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Abstract—Monitoring of high-speed networks is becoming a
resource intensive task. There are dedicated flow monitoring
probes built with commodity hardware support up to 10 G links,
but multiple 10 G or even 100 G optical networks are being used
for transport networks and a data center connectivity. Running
and maintaining many separate probes is uneconomical and time-
consuming. Therefore, we explore the possibility to facilitate
network interface cards (NICs) with multiple 10 G interfaces
to build probes which can replace many existing boxes, leading
to reduced management and operational costs. The monitoring
performance is critical for such a high-density solution. We
use two custom-built, FPGA-based NICs, each with eight 10 G
interfaces to test current CPU limits and to propose improvements
for the near future commodity NICs.

I. INTRODUCTION

A current commodity hardware for high-speed network
traffic flow monitoring usually consists of a PC with one or two
network interface cards (NICs) with a 10 G Ethernet interface.
The role of the hardware is merely to capture the data from
the network. The hardware setup is supplemented by open-
or closed-source software performing the subsequent steps of
the flow monitoring process, most commonly packet header
parsing, flow cache management and flow record export using
the NetFlow [1] or IPFIX [2] protocol.

While one can deploy multiple such probes for monitoring
of multiple lines, it may not be the best option because of an
increased power consumption, a large rack space footprint and
a general complexity of the monitoring system management.
Our work therefore focuses on exploring the scalability of
this concept in a single PC from the performance point of
view. There are obviously concerns about various possible
bottlenecks of a single PC setup. To name a few: throughput
of the NIC, system bus (i.e. PCI Express) and PC memory
subsystem, performance of a single CPU core, overhead of
potential inter-core or inter-CPU communication.

By using custom-built NICs, we are able to perform
experiments with the speeds beyond what is available in the
commodity hardware market. The programmability of our
FPGA-based NICs allows us to examine the effect of various
additional hardware features, such as a packet header parsing
or a packet shortening. We suggest that some of these features
should be included in the next generation of commodity NICs
to aid the performance of future network traffic monitoring
systems.

The aim of this paper is to identify bottlenecks and po-
tentials for new features of current and near-future monitoring
systems, as well as to demonstrate limitations of current CPUs
and generally the PC architecture in the particular use case

of network flow monitoring. We test a monitoring setup that
can be achieved using commodity NICs, then we present
impacts of the features provided by our NIC. Last but not
least, we compare two different CPUs in the same conditions
to determine the influence of CPU choice on the monitoring
performance.

The paper is structured as follows: Section II presents a
choice of notable previous works in this field. Section III
describes our monitoring architecture and how it is different
from current commodity NICs. Section IV explains our experi-
ments and methodology, while Section V presents the obtained
results. The last Section VI draws conclusions from the results.

II. RELATED WORK

We provide a brief overview of progress in network mon-
itoring over the last decade. The list of works is by no means
complete, nevertheless, it should outline the achievements in
this field so far.

1 G networks were state of the art in 2003. Luca Deri in [3]
shows that it is possible to create a 1 G flow probe based
on a commodity hardware. He uses libpcap library to receive
packets from the NIC and shows that it is possible to capture
the packets at line speed. Therefore, the lack of performance
discovered in a comparable systems is caused by an ineffective
processing software.

Degioanni and Varenni in [4] introduce the concept of using
customized NICs for achieving better monitoring performance
in 2004. The main contribution of their work is a design of
a device driver for customized NIC, which can distribute the
packet processing load to multiple CPU threads. Although they
do not achieve 10 G speeds, the methods they describe are still
used nowadays.

Article from Clegg et al. [5] published in 2008 compre-
hensively describes practical and legal aspects of monitoring
of a 10 G research network. Authors also provide several data
sets containing captured packet headers as a part of their
contribution.

Braun et al. [6] in 2010 compare commodity hardware
based packet capturing solutions. Authors note that the soft-
ware and commodity hardware are advanced enough to support
10 G packet capture solutions. The paper provides a detailed
description and evaluation of techniques that help to achieve a
high-speed packet capture. It describes improvements made to
various libraries and NIC drivers that aim to remove several
data processing bottlenecks.



The work of Fusco and Deri [7] published in 2010 intro-
duces a design of packet capture solution fully utilizing multi-
core systems. They use PF RING [8] with TNAPI drivers
to avoid unnecessary buffer allocations and to utilize packet
polling, which mitigates problems with too many interrupts.

Antichi et al. [9] propose to use NetFPGA platform for pas-
sive network measurement. They note that without hardware
support, the packet timestamps have poor accuracy. The use of
FPGA allows to timestamp, filter or trim the packets, which
saves CPU processing time and allows to achieve higher packet
rates. However, their work is targeted only on 1 G environment.

Use of commodity cards with advanced features like times-
tamping or packet filtering is proposed by Deri et al. [10] in
2013. Authors use these features to lessen the load on the CPU.
They also utilize the capability of these cards to store data in
multiple buffers, therefore exploiting multi-core architecture of
their system.

Another recent work by Garcı́a-Dorado et al. [11] pro-
vides overview of different commodity based packet capture
solutions. The paper describes techniques used by various
researches to achieve 10 G packet rates in detail. Authors
explain features of current NICs, NUMA architecture, OS
network stack as well as approaches to utilize these concepts
and overcome performance bottlenecks.

A lot of work was done in the field of high-speed packet
capture solutions. A recent survey of Hofstede et al. [12] de-
scribes the current state of flow monitoring systems including
both open source and enterprise products.

Recent announcement of Intel XL710 NICs [13] represents
an evolution of commodity hardware towards the concepts
presented further in this paper. The NICs support acceleration
features such as TCP checksum offload to decrease the CPU
usage.

III. MONITORING ARCHITECTURE

This section describes our monitoring setup from hardware
to software. We briefly introduce our custom-built FPGA-based
NIC architecture. We utilize these NICs to incorporate multiple
10 G interfaces in one box.

A. Hardware

We use the COMBO-80G card [14] to receive the network
traffic. The card is equipped with two QSFP+ cages, which
can be set to 4×10 G Ethernet mode each, thus creating eight
10 G interfaces in total. The packets undergo a configurable
processing in the FPGA and are sent to the host RAM via the
PCI-Express gen3 x8 bus. Theoretical throughput of this bus
is 64 Gbps, but due to the protocol overhead, the real-world
throughput is slightly higher than 50 Gbps. Figure 1 shows the
functional scheme of the described hardware.

The FPGA firmware of COMBO-80G has several features
that set it apart from conventional NICs and help to im-
prove general throughput when receiving packets. The card
automatically assigns a 64-bit timestamp to each packet at
the moment of reception. The timestamp has a resolution of
one nanosecond, which is better than what can be achieved
by assigning it later by the software application. Also the

processor load associated with the timestamp generation is
removed.

Another feature is a configurable packet trimming. The card
can be set to trim the packets to a predefined length, thus sav-
ing the PCI Express and memory subsystem bandwidth, most
notably for long packets. This feature is clearly intended for
the purpose of flow monitoring, since the relevant information
(packet header) is at the beginning of each packet.

Further extension of this feature leads to packet parsing
directly by the card and transferring only the parsed packet
header fields to the host RAM. In addition to bandwidth saving,
the processor load is also reduced, because it no longer needs
to perform the packet parsing operation. The parsed fields
are sent in the so-called Unified Header (UH) format which
has fixed structure and thus removes the need for complicated
parsing conditions in the corresponding processor code.

To better utilize current multicore CPUs, the firmware
features an option to distribute the packets into eight indepen-
dent DMA channels. Target channel number of each packet
is computed by hashing several fields of the packet header,
such as IP addresses, protocol, port numbers. This ensures that
there is a consistent mapping of network flows to the DMA
channels, so that the software threads always see complete
flows. In common traffic with large number of flows, the traffic
is evenly distributed among the DMA channels.
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Figure 1. Hardware scheme of single card setup.

B. Software

The DMA transfers themselves are simplified and opti-
mized to bypass an OS kernel network stack. Large ring buffers
are allocated in RAM during the OS driver initialization, and
the packets are then uploaded to these buffers by the card
almost autonomously. The only communication between the



driver and the card is an exchange of buffer start and end
pointers (which mark an empty and free space in the buffer),
and configurable interrupts generated by the card. The OS
driver never touches or even copies the packets, it only maps
portions of the buffers to userspace applications. This way the
overhead of software processing is minimized and maximum
CPU time is left for the application itself. Directly mapping the
ring buffers memory to userspace also ensures that the data are
copied only once, from the NIC to the RAM. This decreases
the load of the memory subsystem, which helps to increase
the overall performance.

Data from the ring buffers are processed by a flow exporter.
We use FlowMon exporter [15] software which utilizes a
multithreaded design to distribute the computational load on
multiple CPU cores. The flow exporter architecture is shown
in Figure 2. Input threads read packets from ring buffers and
parse L2 to L4 headers to flow records. These flow records are
passed to a flow cache which performs flow record aggregation.
Expired flow records are exported using single unifying thread,
which accepts the flows from all flow caches. Single thread
is enough for this task, since is is much less performance
demanding.
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Figure 2. Flow exporter multithreaded architecture.

IV. METHODOLOGY

This section describes the setup for our experiments. We
present our testbed as well as network traffic data that were
used to measure the monitoring performance.

A. Testbed Setup

The testbed consists of two devices. The first is the flow
monitoring probe and the second is a packet generator which
generates traffic that is measured by the probe.

We use Dell PowerEdge R720 server with two Intel Xeon
E5-2670 v1 CPUs as the flow monitoring probe. Each CPU
features eight physical cores (16 with hyperthreading), 2.6 GHz
operating frequency (3.0 GHz to 3.3 GHz in Turbo mode) and
20 MB of cache. Maximum TDP of each CPU is 115 W. The
memory controller has throughput of 51.2 GB/s. Each CPU has
four RAM modules available, running at 1600 MHz with the
capacity of 8 GB per module (64 GB total). Two COMBO-80G

cards are used to receive and process packets. The operating
system is standard Scientific Linux release 6.5 running kernel
version 2.6.32-431. The whole setup is a 2U standard rack
mount PC.

Since the probe has two CPUs, we need to consider NUMA
architecture specific setup. Each CPU has a directly accessible
portion of RAM, which corresponds to the four physical RAM
modules associated with the CPU. Accessing the memory
of the other CPU is more costly, since the data need to be
passed between the processors using QuickPath Interconnect
bus (QPI) [16]. Each PCI-Express bus is also connected to
one CPU. This CPU receives the interrupts of connected
devices and the devices can write directly to the associated
memory using DMA transfers. Therefore, the optimal setup
is to have each COMBO-80G card on the PCI Express bus
connected to different CPU. The memory allocated by the
drivers for the NIC should belong to the same CPU and the
flow exporter should also run on this particular CPU. This
way, we can almost completely avoid QPI communications
when processing the network traffic, which leads to higher
performance. However, current version of the NIC drivers does
not support NUMA specific memory allocation, which causes
inefficient memory access through the QPI bus. The impact of
this deficiency is described in Section V.

We run one instance of flow exporter on each physical
CPU. This allows each exporter to use the memory of this
CPU for the flow cache and therefore avoid to accessing the
flow cache data through QPI.

B. Data Generator Setup

The test traffic is generated by Spirent TestCenter hardware
generator at the speed of 10 Gbps and is replicated to all
sixteen input ports. Since the data on all 10 G ports are the
same, we use interface numbers in the flow creation process
to ensure that the same packets from multiple interfaces will
create different flows. It also ensures that the timestamps seen
by flow the exporter are monotonous.

We use an artificial traffic pattern for the flow moni-
toring performance measurement. This approach has several
advantages. Firstly, we can test the worst case scenario using
short packets to achieve the highest packet per second ratio.
Secondly, it is easy to repeat the tests in another laboratory.
Moreover, it is infeasible to simulate a real traffic using packet
generators, especially at 10 Gbps speed. To compensate for dif-
ferent number of concurrent flows and real traffic distribution
of packets in flows, we repeat the tests with several different
flow counts. All generated data are simple UDP packets, flows
are created by permuting parts of IP addresses. The results
provided in Section V are averaged from several measurements
taken for each scenario.

Table I shows combinations of packet sizes and flow counts
used in our measurements. Corresponding packet and bit rates
are also shown. Various bit speed is caused by the Ethernet
protocol overhead, which is lower for longer packets. All
values are given for a single 10 G packet generator. Since the
traffic is repeated to every input interface, the actual flow count
and traffic rates sent into our monitoring device are 16 times
higher.



Packet size Flow count Packets/s Bits/s

64 B 128 14880545 7618839040
64 B 16384 14880545 7618839040
64 B 131072 14880545 7618839040

128 B 128 8445715 8648411900
128 B 16384 8445715 8648411900
128 B 131072 8445715 8648411900

256 B 128 4528861 9275108100
256 B 16384 4528861 9275108100
256 B 131072 4528861 9275108100

512 B 128 2349560 9623786500
512 B 16384 2349560 9623786500
512 B 131072 2349560 9623786500

Table I. COMBINATIONS OF PACKET LENGTHS AND FLOW COUNTS
USED IN THE TESTS.

The flow count has high impact on the flow cache perfor-
mance. With the increasing number of active flow records, the
memory is accessed more randomly and the CPU experiences
more cache misses, which results in higher latency of memory
access and therefore in lower performance. It is difficult to
estimate the number of flows to simulate from real network,
since the real flow records are not updated periodically and
the number of active flows in the flow cache at any given
moment depends heavily on active and inactive flow cache
timeouts and other software settings. Therefore, we test several
different options to estimate the influence of flow count on the
overall performance. We believe that the highest number of
flow count used in our tests is more performance-demanding
than real traffic in most networks.

V. RESULTS

The results of our experiments are presented in this section.
We show the measurement performance in a setup achiev-
able by commodity NICs, then we present the improvements
achievable by our NICs. Moreover, we show a difference
in performance for two different CPUs. We use packets per
second as a measure for system performance. Bytes or bits
per second can be gained easily by multiplying the number of
packets per second by their respective sizes.

A. Basic Performance

First, we have measured the basic performance of the flow
exporter on full packets. Figure 3 shows packet rates separately
for each of the cards. We group the rates for the same packet
lengths together. Each group has three pairs of columns. Each
color represents a different number of flows per interface.
Shades of the color differentiate the NICs. The Maximum Eth-
ernet column is the highest achievable aggregated throughput
of all 16 Ethernet input interfaces. The Maximum PCIe column
has been measured by counting the packets received by the
simplest possible software application (a packet counter). This
way, we get an upper limit on number of packets, that the flow
exporter can receive via the system bus.

We plot the CPU utilization in Figure 4. The interpretation
of the graph is almost the same as for Figure 3 with the
exception that values for both cards are summed up and the
utilization is shown for different flow exporter threads instead.
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Figure 3. Full packet processing performance in packets/s.

The darker color represents the input thread and the lighter
color marks the values for the flow cache thread.
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Figure 4. Full packet processing CPU utilization.

There are several important observations that can be made
from these two graphs. The performance impact of number of
flows is significant, especially for short packet lengths. This is
caused by a high number of updates that must be performed in
the flow cache. For a smaller number of flows, the CPU can
keep a larger portion of the flow records cached in a faster
memory. As the number of flows increases, the memory is
accessed more at random, which causes more cache misses
and eventually a performance decrease. Figure 4 clearly shows,
that the utilization of the flow cache thread rises with number
of flows for all packet lengths.

Performance of the second card is always higher than that
of the first card. We attribute this to the device driver, which
allocates packet buffers without considering the heterogeneity
of the NUMA architecture. In our case, the first card and the
corresponding flow exporter always access the RAM through
the QPI bus using memory subsystem of the other CPU, which
decreases the performance.

Although it seems that the performance is decreasing for
longer packets, this depends on the point of view. The number
of bytes per second is actually increasing for longer packets.
Since less packets need to be processed to achieve the same
throughput, the CPU utilization decreases. However, more
data are processed, which requires higher memory controller
throughput. Therefore, for longer packets, the performance
is not hindered by insufficient CPU frequency, but by high



memory bus utilization.

B. Hardware Accelerated Performance

Secondly, we have measured the performance using hard-
ware acceleration. Two different acceleration methods have
been used. The first method is to set up the COMBO-80G
cards to trim the packets to 64 bytes. This allows to keep
the processing speed the same for all packet lengths. The
second method uses internal parser of the NIC and sends only
a predefined data structure, called Unified Header, with parsed
information to the software. The main advantage is that the
flow exporter does not have to parse the packet headers and
therefore saves some CPU time. The disadvantage of both
methods is that the flow exporter cannot perform any payload
dependent analysis.

Figure 5 shows the performance comparison of the process-
ing of full packets, trimmed packets and unified headers. We
plot the graphs for 16 384 flows per interface, but the results are
very similar for other flow counts. Note the throughput of PCI
Express bus. Using the Unified Headers decreases the number
of bytes that must be transferred for each packet. Therefore
the throughput is higher even for the shortest packets.
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Figure 5. Packet processing performance comparison in packets/s for 16 384
flows per interface.

Using trimmed packets does not achieve any improvements
for the shortest packets. However, it allows to transfer almost
full Ethernet speed on 128 B packets to software. Full line
rate transfer can be achieved for 256 B packets using packet
trimming or using Unified Headers even for 128 B packets.

The CPU utilization, shown in Figure 6 should be the
same for full and trimmed packets for same packet rate. The
difference is caused by the fact that higher packet rate can be
achieved using trimming. Utilizing the Unified Headers brings
the advantage of easier data processing. Therefore, the input
thread is always less utilized for the Unified Headers than
for trimmed packets. Using the Unified Headers also brings
higher performance. The parsing of more complex L3 and
L4 headers also causes memory accesses. When it is reduced,
more bandwidth is left for the flow cache, which increases the
overall performance.

C. Impact of CPU Choice

We have also investigated the impact of the choice of
CPU on the packet processing performance. We performed the
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Figure 6. Packet processing comparison using CPU utilization for 16 384
flows per interface.

same tests in the same server with different CPUs. We chose
E5-2620 v1 CPUs, which represents a cheaper and therefore
slower alternative. Each CPU features six physical cores (12
with hyperthreading), 2.0 GHz operating frequency (2.5 GHz in
Turbo mode) and 15 MB of cache. Maximum TDP of each unit
is 95 W. The memory controller has throughput of 42.6 GB/s.

Figure 7 shows a comparison of the performance for the
trimmed packets method. The darker colors are used for the
faster CPU. The difference is bigger for smaller number of
flows and is reduced with growing utilization of the flow cache.
On 64 B packets the performance drop using the slower CPU
is 29 % for 128 flows, 23 % for 16 384 flows and 21 % for
131 072 flows.
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Figure 7. Trimmed packets processing performance comparison for two
different CPUs.

We assume that the main difference in the performance is
caused by the number of CPU cores. Since there are eight
independent DMA channels for the data transfer, the best
performance is achieved by eight threads processing the data.
However, when only six cores are available, the threads must
share the cores and the overhead of switching the threads
increases. The difference in the frequency helps mostly for
parsing the data, therefore it is useful mainly on full packets.
Another bottleneck is caused by the memory controller, since
the flow cache updates generate lots of random memory
accesses. Using a CPU with wider memory bandwidth helps
to alleviate this issue.



VI. CONCLUSIONS

The demand for high-density network flow monitoring
solutions is increasing. We have built a 2U standard rack
server with two COMBO-80G cards. Each card has two 40 G
interfaces and can be used in 8×10 G mode. Therefore, the
server is theoretically capable of monitoring sixteen 10 G lines,
160 Gbps in total.

We have used a packet generator to fabricate a traffic of
different properties and used this traffic to test the capabilities
of the monitoring solution. We have worked with different
packet lengths and different numbers of active network flows.

Firstly, we have measured the monitoring throughput on
full packets, which is a setup that can be achieved using any
commodity card with a timestamping unit and an effective
distribution among CPU cores. We have shown that the mon-
itoring performance does not achieve the highest possible rate
for short packets. However, the maximum rate allowed by the
PCI Express bus is achievable for longer packets.

There are several caveats that need to be kept in mind while
working with NUMA architecture. Each NIC is connected to
one CPU and should store packets in the memory of that
CPU. This needs to be enforced by the driver of the NIC.
Consequently, the flow exporter for the NIC should also run on
the same CPU and work with the corresponding memory. The
drivers that we use are not NUMA-aware and the deficiency
is clear from the results.

Secondly, we have shown the impact of hardware acceler-
ation on the the flow measurement. Using a packet trimming
ensures that the packet rate that can be achieved for short
packets applies for longer packets. This technique allows us to
monitor full speed 16×10 G Ethernet for 256 B packets. For
comparison, the average packet length of our organization’s
border lines is over 800 bytes. When the packet parsing is
performed by the NIC and the information from packet headers
are passed using the Unified Headers, the performance is in-
creased even more. The CPU utilization is also lower, since the
packet header parsing is a CPU intensive task. However, this
approach trades high performance for monitoring flexibility.

The purpose of the last test was to show the difference
that can be achieved by using faster CPUs. We have shown
that the performance on short packets can rise by more than
30 % when using faster CPUs with higher memory bandwidth.
We conclude that the monitoring system can achieve even
higher performance by utilizing better CPUs. However, a cost
to performance ratio is also important for a production use.

There are several improvements that can be made to
achieve higher performance. We can buy better CPUs, but
the budget for monitoring systems is often limited. The driver
for the NICs should be made NUMA-aware to avoid costly
memory accesses using QPI bus. We have also shown that
features like packet trimming can significantly improve the
performance of flow monitoring systems. If the next generation
commodity cards should be used for the network flow mon-
itoring, such features can turn out to be crucial for handling
large volumes of data. The performance of the PCI Express
bus can be doubled by using 16 lanes, which is an approach
that can be expected to be used in the future.
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