
Resource Allocation and Management in Cloud

Computing

Amir Nahir

Department of Computer Science

Technion, Israel Institute of Technology

Haifa 32000, Israel

Email: nahira@cs.technion.ac.il

Ariel Orda

Department of Electrical Engineering

Technion, Israel Institute of Technology

Haifa 32000, Israel

Email: ariel@ee.technion.ac.il

Danny Raz

Department of Computer Science

Technion, Israel Institute of Technology

Haifa 32000, Israel

Email: danny@cs.technion.ac.il

Abstract—Resource allocation and management in Cloud
Computing is a very complex task. This is mainly due to the scale
of the cloud and the number of services deployed in it. Since cloud
users and service providers are given access to supercomputer-
level resources, their effect over the cloud’s overall performance is
greater than ever. This raises multiple research questions related
to the management and performance of cloud computing systems
in light of the end-users selfishness. In this work we specifically
study the overall performance when selfish service providers may
split work between the (shared) cloud and private resources. The
size of modern data center and the number of service housed in it
calls for fully distributed management solutions. We propose task
assignment policies that are specifically adequate for large-scale
distributed systems, and show that they provide new capabilities
in improving system performance. In particular, we develop new
resource allocation algorithms that converge to a working point
that balances the end-user experience with the operational costs
of leasing resources from the cloud provider.

I. INTRODUCTION

Cloud computing is a new and emerging paradigm in
which jobs are processed by several services deployed on a
set of distributed servers and accessed via a common network.
This network of servers and devices, collectively known as
the cloud, can offer a significant reduction in computing and
storage costs due to economy of scale. In fact, computing at
the scale of the cloud allows users to reach into the cloud for
resources as they need them, and to attain supercomputer-level
power using any standard client with network connectivity.

The Cloud Computing paradigm is based on three fun-
damental types of entities: the cloud provider, the service
provider and the end user. The cloud provider owns and
manages the infrastructure, constructed in form of large scale
data centers. The service provider deploys its service in the
data center, and the end user accesses it to have its jobs
processed. Many end users may access a single service, and
many services can be deployed in the same data center.

The scale of data centers, coupled with the self-optimizing
nature of the different services deployed in them, prohibits
central coordination and brings about many challenges in
the realm of resource allocation and management. In this
thesis [13] we investigate several problems in this domain1.

We consider the case where service providers (SPs) may
split their incoming traffic between privately-owned resources

1The results of our research have been published in [10], [11], [14], [16]–
[18]

and the cloud (this approach is termed workload factoring [7],
[24]). Unlike the private resource, which provides guaranteed
performance, the performance of the shared resource is highly
dependent on the usage pattern of other users (SPs), which
in turn influences a user’s decision if and to what extent to
make use of the shared resource. The intrinsic relation between
the utility that a user perceives from the shared resource and
the usage pattern followed by other users gives rise to a non-
cooperative game, which we model and investigate.

With the growth in adoption of the Cloud Computing
paradigm, more and more SPs choose to completely give up
keeping any significant private computational resource. In such
a setup, SPs no longer split their job between a private and a
shared resource they send the entire job for processing in the
cloud. Consequently, the service’s performance is completely
dependent on the performance of the cloud. Once a job is
sent to the cloud, the scheduler’s assignment of the user’s
job to the specific processing server (resource) may have
crucial implications on the quality of the service provided to
the user. Furthermore, existing schedulers often incur a high
communication overhead when collecting the data required to
make scheduling decisions, hence delaying job requests on
their way to the processing servers.

We propose a novel scheme that incurs no communication
overhead between the users and the servers upon job arrival,
thus removing any scheduling overhead from the job’s critical
path. Our approach is based on creating several replicas of
each job and sending each replica to a different server. Upon
the arrival of a replica to the head of the queue at its server,
the latter signals the servers holding replicas of that job, so as
to remove them from their queues. We show, through analysis
and simulations, that this scheme significantly improves the
expected queuing overhead over traditional schemes under
various load conditions and different job length distributions.
In addition, we show that our scheme remains efficient even
when the inter-server signal propagation delay is significant
(relative to the jobs execution time). We provide a heuristic
solution to the performance degradation that occurs in such
cases and show, by simulations, that it efficiently mitigates the
detrimental effect of propagation delays.

A key feature that makes cloud computing attractive to
service providers is elasticity, i.e., the ability to dynamically
change the amount of allocated resources. This is typically
done by adjusting the number of virtual machines (VMs)
running a service based on the current demand for that service.

978-3-901882-76-0 @2015 IFIP 1078



2

For large scale services, centralized management is impractical
and distributed methods are required. In such settings, no
single component has full information on demand and service
quality, thus elasticity becomes a real challenge. We address
this challenge by proposing a novel elasticity scheme that
enables fully distributed management of large cloud services.
Our scheme is based on two main components, namely, a task
assignment policy and a VM management policy. The task
assignment policy strives to “pack” VMs while maintaining
SLA requirements. The VM management policy is based on
local activation of new VMs and self-deactivation of VMs
that are idle for some duration of time. Through analysis,
simulations and an implementation, we demonstrate that our
scheme quickly adapts to changes in job arrival rates and
minimizes the number of active VMs so as to reduce the
operational costs of the service, while adhering to strict SLA
requirements

A. Research Questions

This thesis [13] addresses issues in the realm of large scale
distributed Cloud-based services. Specifically:

1) How would service providers partition their load
between a privately owned resource and the cloud
in a non-cooperative setup?

2) Can the management overhead of data center task
schedulers be reduced to allow scalability?

3) Can a scalable distributed cloud elasticity scheme
balance service performance with operational costs?

B. Contribution

The main contributions of our research are as follows.

1) Formal modeling and analysis of the Workload Fac-
toring problem as a noncooperative game. We estab-
lish the existence and uniqueness of the game’s Nash
equilibrium, analyze the game’s Price of Anarchy,
and investigate some practical implications of our
formal model.

2) A novel, replication-based, load balancing scheme.
We analyze the proposed scheme for the case of
Poisson distributed job arrivals and exponentially
distributed job lengths, and conduct a comprehen-
sive study comparing the proposed scheme to the
Supermarket Model under several different load pat-
terns. We further propose a heuristic that assists in
improving the performance of replication-based load
balancing in face of moderate signal propagation
delay.

3) A fully distributed scheme for elasticity of large scale
cloud-based services, decoupling the task assignment
policy from the VM management policy. We evaluate
the proposed scheme using a variety of load patterns.
Our evaluation is based on simulations and an imple-
mentation, the latter in the framework of Amazon’s
EC2 (emulating a real-life commercial environment).

An additional contribution of this thesis, published in [10],
[14], addresses the structure of networks arising in a nonco-
operative setup.

The rest of this paper is organized as follows. In Sec-
tion II we formulate and study the workload factoring problem
using game theory. Next, in Section III we propose using
job replication as a scalable method for job scheduling. In
Section IV we propose a novel method for managing elasticity
in a fully distributed fashion. Section V concludes this paper.
The complete thesis can be found in [13]. The results of our
research have been published in [10]–[12], [14], [16]–[18].

II. WORKLOAD FACTORING WITH THE CLOUD – A GAME

THEORETIC PERSPECTIVE

Contention among users utilizing a single shared resource
arises in multiple contexts of computing and computer commu-
nications. This contention may also occur when different users
make use of a public cloud [5], [19]. Cloud users are granted
access to a virtual machine, but eventually share the cloud
provider’s physical resources. As part of our research, we have
conducted a set of experiments corroborating this claim [15].

We consider a setup where each service provider can use
the cloud as well as a private resource in order to service some
user request. Each service provider needs to decide how to split
its job between the cloud and the private resource, such that
the job’s completion time would be minimized. Since a private
resource can only be used by its owner, it provides guaranteed
performance, i.e., it does not depend on the decisions nor
job patterns of other service providers; the cloud, on the
other hand, constitutes a more powerful infrastructure, yet
its performance does depend on the loads presented by other
service providers.

Since service providers can be expected to make deci-
sions in a self-optimizing (selfish) manner, we face a non-
cooperative game, whose investigation is the subject of this
study.

We consider N players, each of which is a service provider
that has a job that requires processing. Player strategies are the
choice of the fraction of the job that will be processed by the
cloud. We denote player i’s strategy by σi. The strategy profile
of all players is denoted by σ. The goal of each player is to
minimize the expected completion time of its job.

Each player i is characterized by the size of its job, denoted
by ωi. Each player has its private resource, whose performance
is manifested by a delay (e.g., computation time) function
Li(·). We assume that Li(·) is strictly increasing in the amount
of work (i.e., strictly decreasing in σi). In addition, we assume
that Li(1) = 0, i.e., if player i submits its entire job for
processing by the cloud, the delay incurred by its private
resource is 0.

We denote the estimated completion time of a job of player
i by the shared resource by T shared

i , noting that in general,
it depends on the loads submitted to the cloud by the various
players. We assume that T shared

i is a sum of two components,
namely di(σi) and D(σ).

The first component, di(σi), is a delay component that is
specific to the player and independent of the load submitted
by other players to the shared resource, i.e., di : σi → ℜ+.
We assume that di(·) may be discontinuous at 0, but that it
is continuous for every other value. Furthermore, we assume
di(·) is monotonically non-decreasing and that di(0) = 0.
For example, di(·) can correspond to the time required to

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper 1079



3

send a job to the cloud, which, in turn, may depend on
the geographical location of the player with respect to the
cloud’s resources [21]. We note that transmitting nothing incurs
no delay, but transmitting even a single bit may incur a
non-negligible delay, hence our relaxation that di(·) may be
discontinuous at 0.

The second component, D(σ), is the cloud’s processing
delay, which depends on the particular loads submitted to it.
Since the job sizes, {ωj}

N
1 , are assumed to be constant, D

is a function of the strategy profile σ, i.e., D : σ → ℜ+. We
assume that D(·) is continuous and strictly increasing (in every
one of its parameters), and, in addition, D(0) = 0. We thus
have:

T shared
i (σ) = D(σ) + di(σi).

A player’s completion time is the time in which its job
completes processing (both by the private and the cloud),
formally:

Ti(σ) = max
{

T shared
i (σ), Li(σi)

}

.

Note that in case the player chooses not to send any work to
the cloud, its completion time is Li(0).

We denote the shared resource’s actual processing comple-
tion time by TShared(σ). We note that TShared(σ) may be
different than the expected completion time perceived by the
player, T shared

i (σ).

We note that for certain values of σ−i, T shared
i (<

σ−i, σi >) is not a continuous function of σi since the
completion time for σi = 0 (no computation by the cloud)
may be much smaller than the completion time where a very
small fraction is sent to the shared resource. This discontinuity
prevents us from adopting “classic” results on the existence
of Nash equilibria. Moreover, we note that each player may
have a different di(·), which further complicates the analysis
of Nash equilibria.

First, we prove that the WLF game admits a Nash equilib-
rium. As pointed out above, this task is especially challenging
due to the discontinuity of the objective function as well as
the heterogeneity among users in terms of the di component.

Definition 1: Let i be some player. Let σ denote a strategy
in which σi = 0. We denote Li(0) ≺ D(σ) if for every ǫ > 0,
Li(ǫ) < D(< σ−i, ǫ >) + di(ǫ).

Theorem 1: The 2-player WLF game admits a Nash equi-
librium profile.

Proof: We show, by construction, that the game has a
Nash equilibrium point.

We begin with a state in which neither of the players makes
any use of the shared resource, i.e., σ0 =< σ0

1 , σ
0
2 >, where

σ0
1 = 0 and σ0

2 = 0. We proceed by having each player, in its
turn, perform a best-response move.

Let σ1
1 denote the relative amount of workload submitted by

player 1 to the shared resource following the first best-response
move. We consider two cases: if L1(0) ≺ D(< 0, 0 >), player
1 would not make use of the shared resource in any case.
Accordingly, a strategy profile in which σ1

1 = 0 and player 2
is at best response constitutes a Nash equilibrium. We continue

under the assumption that L1(0) 6≺ D(< 0, 0 >), and therefore
σ1
1 > 0.

Next, we consider player 2; if L2(0) ≺ D(< σ1
1 , 0 >), it

holds that < σ1
1 , 0 > is a Nash equilibrium profile. Otherwise,

it holds that player 2 will submit some non-zero relative
workload, denoted by σ1

2 , for processing by the shared source.
Consider, then, the latter case.

When player 1 performs a best-response move again, it is
clear that D(< σ1

1 , 0 >) < D(< σ1
1 , σ

1
2 >) (i.e., the workload

submitted by player 2 to the shared resource increased the
shared resource’s delay). Thus, it holds that L1(σ

1
1) < D(<

σ1
1 , σ

1
2 >) + d1(σ

1
1), so player 1’s best-response move would

be to decrease its relative workload submitted to the shared
resource (potentially, even to 0), i.e., σ2

1 < σ1
1 .

In a similar fashion, when player 2 performs a best-
response move again, it holds that D(< σ1

1 , σ
1
2 >) > D(<

σ2
1 , σ

1
2 >) (i.e., since player 1 reduced its relative workload in

the shared resource, the shared resource’s delay has decreased).
Therefore, player 2’s best-response move would be to increase
it relative work load, i.e., σ2

2 > σ1
2 .

Once again, since player 2 increased its relative workload
processed by the shared resource, it holds that player 1 would
decrease its as part of his next best-response move, i.e., σ3

1 <
σ2
1 ; we can apply the same process repeatedly.

We conclude that the sequence of player 2’s relative work-
loads following its best-response moves constitutes a strictly

increasing sequence, {σ2}
k

1
. By definition, it holds that this

sequence is upper bounded (by 1), and therefore converges to
a non-zero value. We denote its limit by σ∗

2 .

Similarly, it holds that the sequence of player 1’s relative
workloads following its best-response moves constitutes a

strictly decreasing sequence, {σ1}
k

1
. By definition, it holds that

this sequence is lower bounded (by 0), and therefore converges.
We denote its limit by σ∗

1 .

Finally, we conclude that σ∗ =< σ∗

1 , σ
∗

2 > is a Nash
equilibrium profile and the Theorem follows.

In [11], [17] we extend this proof to a case of any N
players, and prove that the Nash equilibrium is unique.

We further explore the inherent inefficiency that stems from
the players’ noncooperative behavior. Specifically, we study
the price of anarchy [8] of the game and indicate that it
may heavily depend on the specific manner in which service
providers perceive the performance they experience when
using the cloud, as well as on the cloud’s behavior under heavy
load. For example, we demonstrate that, when players (service
providers) make worst-case decisions (e.g., when handling
time-critical jobs), the unique Nash equilibrium coincides with
the social (i.e., system-wide) optimum; whereas in another
case, where the cloud performs outsourcing under heavy
load, employing techniques such as cloud federation [20], we
demonstrate that the price of anarchy may be arbitrarily large.

We then turn to investigate practical implications of our
formal model and analysis. An important question is whether
proper design and management of the system can mitigate
the deficiencies of noncooperative behavior. One deficiency,
measured by the price of anarchy, is the sub-optimality of

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper1080



4

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load

R
a
ti
o
 o

f 
a
ll 

d
e
c
is

io
n
s

 

 

Correct Decision − Simulation

Wrong Decision − Simulation

Wrong Decision − Model

Fig. 1: Correctness of scheduling decisions as a function of the load when the
load balancer chooses the processing server based on queue length

the social performance at the Nash equilibrium. Yet, from a
practical standpoint, there are other deficient aspects that need
to be considered, for example the potential “conquest” of the
cloud by certain communities of service providers (e.g., “heavy
users”), which may “scare off” all others.

Our study indicates that the employment of management
tools can indeed come at rescue in some cases, yet, and
somewhat counter-intuitively, in other cases they may fail
to deliver. Specifically, we demonstrate the latter (negative)
finding by showing that the employment of an apparently
appealing admission control scheme deteriorates system-wide
performance; whereas we demonstrate the former (positive)
finding by showing how the partition of the cloud into “virtual
sub-clouds” can result in increasing its attractiveness to various
types of service providers.

III. REPLICATION-BASED LOAD BALANCING

Load balancing of large distributed server systems is a
complex optimization problem of critical importance in cloud
systems and data centers. Existing schedulers often incur
a high communication overhead when collecting the data
required to make scheduling decisions, hence delaying job
requests on their way to the executing servers.

To avoid the “stale data problem” [2], the data must be
collected as close as possible to the arrival of the job. Thus,
common load balancing approaches, such as the “Supermarket
Model” [9], invoke the data collection process upon a job’s
arrival. The Supermarket Model is a scheduling policy where,
upon the arrival of a new job, d randomly selected servers are
queried for their queue length, and the job is sent to the server
with the least number of jobs. Collecting data to support the
scheduling decision introduces a delay in the execution of the
job, as the data collection process hinders the selection of the
executing server and the arrival of the job to that server.

The size of data centers, coupled with their distribution
across the globe, call for fully distributed load balancing
techniques. Accordingly, it is important to understand how well
can an oblivious2 distributed load sharing system perform.

As part of our research [12], [16], [18], we propose a novel
load balancing scheme that minimizes the time a job spends
till being assigned to a server and, in addition, scales well.

2An oblivious system (also termed static system) is a system that is
independent of the current state, and does not use any dynamic input.

70 75 80 85 90 95
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Load

A
v
e
ra

g
e
 Q

u
e
u
in

g
 O

v
e
rh

e
a
d

 

 

Supermarket d=2

Replication d=2

Supermarket d=3

Replication d=3

Supermarket d=5

Replication d=5

Supermarket d=10

Replication d=10

Fig. 2: Average Queuing Overhead, Poisson distributed job arrival times,
exponentially distributed processing times, no delays, the Supermarket Model
vs. replication, high load values

Our approach is based on duplicating each job request into
several replicas, which are sent to randomly chosen servers.
We assume that servers process jobs according to a first-come-
first-served policy. Servers assigned with replicas of the same
job coordinate the removal of all copies but one. Specifically,
when a replica arrives to the head of the queue and begins
processing, a signal is sent to the other corresponding servers
in order to trigger the removal of all other replicas.

Unlike the Supermarket Model, which chooses the process-
ing server based on the shortest queue policy, our scheme relies
on actual completion times, thus reducing the queuing over-
head in the server. We analyze the cases where the Supermarket
Model errs when selecting the shorter queue. Our results, based
on our analysis as well as on simulations and depicted in
Figure 1, indicate that, when basing the scheduling policy on
queue lengths, the ratio of erroneous decisions rises with the
load to a considerable level. For example, for loads above 90%,
some 30% of the decisions are wrong. That is, when the system
particularly needs the load balancing mechanism to perform
at its best, a queue-lengths-based mechanism performs at its
worst.

We test our technique under three load profiles. The first
is a “traditional” setting in which jobs arrive based on a
Poisson process, and job lengths (required processing times)
are exponentially distributed. Such load profiles have been
widely considered in the literature, due to their amenability to
formal analysis as well as often being suitable approximations
of reality.

We further test our scheme under a load profile in which
jobs arrive based on a Poisson process but their lengths abide
to a bounded-Pareto-distributed process [4], with very high
variance. In such a setting, in addition to incurring delays in
the scheduler, some jobs may be unfortunate to be scheduled
for execution on a server behind a very long job.

Finally, we test our techniques based on HTTP traces
collected from real systems. For this purpose, we follow on
the work presented in [3] and develop a workload that mimics
the behavior of a social network site, such as Facebook.

Our results, a sample of which are presented in Figure 2
and Figure 3, show that the replication scheme improves the
selection of the processing server, this offering a significant
improvement in queuing overhead when compared to the

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper 1081



5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time

A
v
e
ra

g
e
 Q

u
e
u
in

g
 O

v
e
rh

e
a
d

 

 

Supermarket d=2

Replication d=2

Supermarket d=3

Replication d=3

Supermarket d=5

Replication d=5

Supermarket d=10

Replication d=10

Fig. 3: Average queuing overhead, job arrival times are based on a trace of
over eight million HTTP request to Wikipedia [22], no delays, the Supermarket
Model vs. replication

1 2 3 4 5 6 7 8 9 10 20 50
0

200

400

600

800

1000

1200

1400

k

A
v
e
ra

g
e
 Q

u
e
u
in

g
 O

v
e
rh

e
a
d

 

 

Replication/LiVS, T
d
=1

Replication, T
d
=1

Supermarket Model, T
d
=0

Replication, T
d
=0

Fig. 4: Average queuing overhead with Location-in-Vector Selection, Poisson
distributed job arrival times, Bounded-pareto distributed processing times, the
exponent of the power-law, α = 1.4, maximal job length, H = 10, 000,
d = 2, load = 97%, signal propagation delay, Td = 1

Supermarket Model.

Yet, the time required for the removal signals to arrive from
the sending server (the one executing the job) to the servers
holding the other replicas may hinder the performance gain
offered by our scheme. Indeed, if replicas arrive at the heads
of the servers’ queues approximately at the same time, then
the servers may spend time processing jobs that are doomed to
be removed. Thus, in the presence of very large delays (with
respect to the job’s processing time), multiple copies of the
same job might complete processing at different servers.

Surprisingly, our results indicate that in the case of
bounded-Pareto distributed job lengths and a low α value,
signal propagation delay has little to no effect on system
performance. However, in other cases, the usage of a high
number of replicas, or a moderate signal propagation delay,
may severely degrade the performance of our scheme.

Accordingly, we developed a heuristic solution that im-
prove our scheme in the presence of signal propagation de-
lay. Our heuristic, called Location-in-Vector Selection (LiVS),
modifies the job selection policy at the server. Specifically,
instead of processing jobs based on the first-come-first-served
policy, servers pick the next job out of the first k jobs in
the queue (where k is a parameter of the heuristic) based a
simple prioritization policy. We evaluate the LiVS heuristic
through simulations and show that it can be used to restore the
high performance gain offered by our scheme under moderate
signal propagation delay. One exemplary result demonstrating

the effectiveness of the LiVS heuristic is depicted in Figure 4.

IV. A DISTRIBUTED APPROACH FOR CLOUD ELASTICITY

One of the important concepts behind the adoption of
cloud computing is the Pay-As-You-Go model. In this model,
which is currently in use by major cloud providers such as
Amazon [1] and Microsoft [23], service providers pay only for
allocated resources and the amount of these resources can be
dynamically modified. For example, paying per VM (according
to the specification of the VM) is done only for the duration
of the VM’s lifetime.

However, this model places a major dilemma to the service
providers, namely - how much resources to acquire? Indeed,
on the one hand, a higher amount of resources leased from
the cloud results in better service quality; but on the other
hand, a higher amount of resources incurs higher operational
expenses, as the service provider has to pay the cloud owner
for the amount of requested resources. In other words, while
increasing the amount of resources used by the service has the
potential of increasing its income, over-provisioning may lead
to decrease in revenue.

One of the common mechanisms used to address this
challenge is elasticity, i.e., the ability to dynamically adjust the
amount of the resources allocated to the service based on the
demand for that service. This capability is used, for example,
by on-line shopping service providers in order to expand their
service around the end of the year when demand rises as people
go on-line to do their holiday shopping; when the holiday
season is over and demand drops, the service providers can
scale down their service and release the resources back to
the cloud. Another example, where resource allocation should
be adjusted in a much shorter time frame, is a case where
a large-scale disaster occurs and users log in to report their
experience or check on their relatives and friends. In such a
scenario, the demand for social network services may increase
rapidly and unexpectedly during a short period of time, thus the
amount of resources allocated to the service should be adjusted
accordingly in order to maintain the desired user experience.

Typically, the dynamic adaptation of the allocated resources
is accomplished by monitoring their state. However, for large
cloud-based services, tracking the performance of each server
or VM and monitoring each user request is impractical. In such
cases, no centralized entity has full knowledge regarding the
state of the system and current techniques no longer work.

We propose a novel resource management scheme that
enables the service provider to lease the “right amount” of
computational resources (e.g., the right number of VMs), in
view of the above fundamental tradeoff and in the presence
of dynamic workload together with a highly distributed envi-
ronment. Our scheme comprises of two components, namely:
a task assignment policy and a VM management policy. We
emphasize that each of these components should work in
a distributed manner without assuming full knowledge of
the overall system state. This creates an interesting coupling
between these components, since poor load balancing may
result in an overloaded component that may issue a request
for (globally unneeded) additional resources.

Our task assignment policy strives to “pack” VMs with as
many jobs as possible, while ensuring that they remain within

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper1082



6

10
0

10
1

10
2

Time

9
5

th
 p

e
rc

e
n
ti
le

 t
im

e
 i
n
 t
h
e
 s

y
s
te

m

 

 

RTP, 2007−10−09

RTP, 2007−10−10

Wikipedia, 2007−10

World Cup, 1998−07−09

Fig. 5: 95th percentile time in the system for HTTP traces obtained from [6],
[22]. Packing threshold, TP = 5, activation threshold, TA = 8, VM
instantiation time=120 seconds

operational bounds, i.e., that all the requests can be serviced
within the SLA requirements.3

Fundamentally, our scheme follows the classic Supermarket
Model [9]; upon the arrival of a new job to the system, some d
VMs are sampled uniformly at random for their load (measured
through the number of jobs handled by the sampled VM).
However, instead of sending the job to the least loaded VM
(as the Supermarket Model would do), we send it to the most
loaded among the sampled VMs that are within the operational
bounds. Only if all sampled VMs are loaded beyond the
operational bounds, we send the job to the least loaded one.
Similarly to the Supermarket model, our task assignment
policy admits a fully distributed implementation [2].

Our VM management policy calls for the instantiation
of a new VM whenever all sampled VMs are over-loaded.
Furthermore, we adopt the distributed policy defined in [3] (in
the realm of power management) to determine when to release
VM resources back to the cloud, namely: if a VM completes
the processing of all jobs assigned to it, and receives no new
jobs for some time, then it turns itself down, thus releasing
all resources back to the cloud provider. Due to the “packing”
property of the task assignment policy, each VM can make this
decision by itself, thus not requiring any centralized control.

To fully investigate the applicability of our scheme we test
it with a variety of load patterns, including four patterns based
on real HTTP traces, and three synthetic loads exhibiting a
fixed, a gradually changing and a sharply changing arrival
rate. Furthermore, in addition to simulation, we implemented
and tested our scheme within Amazon’s EC2 framework [1]
emulating a real-life commercial environment.

We show that, in such a completely distributed setup, our
scheme is able to adapt to changing load, by adjusting the
number of active VMs as needed in order to meet the SLA
goals under the new load. When the load rises, numerous
arriving jobs sample over-loaded VMs, and new VMs are
instantiated. For example, Figure 5 depicts the 95th percentile
of response time for a variety of HTTP traces obtained from
real world websites [6], [22]. The figure shows that the 95th

percentile of response time is well below the target threshold
(marked by a black dashed line in the figure), excluding a few

3We assume that the service provider needs to comply with a Service Level
Agreement (SLA) that specifies a target maximum time that a job spends in
the system and the allowable rate of violations from this target.

0 50 100 150 200 250 300 350 400 450
50

60

70

80

90

100

110

120

130

140

Time (minutes)

 

 
Load

Active VMs

95
th

 percentile time in the system (seconds)

Fig. 6: EC2 test, sharply changing load. Packing threshold, TP = 5, activation
threshold, TA = 8, VM instantiation time=120 seconds, idle time before VM
termination=160 seconds

points where the load sharply changes (the HTTP traces are
described in more detail in [13]).

We show that, even under a very drastic change in load, our
scheme quickly adapts to the new state and the time period in
which SLA requirements are violated is very short. We note
that such a time period is on account of the time required
to instantiate a new VM, and cannot be avoided without
significantly over-provisioning, and consequently increasing
the operational costs of the service. Figure 6 depicts the results
of an EC2-based test running a sharply changing load. Results
show how quickly the system adapts to the load, meeting the
SLA target (of 80 seconds) while keep the number of active
VMs to a minimum.

V. CONCLUSIONS

Overall, our results show that taking into consideration
key aspects of large scale systems, such as the users inability
to coordinate, as early as in the design phase of the system
may have detrimental impact of the cloud’s performance.
On the other hand, a robust system design, coupled with
some of the suggested resource management techniques, may
support scaling the system with minimal to no performance
degradation.

Another part of this thesis, addressing problems in the
realm of the design and control of networks, has been pub-
lished in [10], [14].

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper 1083



7

REFERENCES

[1] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2, visited:
2014-07-07.

[2] D. Breitgand, R. Cohen, A. Nahir, and D. Raz, “On cost-aware
monitoring for self-adaptive load sharing,” IEEE Journal on Selected

Areas in Communications, vol. 28, no. 1, pp. 70–83, 2010.

[3] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,
“Autoscale: Dynamic, robust capacity management for multi-tier data
centers,” ACM Transactions on Computer Systems, vol. 30, no. 4, p. 14,
2012.

[4] M. Harchol-Balter, “Task assignment with unknown duration,” J. ACM,
vol. 49, no. 2, pp. 260–288, 2002.

[5] B. Hayes, “Cloud computing,” Commun. ACM, vol. 51, no. 7, pp. 9–11,
2008.

[6] IRCahce, http://www.ircache.net/, visited: 2013-10-26.

[7] P. D. M. Jr., F. de Figueiredo, D. Maia, F. V. Brasileiro, and A. Coelho,
“On the planning of a hybrid IT infrastructure,” in Network Operations

and Management Symposium, 2008. NOMS 2008. IEEE, 2008, pp. 496–
503.

[8] E. Koutsoupias and C. H. Papadimitriou, “Worst-case equilibria,” Com-

puter Science Review, vol. 3, no. 2, pp. 65–69, 2009.

[9] M. Mitzenmacher, “How useful is old information?” IEEE Trans.

Parallel Distrib. Syst., vol. 11, no. 1, pp. 6–20, 2000.

[10] A. Nahir, A. Orda, and A. Freund, “Topology design of communica-
tion networks: A game-theoretic perspective,” Networking, IEEE/ACM

Transactions on, vol. 22, no. 2, pp. 405–414, 2014.

[11] A. Nahir, A. Orda, and D. Raz, “Workload factoring: A game-theoretic
perspective,” Networking, IEEE/ACM Transactions on, vol. PP, no. 99,
pp. 1–1, 2014.

[12] ——, “Replication-based load balancing,” Parallel and Distributed

Systems, IEEE Transactions on, vol. PP, no. 99, 2015.

[13] A. Nahir, “Design and management of complex distributed
systems: Optimization and game-theoretic perspectives,” Ph.D.
dissertation, Technion, Israel Institute of Technology, 2014. [Online].
Available: http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/
2014/PHD/PHD-2014-07

[14] A. Nahir, A. Orda, and A. Freund, “Topology design and control: A
game-theoretic perspective,” in INFOCOM ’09. Twenty Eighth Annual

Joint Conference of the IEEE Computer and Communications Societies.

Proceedings. IEEE, 2009, pp. 1620–1628.

[15] A. Nahir, A. Orda, and D. Raz, “Workload factoring: A game-theoretic
perspective,” Department of Electrical Engineering, Technion, Haifa,
Israel, Tech. Rep., 2011. [Online]. Available: http://www.ee.technion.
ac.il/Sites/People/ArielOrda/Info/Other/NOR11CWF.pdf

[16] ——, “Distributed oblivious load balancing using prioritized job repli-
cation,” in Proceedings of the 8th International Conference on Network

and Service Management, ser. CNSM ’12, 2012, pp. 55–63.

[17] ——, “Workload factoring with the cloud: A game-theoretic perspec-
tive,” in INFOCOM ’12. Thirty First Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE,
2012, pp. 2566–2570.

[18] ——, “Schedule first, manage later: Network-aware load balancing,”
in INFOCOM ’13. Thirty Second Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, 2013, pp.
510–514.

[19] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in ACM Conference on Computer and Communications Secu-

rity, 2009, pp. 199–212.

[20] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. S. Montero, Y. Wolfsthal, E. Elmroth, J. A. Cáceres,
M. Ben-Yehuda, W. Emmerich, and F. Galán, “The reservoir model
and architecture for open federated cloud computing,” IBM Journal of

Research and Development, vol. 53, no. 4, p. 4, 2009.

[21] A. Wang, C. Huang, J. Li, and K. W. Ross, “Estimating the performance
of hypothetical cloud service deployments: A measurement-based ap-
proach,” in INFOCOM ’11. Thirtieth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE,
2011, pp. 2372–2380.

[22] WikiBench - Wikipedia Access Traces, http://www.wikibench.eu/
?page id=60, visited: 2013-10-26.

[23] WindowsAzure - Microsoft’s Cloud Services Platform, http://www.
microsoft.com/windowsazure/, visited: 2014-07-07.

[24] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Intelligent
workload factoring for a hybrid cloud computing model,” in Proceed-

ings of the 2009 Congress on Services - I, ser. SERVICES ’09, 2009,
pp. 701–708.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper1084




