Towards Cloud-Based Compositions of Security
Functions For Mobile Devices

Gaétan Hurel, Rémi Badonnel, Abdelkader Lahmadi and Olivier Festor

INRIA Nancy Grand-Est - LORIA, France
Email: {hurel, badonnel, lahmadi, festor} @inria.fr

Abstract—In order to prevent attacks against smartphones
and tablets, dedicated security applications are usually deployed
on the mobile devices themselves. However, these applications
may have a significant impact on the device resources, and users
may be tempted to uninstall or disable them. In this paper, we
propose a new approach to outsource mobile security functions
and build transparent in-path security compositions for mobile
devices. The functions are dynamically activated, configured and
composed using software-defined networking and virtualization
capabilities. We present a mathematical formalization to model
the security compositions, and describe the functional architec-
ture. We provide an implementation prototype and evaluate the
solution through an extensive set of experiments.

I. INTRODUCTION

The development of high-speed mobile networks has led
to the large-scale deployment of mobile devices - such
as smartphones and tablets [1] - offering multiple services
and applications for end-users. These devices are typically
used for personal or professional reasons, and companies
are progressively moving from traditional user-supplied de-
vices to BYOD'-related strategies. Like most of popular and
widespread technologies, mobile devices are also an attractive
target for malicious attackers. This trend can be explained by
several reasons. For instance, these systems suffer from a larger
attack surface than traditional computers due to their strong
connectivity, and they are likely to store private and sensitive
data about their respective owner. Consequently, the number
and the types of malwares for mobile devices have dramatically
increased these last years [7].

Most of mobile security solutions are available in the
form of applications to be directly installed on the devices
themselves. Such on-device approaches offer some advantages
but induce generally significant resources consumption on the
system, leading to the reduction of the battery lifetime. In
the meantime, current cloud-based solutions try to offload
the most of the workload on remote servers, while only
requiring lightweight agents to be installed on the systems.
Such solutions reduce the amount of used resources on the
devices, but at least two major problems remains. Firstly,
average users do not have the required knowledge to prop-
erly perform security decisions in case of settings or alerts
for instance. Secondly, such solutions lack of flexibility and
contextualization regarding the device’s state to know how
(e.g. which protections for which applications) and when (e.g.
public or private networks) to use them.

In this paper, we propose a new strategy for outsourcing

'Bring Your Own Device

mobile security functions as cloud-based services for smart-
phones and tablets. The outsourced functions are dynamically
activated, configured and composed using software-defined
networking and virtualization capabilities. We consider the
use of security compositions in order to dynamically fit the
security requirements of mobile devices according to their
current contexts and risks. This mechanism is performed in
a transparent manner from an end-user point of view. We also
investigate the different traversal schemes that can be exploited
to drive the behavior of the compositions. We evaluate the
benefits and drawbacks of our strategy through an intensive set
of experimentations. Our main contributions are (i) a network
architecture able to dynamically deliver security for mobile
devices by building and deploying security compositions (ii)
a mathematical model to formalize security compositions and
express their properties regarding cost, quality and scalability,
and (iii) a first implementation prototype of the network
architecture and a series of experiment based on it.

The rest of this paper is structured as follows. Related
work regarding cloud-based mobile security is discussed in
Section II. Section III presents a mathematical formalization to
model the security function compositions within our solution.
Section IV explains our strategy for delivering composable and
dynamic security for mobile devices, as transparent services in
the cloud. Prototyping and evaluation of our solution are de-
scribed in Section V. Finally, Section VII presents conclusions
and points out some future research perspectives.

II. RELATED WORK

Mobile devices security is a critical activity. In this section,
we describe the related work regarding cloud-based security
for mobile devices, as well as the possible mechanisms for
outsourcing and composing security middleboxes to this end.

Mobile security

In addition to traditional on-device approaches [16], several
cloud-based approaches have been proposed in order to provide
security for mobile devices. Some solutions exploit cloning
methods using virtualization to execute security checks in
the cloud without resources constraints [18][24]. Other work
directly outsource security functions of the mobile devices
as remote services. For instance, a cloud-based applications
firewall and a cloud-based antivirus for mobile devices are
respectively introduced in [15] and [17]. Though these work
give some strong contributions regarding the security of the
devices, they still induce additional network communications
that may be prohibitive from an end-user point of view.

In that context, the use of software-defined networking for
transparently delivering mobile security has been studied. An
Openflow [5] appliance able to detect mobile malwares using
traffic analysis is presented in [14]. The traffic is gathered
by the OpenFlow wireless access point and then analyzed by
the network controller. Overall, our work aims at differ from
those previous ones in the sense that it does not focus on
some specific threats in a fixed manner. Instead, we want to
dynamically select and compose security functions according
to the current threats to be mitigated.

Middleboxes outsourcing

Some early works regarding middleboxes outsourcing have
been inspired by the limited control available to customers over
the cloud network infrastructures. For instance, CloudNaaS
[9] is an OpenFlow-based networking framework allowing
customers to outsource line-of-business applications along with
network functionalities - i.e. middleboxes - in the cloud.
OpenADN [22] is a work in the same vein except for the main
facts that it is able to deal with inter-cloud integration, dynamic
resources scaling and application-level flow processing. In
the meantime, [21] and [12] explore some new designs to
dynamically and transparently outsource middleboxes across
several cloud providers. Such work leverages NFV-like vir-
tualization and different (e.g. Openflow-based, DNS-based)
redirection mechanisms. Our work is similar to [21] since
we outsource middleboxes in the cloud while being totally
agnostic with respect to the location of the remote services.
We perform traffic redirection using OpenFlow such as [12].
It is worth mentioning that our solution is designed to integrate
both hardware standalone middleboxes as well as consolidated
middleboxes on shared hardware resources in the vein of [20].

Service chaining

Several recent works have leveraged the software-defined
networking paradigm in order to manage and compose mid-
dleboxes for building service chains. Among them, SIMPLE
[19] is a SDN-based policy enforcement layer for middlebox-
specific traffic steering. In SIMPLE, middlebox composition
and routing policies are enforced by pushing the corresponding
flow rules into the OpenFlow network. Flowtags [10] has
similar goals but uses another approach, putting forward an
architecture where middleboxes are extended to support Open-
Flow and use tags in network packets for determining how to
process them. Stratos [11] is another orchestration layer for
virtualized middleboxes and differs from the aforementioned
ones by its fully virtualized nature. Alternatively, Slick [8] is an
SDN-based architecture where the data plane can be extended
with middleboxes implemented on programmable resources
such as FPGA. Though middlebox composition is not studied,
such solution should allow to configure the extended data plane
to this end. Currently, our work is close to [19] since we use
flow rules to build middlebox chains.

III. PROBLEM STATEMENT

Our objective is to define a strategy for efficiently out-
sourcing and composing security functions for mobile devices
according to their context and risks. First of all, we present a
mathematical representation to formalize the security compo-
sitions within our approach. We then describe how this model

F

cld 2

i cutl

< i< >

Fdev1 Fea1

Fig. 1: An example of composition graph. The dotted line
represents a cut between Fy, and F;4 as discussed in section
III-C. This separation can dynamically change over time,
according to the device’s resources for instance.

can be used for a given composition in order to determine its
cost, its quality and its scalability. Finally, we explain how
to exploit this modeling to dynamically provide a trade-off
between on-device and in-cloud security - that is, for a given
composition, the part of security functions to be deployed on
the mobile devices and the part to be deployed in the cloud.

A. Security compositions

Each composition C' can be expressed as a directed acyclic
graph C = (F,T) where F' = {sf1,sf2,...,5fn} is the set
of security functions that are part of the composition C' (i.e.
the vertices), and T = {t1,t2, ..., t,;, } the set of control flow
transmissions among the security functions (i.e. the edges). An
example of composition graph including a set of five security
functions is given by Figure 1. Several properties must be
enforced for such a graph:

e Edge-points: a composition graph includes at least
one entry point and one exit point - we call such points
edge-points. A single flow to be analyzed can enter
and exit the composition through only one entry point
and one exit point. This is mainly due to synchroniza-
tion purposes and duplicated traffic avoidance. On the
composition example, s f; acts as the only entry point
while sf3 and sf5 are the two possible exit points of
the composition.

e Connectivity and directivity: there must exist at
least one directed path from each function within the
composition - including the entry point - towards any
exit point of that composition. This ensures that a valid
traffic will always reach its final destination after all
the security treatments have been performed within
the composition.

e Weighting: some weights can be applied on the se-
curity functions that are part of a given composition
as explained in the next subsection. Depending on the
number of chosen metrics, these weights can be single
scalar values as well as n-ary vectors.

Mobile device L Configuration assessment

Security Manager

Openflow

Config
© | """ | checker

&\ . A7 controller

Cloud infrastructure

Remote destination
A

- £, M . I
- ! B
OpenFlow f‘/ | INTERNET
virtual switch

. . (Virtualized)
O sef:\(JllzttuafI:JZ:c(?c?on O—O security functions
Y composition

Management/Control

> traffic

—> Application traffic

Fig. 2: A cloud-based composable security architecture for mobile devices.

B. Composition characterization

Each composition involves a set of security functions to be
deployed either on the device or in the cloud. We explain now
how to determine the cost, the quality and the scalability of a
given composition according to its set of security functions.

1) Cost of a composition: The cost of a composition
defines the amount of used resources on the mobile device
when it employs the given composition for analyzing its traffic.
This cost depends on the ratio between the number of security
functions deployed on the device and the number of the
ones deployed in the cloud. We use the CPU usage as the
basic metric to estimate the cost on the mobile device. Thus,
each security function sf; of a given composition graph C
is weighted by a weight p(i) = p; expressing the amount of
CPU usage it would require if it would be executed on the
device. Equation 1 characterizes the overall usage P(C) of a
given composition C' = (F,T) with n = |F|, assuming (i) all
the security functions within C are run on the device, and (ii)
all the security functions have the same execution duration.
The overall usage consists in the average of the different CPU
usages induced by the security functions within C'.

S p(sfi)

PC) = card(F) with sf; € F (D
2) Quality of a composition: The quality of a composition

is likely to depend on numerous factors, such as the end-to-
end delay and the security effectiveness. We mainly focus
on the end-to-end delay in this work. In our context, we
define the end-to-end delay as the sum of (i) the transmission
delay overhead due to the redirection in the cloud, and (ii)
the treatment delays induced by the different security func-
tions on the traffic to be analyzed. As a result of the high-
performance networks usually provided within current cloud
infrastructures, we assume the transmission delays between
the security functions in the cloud are negligible. In contrast,
the treatment delay represents the required time for a security
function to perform all its security tasks on a given flow.
Thus, each security function sf; of a composition graph C is
weighted by a weight d(i) = d; expressing the treatment delay
it would induce if it would be run on the device. Equation 2
characterizes the overall end-to-end delay D(C) of a given
composition C' = (F,T) with n = |F|, assuming (i) all the
security functions of C are run on the device, and (ii) all

the security functions are run sequentially. This overall delay
consists in the sum of the redirection overhead J and the sum
of the treatment delays induced by the functions of C.

n

D(C) = d(sfi)+ 6 with sf; € F)

=1

3) Scalability of a composition: The scalability of a com-
position is its ability to correctly handle multiple network
flows (e.g. multiple applications, multiple devices) at the same
time. We are mainly interested in measuring the scalability
of a composition on the device-side in function of (i) the
CPU usage and (ii) the end-to-end delay. Thus, for a given
composition, the only difference between the two previous
points is that each weight on the different nodes has to be
multiplied by the number of different flows. Equations 3a
and 3b characterize the scalability of a given composition C'
respectively in terms of CPU usage and end-to-end delay, for
a given number K of network flows to be analyzed.

Scpu(C) = K.P(C)
Spap(C) = K.D(C),

(3a)
(3b)

C. Finding the right deployment of security functions

For a given composition C = (F,T), the set F' can be
divided into two subsets Fy.,, and F;q4, respectively containing
the security functions to be deployed on the device and the
ones to be deployed in the cloud. We call such a separa-
tion a cut for the composition. Determining the right cut is
a critical step to provide the right deployment of security
functions according to end-user requirements. For example,
one may prefer to reduce the overall delay when possible by
automatically running all the security functions of some given
short compositions on the device only. Another one may just
want to preserve the battery life of his device and to outsource
the entire compositions in the cloud.

1) Constraints on the cut: In order to ensure the complete-
ness of the cut and to avoid duplicated function executions
at the same time, Fy., and F,;; must be defined in such a
way that Fge, U Frqg = F and Fye, N Frg = {} Going
back to Figure 1, possible values for Fjy., could be for
example Fye, = {sf1,sfa} or Fye, = {sf1} as respectively
represented by the dotted line cut/ and cut2. Several graph-
related constraints must also be respected by an efficient cut:

Chec Forward

i trafficis
i suspicious

Security analyzer

Extract
malware
patterns

Drop

malicious traffic

traffic

Analyze

network

ruld traffic

traffic

allowed

results

Traffic passes

through the cloud

data
leakage

benign
traffic

Forward
traffic

Rewrite
data

Fig. 3: An example of composition for the policy "Block malicious outgoing traffic and prevent data leakage”.

e Round trip minimization: in order to avoid addi-
tional control flow round trips when analyzing a single
flow, there must be only one control flow transmission
between Fj., and F;4, which would arise only when
all the required security functions of a first subset
would have been executed; note that depending on the
traffic direction, the subset order can change.

o Edge-points partitioning: for consistency purposes
and duplicated traffic avoidance, the entry points and
exit points of a given composition must not be in-
cluded in a same subset.

2) Distributing functions: Choosing the right subset for
each security functions of the composition must be balanced
between - at least - cost and quality requirements. A possible
way of reaching those trade-offs can be to find optimal cuts on
the composition graph according to the different metrics dis-
cussed in the previous subsection and respecting the constraints
introduced above. For instance, one simple cut could define
F4e, such as the overall CPU usage cost of Fje, - similar
to Equation 1 since Fj., can be seen as a sub-composition -
would be less than a given threshold. In that case, the weights
associated to each functions within the composition would be
scalar values, since only one metric (CPU usage) is taken into
account. Conversely, these weights would be vector values if
the chosen metrics were both CPU usage and end-to-end delay.

IV. CLOUD-BASED COMPOSABLE SECURITY STRATEGY
FOR MOBILE DEVICES

We propose a new strategy for delivering composable and
dynamic security functions for mobile devices, as a transparent
service in the cloud. In comparison to traditional on-device
models, security is no more performed through a relatively
static heap of functions which are executed on mobile devices
only. Instead, it is mainly based on a set of security functions
that may be hosted in the cloud and dynamically composed
depending on the current context and risk level. By doing so,
our strategy aims at addressing different constraints in terms
of resource consumption, dynamicity, and maintenance. We
first describe the architecture supporting our security strategy.
We then present how such an architecture can be used to
implement security policies for mobile devices.

A. Architecture

Our proposed architecture [13] is depicted by Figure 2 and
involves three distinct entities: (i) on the left, the mobile device

with several running applications and an integrated OpenFlow
switch for redirection purposes; (ii) in the middle, a cloud
provider infrastructure hosting the outsourced mobile security
functions as well as a security manager and some additional
modules including an OpenFlow controller; (iii) on the right,
the remote destinations interacting with the mobile device
applications. When an application wants to communicate with
a remote destination, all the messages from and to that appli-
cation pass through the virtual switch of the device. At the
beginning of the communication, this switch may probe the
OpenFlow controller from the cloud provider in order to know
how to redirect the related messages for applying security
treatments on them. Depending on the risks and context,
the manager activates the appropriate security functions and
designs a dedicated security composition. By pushing the nec-
essary OpenFlow rules within the cloud provider network, the
controller then chains these security functions to finalize the
given composition building and notifies the switch. This one
finally makes the chosen incoming and outgoing traffic pass
through the composition before reaching the final destination.
Therefore, most of the security checks may be applied in
the cloud instead of on the devices. Security compositions
are designed and/or chosen by the manager according to
several factors such as the originating application, the re-
mote destination and the network properties. For example, a
mobile application requiring access to the enterprise intranet
would need to use a security composition including at least
an anti-malware and a data leakage prevention mechanism.
The features are not limited to traffic analysis - the security
manager can also host additional security functions such as
a configuration checker capable of controlling the proper
configuration of the mobile devices. Using our approach, most
of the security intelligence will be moved at the security
manager level, potentially minimizing user involvement.

B. Policies and scenarios

Security compositions built within our proposed archi-
tecture can be used to define and enforce security policies.
Security functions included in such composition can be run
sequentially, conditionally or concurrently, thus characterizing
the composition traversal. We describe the different categories
of traversals and show an example of policy implementation.

1) Composition traversal: Within our approach, the control
flow transmission when a security function sf; of a composi-
tion C = (F,T) has terminated can use several schemes:

e Sequential scheme: the transmission is sequential if
the control flow always goes to the function sf; after
sf; has finished. In the composition graph C, sf; has
only one outgoing edge, which goes towards s f;.

e Conditional scheme: the transmission is conditional
if the control flow goes from sf; to sf; after sf; has
finished and a specific condition is respected. In the
composition graph C, sf; has as many outgoing edges
as the number of potential conditions N¢, and these
edges respectively go towards sf;,sfr ... sfit+nNe

e Concurrent scheme: the transmission is concurrent
if the control flow goes simultaneously to multiple
function sf;...sf,, after sf; has finished. In the com-
position graph C, sf; has as many outgoing edges
as the number of next functions N, and these edges
respectively go towards sf;,sf ... sfitng-

2) Scenario example: Let consider the security policy
”Block malicious outgoing traffic and prevent data leakage”.
The Figure 3 describes the composition associated to this
policy using a typical composition language, called BPMN?
language. When the mobile device outgoing traffic enters the
composition, it is first checked against several firewall rules. If
the traffic is allowed, it is then simultaneously inspected by a
lightweight intrusion detection system (IDS) and a data leakage
prevention engine (DLP). If the IDS flags the traffic as suspi-
cious, a Deep Packet Inspection (DPI) is then used in order to
extract all malware-related data within the given traffic. If the
traffic is not suspicious, the next security function after the IDS
is the security analyzer. In contrast, the next security function
after the DLP is always the security analyzer. This latter is
actually in charge of synchronizing and correlating the security
information revealed by the IDS, the DLP, and potentially
the DPI. At the end of this synchronization and correlation
step, the security analyzer is able of determining whether or
not the traffic is safe and can be forwarded to the remote
destination. The corresponding graph representation of that
composition is given by Figure 4, where sf1, s fa, sfs, sfs and
s f5 respectively represent the firewall, the DLP, the IDS, the
DPI and the security analyzer. Control flow starts at the firewall
(entry point) and finishes at the security analyzer (exit point).
Note that all composition traversal schemes are exploited in
this composition: concurrent traversal right after the network
firewall (red edges on the picture), conditional traversal right
after the IDS (blue edges), and sequential traversal right after
the DLP and the DPI (black edges).

V. PROTOTYPING & EVALUATION

In this section, we detail the experimental testbed we setup
to prototype our strategy. We then relate the experiments
we conduced to evaluate the performances of the security
compositions, in terms of resource cost and end-to-end delay.

A. Experimental setup

The prototype we developed is composed of three distinct
parts in link with the functional architecture, namely (1) the
mobile device to be protected, which runs an OpenFlow client,
(2) the cloud infrastructure hosting mobile security functions,

2Business Process Model and Notation

,cut
7 example pP5
Ky

<D<t o>

F dev F cld

Fig. 4: Composition graph for a security policy “Block mali-
cious outgoing traffic and prevent data leakage”.

and (3) the remote destinations interacting with the mobile
device. Along this prototype, our setup includes two different
types of security functions and a small Android application to
generate network traffic.

1) Mobile device: We used a Samsung Galaxy S3 device
with a custom CyanogenMod ROM (10.2.1 intl) running
Android Jelly Bean (4.3.1). The OpenFlow client embedded in
the device was an Open vSwitch (OVS) version 2.1.0, which
runs in the kernel space. Our device setup is strongly inspired
from [23], the main differences being that (1) we do not need
to setup a virtual ethernet interface, and (2) we do not embed
the control plane (i.e. the OpenFlow controller) on the device.

2) Cloud infrastructure: We used the Mininet emulator [2]
in order to build and configure the cloud infrastructure. We em-
ulated an OpenFlow-based network containing OVS switches
(version 1.10.0) to forward the traffic and standard Linux
hosts to host security functions. The OpenFlow controller
was a dedicated controller running within the Mininet virtual
machine. We chose the POX controller for our experiments.
Thus, the traffic redirection and forwarding logic required
within our architecture was implemented as a simple POX
module written in Python.

3) Security functions: We chose the iptables/netfilter [3]
firewall and the Suricata IDS/IPS [6] for our experiments.
While the former is a built-in future in both Android (device)
and Ubuntu (emulated hosts), we had to cross-compile Suricata
for Android (without NFQUEUE support, thus only in IDS
mode). For both of these security functions, we developed
custom scripts to automatically generate a large number of
rules. Those scripts were leveraging a large list of malicious IP
addresses taken from a public database to generate correspond-
ing rules in order to block traffic to/from these IP addresses.

4) Remote destinations: Due to some Mininet-related lim-
itations, we chose to emulate additional Linux host within
Mininet to act as the remote destinations (e.g. HTTP server).

5) Workload: We needed to generate a significant amount
of network traffic from the smartphone to evaluate the perfor-
mances of the security functions. To this end, we developed a
small Android application able of sending a given amount of
HTTP requests - and receive the associated HTTP responses -
to a web server at a rate of one request each 500 ms. The total
number of HTTP requests to be sent and the destination web
server were dynamically specified according to the experiment.

50

ruleset = 10000 rules ——
20000 rules ——<—

45

40

35

30

25

20

Percentage of CPU usage on the device

0 10 20 30 40 50 60 70 80 % 100
Percentage of rules put in the cloud

(a) Maximum CPU usage induced on the device by the IDS
function according to the ratio of rules it carries.

B. Experimental results

We have performed an extensive set of experiments to
evaluate the performances of our solution. We mainly focus
on the cost and the quality for a given composition on
the device side. For each experiment, the compositions were
proactively built and theirs security functions were placed as
inline middleboxes - that is, directly between two OpenFlow
switches.

1) Maximum CPU usage and security cover: Our first set
of experiment focuses on the resources cost induced on the
device by an IDS function for which the set of rules is shared
across the cloud and the device. We divide the experiment
phase in rounds according to the number of rules the device
carries. For each round, the same amount of traffic is generated
by the mobile device. We monitor the maximum CPU usage
induced by the IDS on the device using adb. Results on Figure
5a show that the maximum CPU usage reduces linearly on
the device as the number of IDS rules carried in the cloud
increases. For instance, the maximum CPU usage induced by
the IDS on the device is about 28% when its carries 9000 rules,
and 7% when it carries 1000 rules. We also note that when
no rule at all is put on the device, the IDS still induce a CPU
usage of 4% - for comparison, the OpenFlow client induce an
average CPU usage of 1-2%. In addition, we observe that the
maximum CPU usage remains almost the same on the device
whether it carries 80% of 10000 rules or 40% of 20000 rules
for example. We therefore conclude that, for a same amount
CPU usage on the device, security cover is better when the
most of firewall rules is outsourced in the cloud.

2) Average end-to-end delay: Our second set of experiment
deals with the average end-to-end delays induced when using
firewall compositions of variable length, both in the cloud
and on the device. Each firewall within the compositions
contains a set of 1000 rules. Cloud-based firewall compositions
are distributed across several hosts and either use sequential
or concurrent traversal. For each round, the same amount
of traffic is generated by the mobile device. As stated in
III-B2, we consider that transmission delays are negligible
within our testbed, and only treatments delays are therefore
likely to influence the end-to-end delays. Results on Figure
5b show that average end-to-end delays induced by sequential
compositions grow significantly on the device according to
the number of firewall rules it carries. This growth is also
slightly visible for cloud-based sequential compositions, yet

70

on-device —=—
in-cloud sequential —e—
in-cloud concurrent --- &

65

60

55

50 =

45

End-to-end delays (in seconds)

40 e e

35 e

30

0 1 2 3 4 5 6 7 8 9 10
Length of the composition

(b) Average end-to-end delay induced by firewall compositions
up to ten firewalls (each with 1000 rules).

it offers much lower latency compared to on-device compo-
sitions. Cloud-based concurrent compositions show the best
results since security functions can adequately scale-out. Such
performances may however be balanced with the overhead
induced by an eventual synchronization step required after the
concurrent processing. We conclude that average end-to-end
delays induced by security compositions can be significantly
reduced when most of the compositions functions are ran in
the cloud, both in sequential and concurrent ways.

VI. CONCLUSIONS

We have presented a novel solution for outsourcing security
functions in the cloud, and dynamically deploying security
compositions for protecting mobile devices. These compo-
sitions are built by chaining the security functions using
OpenFlow rules pushed into the cloud network. Using our
approach, compositions are transparently deployed between the
mobile devices and the remote destinations they are interacting
with, thus providing the basis for an efficient and transparent
network-based security. We built a mathematical model that
permits to formalize the security compositions and to define
their different properties, with respect to their cost, quality
and scalability. We designed an OpenFlow-based network
architecture supporting our approach, and developed a first
implementation prototype serving as a base for performance
evaluation. Experimental results show the benefits of our strat-
egy on the device side: the maximum CPU usage induced by
a standard IDS can be reduced up to 20-25% according to the
number of IDS rules that are outsourced in the compositions;
similarly, firewall treatment delays are shorter when most of
their rules are outsourced from the devices. For a given amount
of CPU usage on the devices, we also show that the security
coverage may be significantly improved when the most of the
security processing is done in the compositions.

For future work, we plan to explore to what extent we can
automate our solution, from the security policy specification
to the deployment of associated security compositions. To this
end, we are interested in analyzing different machine-learning
algorithms on a large dataset of mobile communications.
In the meantime, redirection mechanisms are a key part of
our solution, and we want to study possible alternatives to
OpenFlow (e.g. NETCONF [4]). Finally, we plan to explore
how the security functions within a same composition can
interact each other and share some security information, thus
allowing a consistent processing of the network traffic.

ACKNOWLEDGMENTS

This work was partly funded by Flamingo, a Network of

Excellence project (ICT-318488) supported by the European
Commission under its Seventh Framework Program, and by

the

[1]

[3]
[4]

[5]

[6]
[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

AKD STIC-AmSud Project.

REFERENCES

More smartphones were shipped in Q1 2013 than feature phones,
an industry first according to IDC. http://www.idc.com/getdoc.jsp?
containerld=prUS24085413. Last visited in august 2014.

The Mininet emulator. http://mininet.org/. Last visited in september
2014.

The Netfilter firewall. http://www.netfilter.org/. Last visited in septem-
ber 2014.

The Network Configuration Protocol (NETCONF). http://tools.ietf.org/
html/rfc6241. Last visited in september 2014.

The OpenFlow specifications . https://www.opennetworking.org/
sdn-resources/onf-specifications/openflow. Last visited in september
2014.

The Suricata IDS/IPS. http://suricata-ids.org/. Last visited in september
2014.

Mobile threats report from Juniper. http://www.juniper.net/us/en/forms/
mobile-threats-report/, 2013. Last visited in august 2014.

B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford. A
Slick Control Plane for Network Middleboxes. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, HotSDN 13, pages 147-148, New York, NY, USA, 2013.
ACM.

T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: A Cloud
Networking Platform for Enterprise Applications. In Proceedings of the
2Nd ACM Symposium on Cloud Computing, SOCC *11, pages 8:1-8:13,
New York, NY, USA, 2011. ACM.

S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul. FlowTags: En-
forcing Network-wide Policies in the Presence of Dynamic Middlebox
Actions. In Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, HotSDN *13, pages 19-24,
New York, NY, USA, 2013. ACM.

A. Gember, A. Krishnamurthy, S. St. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar. Stratos: A Network-
Aware Orchestration Layer for Middleboxes in the Cloud. CoRR,
abs/1305.0209, 2013.

G. Gibb, H. Zeng, and N. McKeown. Outsourcing Network Function-
ality. In Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, HotSDN 12, pages 73-78, New York, NY, USA,
2012. ACM.

G. Hurel, R. Badonnel, A. Lahmadi, and O. Festor. Outsourcing
Mobile Security in the Cloud. In Monitoring and Securing Virtualized
Networks and Services - Sth IFIP WG 6.6 International Conference
on Autonomous Infrastructure, Management, and Security, AIMS 2014,
Brno, Czech Republic, June 30 - July 3, 2014. Proceedings, pages 69—
73, 2014.

R. Jin and B. Wang. Malware Detection for Mobile Devices Using
Software-Defined Networking. In Proceedings of the 2nd GENI
Research and Educational Experiment Workshop (GREE 2013), pages
81-88, 2013.

C. Kilinc, T. Booth, and K. Andersson. WallDroid: Cloud Assisted
Virtualized Application Specific Firewalls for the Android OS. In
Proceedings of the 11th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom
2012), pages 877-883, 2012.

M. La Polla, F. Martinelli, and D. Sgandurra. A Survey on Security for
Mobile Devices. Communications Surveys Tutorials, IEEE, 15(1):446—
471, First 2013.

J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian.
Virtualized In-Cloud Security Services for Mobile Devices. In Pro-

ceedings of the 1st Workshop on Virtualization in Mobile Computing
(MobiVirt’08), page 31-35, 2008.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid
Android: Versatile Protection for Smartphones. In Proceedings of the
26th Annual Computer Security Applications Conference (ACSAC’10),
page 347-356, 2010.

Z. A. Qazi, C.-C.n Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
SIMPLE-fying Middlebox Policy Enforcement Using SDN. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 27-38, New York, NY, USA, 2013. ACM.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design
and Implementation of a Consolidated Middlebox Architecture. In
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, NSDI'12, pages 24-24, Berkeley, CA,
USA, 2012. USENIX Association.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making Middleboxes Someone else’s Problem: Network
Processing As a Cloud Service. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 13-24. ACM, 2012.

P. Subharti, R. Jain, J. Pan, J. Iyer, and D. Oran. OpenADN: Mobile
Apps on Global Clouds Using Software Defined Networking. In
Proceedings of the Third ACM Workshop on Mobile Cloud Computing
and Services, MCS *12, pages 1-2, New York, NY, USA, 2012. ACM.

K-K. Yap, T-Y. Huang, M. Kobayashi, Y. Yiakoumis, N. McKeown,
S. Katti, and G. Parulkar. Making Use of All the Networks Around Us:
A Case Study in Android. In Proceedings of the 2012 ACM SIGCOMM
Workshop on Cellular Networks: Operations, Challenges, and Future
Design, CellNet *12, pages 19-24, New York, NY, USA, 2012. ACM.

S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders.
Secloud: A Cloud-based Comprehensive and Lightweight Security
Solution for Smartphones. Comput. Secur., 37:215-227, September
2013.

