.753 6.754 6.504
Spot75 7.754 6.754 6.507
On demand 7.750 6.750 6.500

equal to O = 15min. Figure 4 shows the effectiveness of

the bidding strategy in terms of average total cost per job. As
in Scenario A, the average costs obtained online by Q-L are
analogous to those of MDP, which is based on an a priori
knowledge. The lower costs obtained via Q-L (and MDP as
well) are those with f., = 1/2h. Indeed, when f., = 1/h,
owing to the checkpoint-resume overhead O = 15min, the
total workload Wy grows, and more computation is required.
On the other hand, when f., = 1/3h, although the overall
checkpoint overhead is lower, the application provider is more
likely to have to repeat already executed computations that
were not checkpointed. In all cases, costs are quite lower than
those given by the Spot and the On demand policies. Compared
with the Spot100, Spot85 and Spot75 policies, we observe a
reduction over 155% for f., = 1/1h and f., = 1/2h, and
over 140% for f., = 1/3h. Given the On demand policy,
results reveal costs over 220% lower for f., = 1/1h and
fep = 1/2h, and about 200% lower for f., = 1/3h. Thus,
Q-L is more advantageous when checkpoints are performed
every hour and every 2 hours, while, when f., = 1/3h its
effectiveness is lower, although still significant, because of
time spanning between two checkpoints.
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Figure 4. Scenario B: Average total cost per job

Table II reports the average completion times for the
bidding strategies at different checkpoint frequencies. As ex-
pected, the completion times are lower when checkpointing is
executed less frequently.

Figure 5 shows the fraction of times each action was
chosen. In this scenario, due to the reduced slack D — Wy, in
order to meet the QoS constraint, the provider is more likely to
request an on demand instance or to bid a price equal to that of
an on demand VM than in other scenarios. The minimum cost
is incurred for f., = 1/2h, corresponding to the case where
the fraction of time the bid is O attains its maximum.

Figure 6 shows the Q-L average cost convergence for the
three checkpoint frequencies.
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Figure 6. Scenario B: Q-L convergence

As final scenario, we consider different values of the
workload (Scenario C) with W = 4h, Th, 10h, fixed D = 14h
and f., = 1/2h. As Figures 7, 8, and 9 and Table III show,
when W increases, the slack is reduced and the behavior is
similar to the previously presented scenario, where W is fixed
and D is instead reduced.
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Figure 7. Scenario C: Average total cost per job

VI. RELATED WORK

A considerable number of research efforts have recently
focused on spot instances provisioning and pricing.

Tang et al. [10] proposed a set of bidding strategies, formu-
lating the problem as a Constrained Markov Decision Process
(CMDP), but differently from us they considered constraints on

Table III. SCENARIO C: AVERAGE COMPLETION TIME PER JOB (H)

l | w l
[ Policy [ 4n T 7n [ 10 |
Q-Learning 9.4491 9.5874 11.9923
MDP 5.4524 9.3889 11.9775
Spot100 4.500 7.750 11.250
Spot85 4.505 7.758 11.255
Spot75 4.508 7.776 11.257
On demand 4.500 7.750 11.250
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Figure 8.  Scenario C: Fraction of times actions no bid (0), max bid, on

demand are taken

the average completion time. As in our paper, they considered
a dual-option spot strategy: bidding the maximum spot price
or bidding zero dollars (give up). Nevertheless, in our paper
we bid the on demand price, that can be much lower than
the maximum spot price. This leads to a different model and
solution technique. Moreover, we apply Q-Learning and thus
transition probabilities between states are not necessary.

Song et al. [17] investigated the problem of designing
a bidding strategy from a Cloud service broker perspective,
applying a profit-aware dynamic bidding. However, they did
not consider checkpointing and their model requires spot price
history data in order to reconstruct the semi-Markovian chain
at the basis of the profit maximization problem.

Menache et al. [18] proposed a machine learning-based
algorithm, addressing the trade-off between cost and perfor-
mance, and between on demand and spot VMs usage. They did
not consider checkpointing, while we do; moreover, the same
policy is used for an entire job, and values are updated only
when the job ends. Finally, the bid for spot VMs is either fixed
or set as the weighted average of past spot prices plus a safety
parameter, i.e., it is not given by an optimization problem.

Poola et al. [19] presented a job scheduling algorithm on
Cloud resources, using, as in our paper, two different pricing
models (spot and on demand) and aiming at reducing the exe-
cution cost whilst meeting the workflow deadline. Differently
from our work, a bid failure probability is considered, based
on one month prior to the start of the execution and the spot
prices until the point of estimation are used. Moreover, bid
values increase gradually with the workflow execution as the
deadline becomes closer.

Zafer et al. [20], as in our paper, modeled a job as a fixed
computation request with a deadline constraint and designed a
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Figure 9. Scenario C: Q-L convergence

bidding policy minimizing the average cost per job. In contrast
with our work, they obtained analytical and closed-form results
under a Markov spot price evolution, i.e., their policy needs
the spot price history and a training phase. Moreover, they
assumed that at the slot boundaries the VM image can be
stored and reloaded for subsequent computations utilizing
Cloud storage, with no checkpointing.

Yi et al. [13] studied how checkpointing can be used to
minimize cost and volatility of resource provisioning and com-
pared various policies. They focused more on checkpointing
and less on the bidding strategy than our work.

Chohan et al [21] described how to improve the runtime
of MapReduce workflows by using Amazon EC2 spot in-
stances; however, they neither consider deadline constraints nor
checkpointing. Moreover, they studied the job performance as
function of a constant bid using real traces, hence there is no
learning of an optimal dynamic user strategy at runtime.

Voorsluys and Buyya [12] presented a resource alloca-
tion strategy that addresses the problem of running compute-
intensive jobs on a pool of intermittent VMs, and also employs
price and runtime estimation mechanisms, as well as fault-
tolerance techniques. As in our work, the maximum spot bid
is set to the on demand price. Differently, Reinforcement
Learning is not exploited, and the spot price history is fed
to the bidding strategy before it starts.

Q-Learning has been widely used in the literature [22],
[23], [24], [25], [26], [27] but, to the best of our knowledge,
it has never been applied to Cloud resource allocation.

VII. CONCLUSIONS

In this paper we addressed the problem of an application
provider that executes batch jobs and needs to ensure a mini-
mum throughput to guarantee QoS levels to its users. To this
end, the provider uses the spot and on demand VMs offered
by an laaS provider. We proposed a bidding strategy based
on a Q-learning approach focusing on workload, maximum
completion time, last checkpoint and past observed spot prices.
We addressed the fulfillment of a minimum throughput as
crucial QoS constraint, and evaluated the proposed bidding
strategy under different scenarios and real spot price traces.
Our experimental results prove the ability of the application
provider to refine its behavior round by round and to determine

the best action in order to maximize its revenues and minimize
the average cost per job.

In future work we will study how bidding policies change
when considering variable workloads and completion con-
straints, longer scenarios, more providers, different check-
pointing techniques, and alternative SLA and cost models,
in which a degree of urgency can be specified for a job.
Furthermore, we plan to explore robust MDP techniques along
with reinforcement learning to increase the robustness of our
approach to abrupt environment changes.
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