Making MPLS VPNs Manageable
through the Adoption of SDN

Gabriele Lospoto*, Massimo Rimondini*, Benedetto Gabriele Vignoli’ and Giuseppe Di Battista*
Roma Tre University
*{lospoto, rimondin,gdb}@dia.uniroma3.it Tgabriele .vignoli@yahoo.it

Abstract—Virtual Private Networks (VPNs) implemented by
Multi Protocol Label Switching (MPLS) tunnels appear in the
service offer of many Internet Service Providers (ISPs). Due to the
number of technologies that they involve and to the intricacy of
their interactions, provisioning, setup, and maintenance of VPNs
is a cumbersome task, whose complexity is usually mitigated by
using advanced network management systems.

We cut these difficulties at their roots by taking advantage of
Software Defined Networking (SDN). We showcase the design and
a prototype implementation of an SDN controller that, starting
from a centralized specification of VPN settings expressed in a
high-level simple and flexible language, automatically fills flow
tables to implement the requested VPNs. Our implementation of
VPNs with SDN promptly reacts to network dynamics (e.g., newly
appeared links) and simplifies management a lot by dropping
many unneeded technologies.

I. OVERVIEW AND RELATED WORK

Virtual Private Networks (VPNs) are pervasively used to
interconnect geographically sparse sites of an organization.
Most Internet Service Providers (ISPs) use Multi Protocol
Label Switching (MPLS) as the underlying technology to offer
VPN services on a medium and large scale. Despite the long-
term consolidated architecture that MPLS VPNs are based on
(for a comprehensive illustration see [1], [2]), their manage-
ment raised concerns since early deployments (see, e.g., [3]),
and their provisioning, configuration, and maintenance are
difficult and error-prone even nowadays. The main reason is
that MPLS VPNs rely on a combination of many networking
technologies, whose interplay is hard to predict and control.
ISPs commonly resort to technologies (e.g., NETCONF) and
tools (e.g., [4]) that help automate management and cope with
these difficulties, but a true understanding of the underlying
mechanics is still a time-consuming and laborious task.

Software Defined Networking (SDN) [5], the recently
advocated separation between the software that implements
the control plane logic of a device and the hardware that
accomplishes packet forwarding, offers an effective abstraction
that supports designing network services with greatly increased
flexibility. Taking advantage of this, we overhauled the current
architecture of MPLS VPNs to reimplement them with SDN-
capable devices. We first of all designed a simple and flexible
configuration language for a high-level specification of VPN
settings: it does not involve technical details such as peerings,
areas, tunnels, etc., but rather addresses context-specific con-
cepts such as customer sites, VPNs, edge (PE) and core (P)
routers, as well as NAT address translation rules. The language
finds its natural application in SDN, which enables a central
specification of VPNs with little effort. We then dropped many

________________ |

|
VPN } Topology
specifications | Parser { Reconstructor
|
VPN SDN |

ControllerI

[P Nodes] [PE Nodes] [NAT Nodes]

Fig. 1. Architecture of our prototype OpenFlow SDN controller.

technologies that are no longer needed with SDN (e.g., MP-
BGP, OSPF, LDP, even label switching), retaining only those
that are really essential for the operation of VPNs (notably,
MPLS). Finally, we designed an OpenFlow SDN controller
that, starting from a file of VPN specifications expressed using
our language, installs entries in the flow tables of datapaths to
implement the requested scenario. We argue that the simpli-
fication of eliminating most traditional VPN technologies far
exceeds the overhead of deploying an SDN controller.

We are aware of extremely few alternative SDN-based ap-
proaches for implementing MPLS VPNs. The most promising
one, illustrated in [6], mainly focuses on traffic engineering
aspects, lacks a rigorous description of SDN-related technical
aspects, and is rather bound to the traditional way of oper-
ating MPLS VPNs, thus failing to address the configuration
complexity problem. We therefore showcase a prototype SDN-
based MPLS VPN implementation that has the following
advantages: it starts from a set of simple and centrally specified
VPN configurations, thus improving manageability; it reduces
required technologies to a bare minimum (essentially, just
MPLS), thus making network behaviors more predictable and
simplifying troubleshooting; it takes advantage of the flexi-
bility of SDN, so that each datapath can be repurposed to
function as a PE router, a P router, or a NAT box without costly
hardware replacements. Fault tolerance, a possible concern
implied by the use of a centralized controller, can be ensured
by using existing approaches (see, e.g., [7]).

For a complete illustration of the design of our SDN
controller and of the VPN configuration language, see [8].

II. ARCHITECTURE AND DEMO SETUP

We implemented a prototype OpenFlow SDN controller for
MPLS VPNs based on the comprehensive Ryu' framework,
following the architecture in Figure 1. The controller consists
of several components that operate in synergy to keep an

http://osrg.github.io/ryu/

<vpns>

<datapath name="p_nodel" dpid="1" />

<datapath name="p_node2" dpid="2" />

<datapath name="p_node3" dpid="3" />

<datapath name="p_noded4" dpid="4" />

<datapath name="p_node5" dpid="5" />

<datapath name="pe_milan" dpid="6" />

<datapath name="pe_rome" dpid="7" />

<datapath name="nat_node" dpid="8" />

<vpn name="example-vpn">
<network subnet="10.0.0.0/24" pe="pe_rome"

port="eth2" nat="nat_node" />
<network subnet="10.0.1.0/24" pe="pe_milan"
port="ethl" nat="" />

</vpn>

<nat name="nat_node" port="eth2">
<mapping vpn="example-vpn" pe="pe_rome" type="static">

<rule ip="10.0.0.1" gr="193.204.161.4" />

</mapping>

</nat>

</vpns>

Fig. 2. Example of VPN settings expressed in our configuration language.

internal representation of the network (the VPN model) up
to date. A Topology Reconstructor takes advantage of an
API offered by Ryu to continuously exchange information
with each datapath in order to maintain a complete map
of the network topology. This map is augmented with VPN
configuration information (e.g., customer site connections, the
desired routing policies, etc.) that a Parser retrieves from a
specification written in a simple XML-based language. The
best paths from a PE router to another are determined by
a Routing module based on user-specified routing policies
(e.g., shortest path, TE-based policies, etc.) As the VPN model
is updated, its contents are translated into OpenFlow match-
action entries that a Rule Installer component deploys in the
flow tables of each datapath. These entries instruct the datapath
to push/pop MPLS labels, as well as manipulate and forward
packets based on its role of P router, PE router, or NAT.
Network dynamics are also supported: a change in the network
topology induces a recomputation of routing paths and a quick
refresh of the flow entries installed in the datapaths.

Figure 2 shows a sample specification of VPN settings
expressed in the configuration language supported by our
prototype SDN controller: after assigning mnemonic names
to datapaths (p_nodel, pe_milan, etc.), it defines a single
VPN by specifying the participating customer sites and the
PE router ports they are attached to. It also specifies that a
PE router (pe_rome) should mask a private IP address by
mapping it to a public one (note that other mapping options
are available besides this static mapping).

We demonstrate the operation of our controller in the
Mininet?> network emulation environment, which in turn is
powered by Open vSwitch?, an advanced implementation of
an OpenFlow SDN datapath that is also adopted on a range
of hardware devices. The scenarios we plan to consider range
from simple topologies with a single VPN, useful to observe
and understand the installed flow entries in detail, to complex
setups derived from the topologies available at [9].

Our prototype SDN controller, which is publicly available
for download at [10], implements all the components described
at the beginning of this section with a few minor technical
limitations: at present only shortest path routing is supported;
the configuration language is a simplified version of the one

2http://mininet.org/
3http://openvswitch.org/

described in [8] (notably, only a single subnet can be specified
for each customer site); flow tables are completely cleared and
repopulated when a change of the routing paths occurs; finally,
the VPN specification file is not watched for changes, which
cannot therefore be deployed on-the-fly. All these limitations
are implementation-specific and have negligible impact on the
effectiveness of the demonstration.

III. CHALLENGES

Deployment of our MPLS VPN controller only requires
OpenFlow datapaths that can handle MPLS labels as per the
OpenFlow 1.1 specification (released in February 2011). We
tested a range of device models produced by different vendors,
finding that a good fraction provides this support, and we
reasonably expect this fraction to increase over time.

During our experiments we also impacted several technical
issues that deserve further investigation. Some of them (e.g.,
maximum size of an MPLS label stack, low switching perfor-
mance) are specific of Open vSwitch and are no longer relevant
if datapaths are hardware devices. Others, such as the maxi-
mum capacity of flow tables, are inherent in any realization of
the SDN architecture, but vendors are progressively adopting
components that overcome these limits*. Unfortunately, certain
issues are hard to address. For example, matching on the IP
header of an MPLS-encapsulated packet is necessary to deliver
packets to the correct customer site of a VPN (based on the
destination subnet), but is hard to achieve in current datapath
implementations: as a workaround, in our prototype we used
VLAN tags as VPN identifiers in place of MPLS labels.

ACKNOWLEDGMENTS

We would like to thank Unidata S.p.A. for allowing us to
perform extensive tests on a range of SDN-capable hardware.

REFERENCES

[1] L. Cittadini, G. Di Battista, and M. Patrignani, “MPLS virtual private
networks,” in Recent Advances in Networking, Volume 1, ser. ACM
SIGCOMM eBook, H. Haddadi and O. Bonaventure, Eds. = ACM,
2013, pp. 275-304.

[2] E. Rosen and Y. Rekhter, “BGP/MPLS IP Virtual Private Networks
(VPNs),” RFC 4364, Internet Engineering Task Force, Feb. 2006.

[3] G. Huston, “MPLS - Is the emperor clothed?” ISP Column, Oct 2001.
[4] Hewlett-Packard, “Intelligent Management Center - MPLS
VPN Manager Software,” Jan 2015. [Online]. Avail-

able: http://h17007.www 1.hp.com/us/en/networking/products/network-
management/IMC_MPLS_VPN_Software/index.aspx

[5] D. Kreutz, F. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” vol. 103, no. 1, Dec 2014.

[6] A.R. Sharafat, S. Das, G. Parulkar, and N. McKeown, “MPLS-TE and
MPLS VPNS with OpenFlow,” SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 452-453, 2011.

[7]1 F A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, “On the
feasibility of a consistent and fault-tolerant data store for SDNs,” 2013.

[8] G. Lospoto, M. Rimondini, G. Vignoli, and G. Di Battista, “Rethinking
virtual private networks in the software-defined era,” in Proc. IM, 2015.

[9] University of Adelaide, “The Internet topology zoo,” Jan 2015.
[Online]. Available: http://www.topology-zoo.org/

[10] Roma Tre University — Computer Networks Research Group,
“Software Defined Networking,” Jan 2015. [Online]. Available:
http://www.dia.uniroma3.it/ compunet/www/view/topic.php?id=sdn

4See, e.g., http://www.corsa.com/products/dp6420/

