
HyperFlex: Demonstrating Control-plane Isolation
for Virtual Software-Defined Networks

Arsany Basta, Andreas Blenk, Yu-Ting Lai, Wolfgang Kellerer
Chair of Communication Networks

Department of Electrical and Computer Engineering
Technische Universität München, Germany

Email: {arsany.basta,andreas.blenk,yuting.lai@tum.de,wolfgang.kellerer}@tum.de

Abstract—We present a demonstration of HyperFlex [1], a
Software-Defined Networking (SDN) virtualization architecture
with flexible hypervisor function allocation guaranteeing control-
plane virtualization. Network Virtualization (NV) is expected to
overcome the ossification of today’s communication networks.
SDN is seen as an enabler for programmable network control.
In order to fully virtualize software-defined networks, not only
the virtualization of the data-plane, but also the virtualiza-
tion of the control-plane has to be considered. HyperFlex is
a virtualization hypervisor that ensures isolated control-plane
slices for virtual SDN networks. Control-plane isolation also
protects the hypervisor resources from exhaustion. Furthermore,
virtualization hypervisors have to be scalable and flexible in order
to provide the best possible performance for the virtual software-
defined networks. They should be able to adapt to the current
state of the network and the divergent demands of virtual SDN
networks. HyperFlex distributes the hypervisor functions flexibly
and dynamically in order to adapt to the current network state.

I. INTRODUCTION

Network Virtualization allows multiple network providers
to run virtual networks on a shared physical network simul-
taneously. In case of virtual Software-Defined Networks (vS-
DNs), the virtual network operators gain the ability to run their
own SDN controller. Each vSDN controller is able to make
steering decisions for the network traffic independently. Thus,
virtual network operators can tailor the use of network re-
sources in a fine-granular manner according to their demands.
This is expected to increase network resource efficiency, thus
overcome the ossification of today’s networks [2].

An SDN hypervisor realizes the abstraction of the physical
network to virtual networks, i.e, data-plane virtualization, and
the control interface to each virtual SDN controller, i.e.,
control-plane virtualization. As the hypervisor is logically
placed between the virtual SDN controllers and the vSDNs, the
hypervisor performance can influence the operation of vSDNs.
While existing research work mostly focuses on data-plane
virtualization, concepts for control-plane virtualization have
been neglected [3]. However, control-plane virtualization con-
cepts are necessary to achieve high performance for vSDNs. It
has already been shown for SDN networks that performance
degradation on the control-plane impacts the performance of
the data-plane [4]. For example, in case of a virtual network
serving web-browsing sessions, high latency for flow-rule
installations increases necessary DNS resolutions. This directly
leads to longer page load times, which means a decrease in
performance on the data-plane.

In order to tackle these issues, we propose an SDN vir-
tualization architecture, namely HyperFlex, based on flexible
hypervisor function allocation that aims at control-plane virtu-
alization [1]. HyperFlex’s functions’ realization and placement
adapt to the data-plane and control-plane performance of the
target platform. We demonstrate the flexible hypervisor func-
tion allocation on the example of control-plane virtualization.

II. HYPERFLEX CONCEPTS

1) Hypervisor Function Decomposition: The first main
concept relies on the decomposition of the hypervisor virtu-
alization functions required to realize vSDNs. This approach
of function decomposition is seen to be more optimal in
terms of resource efficiency. If a distributed hypervisor layer is
needed, individual virtualization functions could be distributed
such that a tailored virtualization layer is achieved instead of
duplicating the whole hypervisor instance along the network.

2) Platform Independence; Flexible Function Allocation:
The second main concept is the hosting platform of the
SDN hypervisor layer. The hypervisor functions are mostly
realized by software hosted on servers. HyperFlex additionally
hosts hypervisor functions on SDN network elements that
interconnect hypervisor servers with vSDN controllers or the
physical network, which we call the hypervisor SDN network.
HyperFlex uses all available processing functions, e.g., traffic
shapers or packet inspection, of the hypervisor SDN network
elements to execute hypervisor functions. Thus, the virtualiza-
tion layer can be spanned across multiple platforms, i.e., hard-
ware servers and network elements. The hypervisor network
is operated and controlled by a hypervisor SDN controller.
The proposed architecture can flexibly allocate virtualization
functions, on a per-function basis, among servers and SDN
network elements of the hypervisor network.

3) Control-plane Virtualization: In virtualized SDN net-
works, the control-plane is shared among multiple vSDN
controllers. Providing isolated slices on the SDN control-plane
resources, including the hypervisor, is the third main concept
of HyperFlex. This guarantees that the performance of a vSDN
controller is not influenced by other vSDN controllers.

III. HYPERFLEX SETUP

We demonstrate a prototype implementation and setup for
our proposed HyperFlex architecture shown in Figure 1. We
assume a scenario where two vSDNs are deployed through
HyperFlex. We show the flexible hypervisor function allocation



 SDN 
OVS

u

vSDN 2 
Controller

OFTest

Ryu 
Hypervisor
Controller

rules

policies

OF rules, policies 

OF_FEAT_REQUEST

vSDN 1 
Controller Virtual SDN 

Controllers

Control-plane
 Isolation Module

Hypervisor 
Network

Hypervisor 
Software

Physical SDN 
Network

vSDN1 users Webserver

policerpolicer

CPU

Benchmark
and 

Monitor

SDN 
OVS

Ryu

isolation option

isolation option

u u

c

u u

c

e.g. FlowVisor

OF_FEAT_REPLYPCKT_IN
web page 

load latency

OF control 
latency

PCKT_OUT

OF_FLOW_MOD

Hypervisor Modules

Fig. 1: HyperFlex Demonstration Setup

by adapting the control-plane isolation function according to
the monitored hypervisor performance.

The setup can be classified into four different blocks. The
virtual SDN controllers form the first block. We use Ryu [5], a
python OpenFlow (OF) controller, to handle the flow setup for
the users of vSDN1. OFTest [6], a test suite framework for OF
switches, is used as the vSDN2 controller. OFTest is extended
to generate an average sustainable rate of OF messages to test
the hypervisor performance and control-plane virtualization.

The second setup block is the hypervisor software, where
currently FlowVisor is installed to realize the core hypervisor
functions, e.g., vSDN abstraction or OF message translation.
We plan to develop our own hypervisor functions as future
work. A software module is implemented to enforce control-
plane traffic shaping prior to hypervisor processing. Shaping
policies can be defined as OF message rate, packet rate
or bitrate for each vSDN. Ryu is initialized to control the
hypervisor network and to setup the control-plane isolation
function, when triggered, on the hypervisor network elements.
For benchmark and monitoring, a software module has been
implemented to monitor the CPU utilization of FlowVisor’s
process. The observed CPU values are fed into the control-
plane isolation software module, or alternatively, based on pre-
defined threshold, the Ryu hypervisor controller is prompted
to start the isolation function on the hypervisor network.

The third setup block is the hypervisor network realized by
an OF Open vSwitch (OVS) [7]. OVS provides the capability
to install rate limiting policies on the ingress ports. We use
ingress policing to limit the control-plane flow towards the
hypervisor to realize control-plane isolation. The physical
SDN network is realized as an OVS controlled by FlowVisor.
Finally, several users are started to measure data-plane perfor-
mance, e.g., web page load latency for browsing application.

IV. SCENARIO AND USE-CASES

For demonstrating HyperFlex’s control-plane virtualiza-
tion and flexble function allocation, the following scenario
is considered. Users connect to vSDN1, run a browsing
application and request a web page. The new flows need
to be setup by vSDN1 controller through flow rules, i.e.,
OF FLOW MOD. Meanwhile, vSDN2 controller generates
OF FEAT REQUEST messages to its vSDN and waits for
OF FEAT REPLY messages, thus creating cross traffic on
the shared control-plane and load on the shared hypervi-
sor CPU resources. The data-plane performance is observed
through the web page load latency for the users of vSDN1,
while the control-plane performance is measured by the
OF FEAT REPLY latency. The demonstrated use-cases are:

(a) Hypervisor CPU under-utilization: In this case, the
hypervisor is able to handle control-plane traffic from both
vSDN1 and vSDN2. This case is used as a reference to monitor
the CPU utilization, data and control-plane latency.

(b) Hypervisor CPU over-utilization: This use-case can
be triggered by generating OF FEAT REQUEST messages
from vSDN2 at a high rate such that the hypervisor’s CPU is
overutilized. We show the performance degradation, in terms
of latency compared to the reference underutilized case, for
both data-plane, i.e., vSDN1 users, as well as control-plane,
i.e., vSDN2 controller. This means that the action of vSDN2
controller influences the performance of vSDN1, which is
unfair and should be avoided.

(c) Hypervisor Software Isolation: This corresponds to
activating the control-plane isolation module at the hypervisor
software. Control-plane shares are defined for each vSDN, e.g.,
50% each. vSDN2 attempts to exceed its control-plane share
with OF FEAT REQUEST messages. Having hypervisor soft-
ware isolation, vSDN2 experiences high control-plane latency
overhead, as in over-utilization, due to exceeding its control-
plane share. The page load latency for the users of vSDN1
can be improved only if enough CPU is available for the
additional processing of the isolation module at the hypervisor.
Otherwise, the same data-plane latency for vSDN1 users as in
over-utilization can be noted.

(d) Hypervisor Network Isolation: The page load latency
is shown to be comparable to the reference underutilized case.
This means that the control-plane is fully isolated and the cross
influence between the vSDNs is evaded.

REFERENCES

[1] A. Blenk, A. Basta, and W. Kellerer, “Hyperflex: An sdn virtualization
architecture with flexible hypervisor function allocation,” in IFIP/IEEE
IM, 2015.

[2] T. Anderson, L. Peterson et al., “Overcoming the internet impasse
through virtualization,” Computer, vol. 38, no. 4, pp. 34–41, Apr. 2005.

[3] R. Sherwood, J. Naous et al., “Carving research slices out of your
production networks with OpenFlow,” ACM SIGCOMM Computer Com-
munication Review, vol. 40, no. 1, p. 129, Jan. 2010.

[4] A. Tootoonchian and Y. Ganjali, “Hyperflow : A distributed control plane
for openflow,” in Proc. NSDI INM/WREN, 2010.

[5] “Ryu SDN Framework.” [Online]. Available: http://osrg.github.io/ryu/
[6] “OFTest.” [Online]. Available: https://github.com/floodlight/oftest
[7] “Open vSwitch (OVS).” [Online]. Available: http://openvswitch.org/


