Optimizing Capacity Allocation for Big Data
Applications in Cloud Datacenters

Sebastiano Spicuglia*, Lydia Y. Chen’, Robert Birke, Walter Binder*
*Universita della Svizzera italiana (USI) — Faculty of Informatics
fIBM Research Zurich — Cloud & Computing Infrastructure

Abstract—To operate systems cost-effectively, cloud providers
not only multiplex applications on the shared infrastructure
but also dynamically allocate available resources, such as power
and cores. Data intensive applications based on the MapReduce
paradigm rapidly grow in popularity and importance in the
Cloud. Such big data applications typically have high fan-out of
components and workload dynamics. It is no mean feat to deploy
and further optimize application performance within (stringent)
resource budgets. In this paper, we develop a novel solution,
OptiCA, that eases the deployment of big data applications on
cloud and the control of application components so that desired
performance metrics can be best achieved for any given resource
budgets, in terms of core capacities. The control algorithm of
OptiCA distributes the available core budget across co-executed
applications and components, based on their “effective’” demands
obtained through non-intrusive profiling. Our proposed solution
is able to achieve robust performance, i.e., with very minor
degradation, in cases where resource budget decreases rapidly.

I. INTRODUCTION

Today’s cloud datacenter providers face ever stringent
energy constraints, while delivering differentiated hosting ser-
vices to applications. Various big data applications, based on
the MapReduce computing paradigm, emerge as cores of busi-
ness operation. One such example is Shark [1], an interactive
analytic engine that can process SQL and advanced analytics
at scale. The key feature of big data applications is high fan-
out, composed of a large number of distributed components
that exhibit disparate resource demands and complex execution
dependencies. It is thus intricate to deploy such big data
applications, especially in terms of resource allocation for each
component.

In addition to the inherent complexity of system stacks,
the difficulty of managing big data applications for datacenter
providers is further exacerbated by the transient dynamics of
cloud systems. First of all, the available system resources
can fluctuate, due to energy optimization strategies which
consider energy prices [2] and cooling conditions [3]. Also, the
limited resources are shared among applications, each of which
is associated with different business values and performance
requirements. Second, as applications tend to take advantages
of pay-as-you-go pricing models in the cloud, application
workloads are highly transient and dynamic [4].

In this paper, we address a very challenging question: how
can todays datacenter providers assist the deployment and
resource allocation of big data applications under (stringent)
resource constraints and meanwhile guarantee differentiated
performance across co-executing allocations? To such an end,
we develop a solution, termed OptiCA, that enables two aims:

efficient configuration and allocating computational capacities,
in the unit of divisible CPU cores, for big data applica-
tions. OptiCA systematically orchestrates the configuration
of application components such that the deployment process
can be easily automated and independent of the underlying
hardware and thus portable. OptiCA assigns CPU cores budget
to applications based on their business value and to each
application component based on its effective demand, which
is obtained non-intrusively by profiling of the components’
utilization. In particular, we are able to control CPU cores
being fractional utilize by application components such that
allocated core budget of application is best met '

In terms of design, OptiCA is composed of four modules,
namely manager, driver, controller, and power monitor. The
former two focus on deploying and configuring the applica-
tions, while the latter two are responsible for the utilization
monitoring and the budget enforcement. We evaluate OptiCA
on a modern multicore cluster executing two state-of-the-
art big data application benchmarks, BigDataBench [5] and
Terasort [6], both built on two complex yet different software
platforms. Our evaluation results show that OptiCA is able to
effectively assign resources to the components such that perfor-
mance degradation, in terms of completion time, is minimized
in cases where available core budgets rapidly decrease.

Our contributions are twofold. We present an efficient and
automated deployment process for big data applications. We
develop a practical and robust solution which can accurately
capture the resource demands of distributed components of
big data applications, and further allocate the desired CPU
resources. Our results are well validated by experiments con-
ducted on prototype systems - representing the state-of-the-
art execution environment and complex big data execution
platforms in production systems.

The outline of this work is as follows. Section II provides
an overview of the system and big data applications. We
detail OptiCA and its allocation algorithm in Section III. In
Section IV we present extensive evaluation results, followed
by the related work in Section V. Section VI concludes with
summary and future work.

II. SYSTEM AND APPLICATIONS

In this section, we describe the general system setup and
application model considered in this study. In particular, we
consider a primary application and a background application,

'In this paper, we define computational capacities by the unit of divisible
CPU cores, as CPU cores can be fractionally utilized. We interchangeably use
computational capacity allocation and (divisible) (CPU) core allocation.

co-executing on a homogeneous cluster, which has a given
resource budget in terms of fully utilized CPU cores.

A. System

Here, we explain the resource budget available for co-
executing applications in the system. A cloud cluster consists
of N servers, each having K cores, and must fulfill cer-
tain power budgets that are often driven by energy pricing
schemes [7]. We particularly consider the case where both
servers and cores are homogeneous and servers are always
on to guarantee access to the distributed data, e.g., HDFS [8].
We assume a core has a normalized capacity of one and can
be utilized, in the range [0, 1], by multiple applications simul-
taneously. As the power consumption of a node is composed
of a fixed term and dynamic term, which is shown linearly
proportional to the aggregate core usage [9], we focus on
dynamic power budget, which equals to the power budget
subtracted by the fixed term of all nodes.

Further simplifying the idea of budget, we define the
concept of global resource budget, representing the amount of
available core capacities, B € [0, B™%"], aggregated across all
nodes. The maximum amount of core capacities, B™*, equals
to the total number of fully-utilized cores in the cluster, i.e.,
N - K. Note that as a core can be kept partially utilized, the
core capacities and consumption are continuous values. Due
to the linear relationship between the dynamic power and core
usage, there is a one-to-one mapping between power budget
and resource budget in the system considered. Consequently,
we resort to control core utilization so to achieve any given
power/resource budget in a non-intrusive manner. We need to
ensure that the aggregated core usages of all nodes are less than
the available budgets. Note that we assume that the values of
available budgets are decided by a global optimization scheme
which is out of the scope of the paper.

B. Big Data Applications

In terms of applications, we consider two types: primary
big data applications, such as Shark [1] and YARN [10], and
background applications, such as Pi (refer to Section IV-A for
further details on the applications). These two application types
differ in both their business values, performance requirements,
and workload characteristics. Big data applications are highly
distributed and composed of several components which can
be hosted on the same physical nodes and cores where the
background applications execute their work. Figure 1 depicts a
cluster of four physical servers hosting components of Terasort
and Pi, the primary and background application, respectively.
Terasort is developed on the Apache Hadoop NextGen MapRe-
duce (YARN).

For a better illustration of big data application components,
we provide the example of a basic YARN installation to run
MapReduce jobs. The underlying HDFS requires a minimum
of one namenode plus three datanodes to satisfy a replication
factor of three. Correspondingly, the following additional six
components are needed: three nodemanagers running the map
and reduce tasks, one resource-manager scheduling tasks, one
job-history storing task statistics, and one Domain Name
Server (DNS). A total of ten components are needed, each
requiring a more or less lengthy cross configuration process

)i () Terasort
serverl

datanode2

[nodemanagerzj [dns-server]

server2

datanodel

[nodemanagerl][

bench]

[slave-pi2][res.manager] [slave-pil][namenode]

server3 serverd

[nodemanager 0] datanode0

[slave-pi0] [job-history]

[nodemanageﬂ]

[slave-pi3][datanode3]

Fig. 1: Deployment of the Terasort and Pi on a cluster of 4
physical servers.

among components as well as of the underlying physical
servers. Nevertheless, applications developed upon different
types of data processing platforms, such as Shark, have ad-
ditional application-specific components. More details about
the applications can be found in Section IV. Note that the
example described in this paragraph is slightly different from
that one shown in Figure 1.

C. Application Core Budget

The challenge faced by providers is how to assist their
clients to control the resource budget in a performance-
fulfilling and non-intrusive way. We assume that providers
need to allocate the resource budget across applications and
their components, with respect to their relative business values.
In particular, we consider a proportional fair budget allocation
scheme for applications, whose weights are given by their
business values. We assume that the estimation of such values
is given and out of the scope of this paper. We denote the
weights for big data application and background application
executing on the cluster as «; and «q, respectively. The
resource budget allocated to application ¢ is thus

a; .
B; a1+o¢2B’Z {1,2} €))

The global cores consumption of all components belonging
to an application should be less or equal to the budget. Essen-
tially, our proposed solution aims at assigning and deploying
the core budget across the distributed components, under a
applications proportional fair scheme.

III. OpTICA

In this section, we first detail the architecture of Op-
tiCA that provides efficient deployment and budget allocation
scheme of complex applications. In particular, our solution
addresses the complexity of cross-configuration according to
inter-component and component-node dependencies. Secondly,
we describe a novel algorithm used in the controller module
that allocates core budget to components, based on the concept
of effective demand.

A. Architecture

OptiCA is composed of four modules, namely, manager,
driver, controller and powermon (Figure 2). The former two
are related to the application deployment and the latter two are
used for computation allocation. Each application component
is executed in a Docker container [11], which thus can be
hosted on physical nodes with a great mobility. Note that the
container is conceptually similar to the virtual machine but

—appl @app2 oot

management server

server?2

A
‘ T
<- metrics budget -> | Treoo- -

budget (manager)
—> (manager) [component1)
(controller) £ onent?2 |
e a serverl e
[(component?2 |
I | component?2 |
‘ [componentl |[/ .
| P — /' |component2|
| [powermon | g 3
| '-‘ \:driver}
|
|

Fig. 2: Architecture of OptiCA.

more suitable for fast deployment due to its lower overhead.
For instance, namenode and datanode for underlying Hadoop
File System used by big data applications are hosted on two
different containers. Essentially, the core budget received by a
component can be seen as a container budget. An additional
note on the applicability of proposed solution is that OptiCA
is generally portable across Linux systems.

1) Deployment Related Modules: Prior to introducing the
details of the modules related to the deployment, we use the
basic example of Hadoop introduced in the previous section
to illustrate the configuration process. First of all, a total of
10 components need to be installed, followed by the network
configuration of all components, i.e., registering hostnames at
DNS. Typically, the resource allocation of each component
should be specified upon the deployment time by the appli-
cation; otherwise, they are left unbounded. Then, Hadoop is
configured, starting from formatting namenode, and setting
the URL of component’s configuration files. Afterwards, all
components need to start in a specific sequence so to execute
big data applications properly.

To ease the deployment of applications across platforms,
our solution relies on one manager module per application and
multiple driver modules per application component. Both mod-
ules are customized for applications, specifically extracting
out configuration parameters and detailing out aforementioned
configuration sequences. The manager initiates the deployment
of all components and orchestrates the sequence of cross
configurations among drivers, via a REST API over HTTP.
Here, the components’ resources are not defined; instead,
they are modulated by our proposed ‘“controller” module
at run-time. The main responsibility of the manager is to
cross-configure the network of the components. As big data
applications are developed using the MapReduce paradigm,
the manager modules of different big data applications are
very similar and, thus, reproducible with minimum effort.
Drivers are essentially daemons that automatically start upon
the instantiation of components and apply the configuration
given by the manager. In summary, the advantages of the pro-
posed design are automation, reproducibility, and portability
of lengthy configuration processes of big data applications on
different platforms and hardware systems.

2) Core Allocation Related Modules: To control the budget
allocation of each application and their components, we use a
central controller module hosted on a dedicated management
server and distributed powermon modules on each physical
server. The controller splits the budget across applications
and components. Each powermon has two key functionalities:

monitoring the resource consumption of containers hosted on
the same node and enforcing their budgets.

In particular, as described is Section II-C, the controller
first splits the available core budget across big data application
and background application based on their weights. Then,
it decides the computation allocation of components for the
big data application, based on the algorithm described in the
following subsection. In addition to satisfy the application
budget, the controller also needs to respect the constraints
given by the physical server capacities: the sum of cores
allocated to containers co-located on a server cannot exceed the
total number of cores equipped on that server. The controller
always gives high priority to the big data application, when
there is insufficient core resource at server. In other words,
the component of background application can only receive the
residual core capacities, left by the big data application.

B. CPU Core Budgets for Component

Here, we describe how OptiCA decides the CPU compu-
tational budgets across the M; components of an application,
denoted as C; ;, where 1 = 1,2 and j € {1...M;}. The sum
of component budget must be less or equal to the application
budget, B;,

M;
> Ci; < B)
j=1

The basic idea of the proposed algorithm is to allocate
cores based on the components’ effective consumption, U, ;,
collected during a profiling phase without any limitation. As
shown in Figure 3, U;; is defined as CPU consumption
measured during non-idle periods of the profiling phase, i.e.,
utilization is strictly greater than 0. During the profiling phase,
big data applications are given all the available core resources
of the entire system, i.e., without any background application
running and without any CPU capping enforced on any com-
ponent. Big data applications are executed with a few iterations
to obtain the average values of effective consumption. We
note that the values of effective consumption is higher than
average consumption, which considers both busy times and
idle times. As such, effective consumption can better capture
the real resource demand of each component.

We assign cores to components, based on their effective
consumption as weights,

Ui,

i (3)
z:ﬁia LQJ

Cij = w; ;- B;, where w;; =

Moreover, computation allocation of every component can
not exceed the total available core capacity on a node, i.e.,
Ci; < K. And, actual core utilization of each component
needs to be less than the allocated capacity. In our solution,
we do not specify any core-pinning for the components and
we leave the decision up to the underlying OS scheduler. Note
that the core budgets are continuous values, as we implement
them via the concept of CPU time described as follows.

The computation allocation to components, C; ;, is trans-
lated into the maximum CPU time given a time period, also

average consumption

consumption

‘ >

idle ‘ busy ‘ idle ‘ time

Fig. 3: Core consumption: average vs. effective

known as CPU-bandwidth. In particular, one can use the
parameter pair (quota,period) in the cgroup, where period
denotes the duration of using C;; and quota represents the
resulting total core consumption, i.e., quota = period - C; ;.
The range of period is between 1 ms and 1 s. On the one hand,
a small period provides a fine-grained control. On the other
hand, the lower is the period, the higher is the overhead to
enforce the quota. Based on an experimental evaluation, we
choose a period of 100 ms. With such a value the budget can
be best enforced without significant performance degradation.

Overall, the implementation of allocation schemes based
on the effective consumption is both application and big-data
platform independent, as we rely on standard Linux features.
Moreover, the required profiling phase is non-intrusive to
application, relying only on core utilization values associated
with each component.

IV. EVALUATION

In this section we evaluate our proposed allocation solution
on a representative prototype cluster, hosting two primary big
data applications, namely BigDataBench [5] and Terasort [6],
as well as a background application computing 7, termed Pi.
BigDataBench and Terasort are built on two state-of-the-art
big data platforms, Shark [1] and YARN [10], respectively. We
present the performance degradation of big data applications,
particularly the completion times, under different levels of
core budgets. Moreover, we benchmark the proposed alloca-
tion schemes based on effective consumption against other
approaches, which rely on the information of components’
placement or average core consumption.

In the following, we first detail out the evaluation setup, in-
cluding the system architecture of the cluster and the prototype
of the software stacks of the applications. Then, we describe
the parametrization of the proposed allocation schemes, fol-
lowed by the extensive evaluation on representative big data
systems.

A. Experiment Setup

Here, we first describe the available resources of the
underlying system and application components. We then detail
three experimental scenarios and three alternative approaches.

System: Our cluster consists of 4 physical servers, each of
which equipped with 8 cores, at least 16 GB of RAM, and 2.7
TB RAID storage. There is an additional management node,
hosting the managers of the applications and the controller.
All servers are connected with 10 GB Ethernet links. Servers
run Ubuntu 14.04. The maximum amount of available core
capacity is B™* = 32 (4 - 8) to be distributed across co-
located applications and their components.

e

@ BigDataBench
serverl

datanode2

[sharkslavezj[namenode]
[slave-pi2][sharkbench }

server2

datanodel

[sharkslavel]

[slave-pil][sparkmaster]

serverd

sharkslave3

[slave-pi3][datanode3]

server3

sharkslave0

[slave-pi0][datanode0]

Fig. 4: Deployment of the BigDataBench and Pi on a cluster
of 4 physical servers.

Applications: Our target applications are BigDataBench
and Terasort, as representative of primary big data workloads;
and Pi, 7 estimation based on Monte Carlo method, is the co-
executed background application. The performance metrics of
interest are the average completion times for big data appli-
cations and throughput for Pi. In the following, we describe
the specific configurations and the datasets of aforementioned
benchmarks.

BigDataBench runs 5 different SQL queries over a varying-
sized dataset stored in the HDFS filesystem. This benchmark
is composed of 11 components: 4 sharkslaves, 4 datanodes,
1 namenode, 1 sharkbench and 1 sparkmaster. The queries
are submitted to sharkbench, a central gateway that interprets
them and defines a direct acyclic graph of tasks. The graph
is sent to the sparkmaster, which orchestrates the sequence of
tasks executions on the sharkslaves. The slaves, in turn, interact
with namenode and datanodes to access the dataset stored in
the HDFS filesystem. In particular, we select queryla and
querylb.

Terasort is a standard Hadoop benchmark which sorts a
given dataset stored on HDFS. Given the size of the target
cluster, we choose a dataset of 10 millions rows, approximately
1GB. This benchmark is composed of 13 components: 1
namenode, 4 datanodes, 1 resourcemanger, 4 nodemanagers,
1 job-history, 1 DNS server, and 1 client named bench. Their
functionalities are explained in Section II-B.

Pi is a distributed CPU-intensive micro-benchmark made
of two kinds of components: master and slave. Slaves apply a
simple Monte Carlo based algorithm and the master aggregates
results from multiple slaves and computes an estimation of 7.
In our setup, we consider one master and four slaves.

In terms of experiments, we consider the following three
co-execution scenarios: (1) executing queryla of Big-
DataBench co-located with Pi, shown in Figure 4, (2) executing
querylb of BigDataBench co-located with Pi, shown in Fig-
ure 4, and (3) executing TeraSort co-located with Pi, shown
in Figure 1. Moreover, we particularly consider the weights
of the big data application and the background application as
0.8 and 0.2, respectively, so we split the available core budget
between these two applications according to Equation 1.

Baseline algorithms: As a comparison basis for the algo-
rithm proposed in Section III-B, to which we refer as Opt 1CA,
we implement the following three simple algorithms to allocate
core budget to application components.

e fair. The application core budget is split evenly
across the components.

e static. The application core budget is first split
evenly across the physical servers. Then, each server
share is evenly split across the components. Note
that static is equal to fair when the number of
components per server is balanced.

e util. Each component receives the core capacity
based on weights obtained from average core con-
sumption values in the profiling phase. Note that the
difference with the proposed allocation scheme is that
we rely on the effective consumption values, collected
only during non-idle times.

B. BigDataBench and Pi

Here, we present the results of executing queryla
and querylb of BigDataBench with Pi, when the
global budget ranges in {8,12,16,24,32}. The corre-
sponding application budget for BigDataBench and Pi are
{6.4,9.6,12.8,19.2,25.6}, and {1.6,2.4,3.2,4.8,6.4}, re-
spectively. We summarize the average completion times of
BigDataBench and throughput of Pi in Figure 5. In addition to
the average bar, we also plot the minimum and the maximum
completion times across the 5 repetitions of the same query.
Overall, the completion times decrease and throughput in-
creases with higher available core budgets, across all allocation
schemes.

The trends of completion times of queryla and
querylb are similar across different algorithms and under
different core budgets. For a given budget, Opt iCA always
results into the lowest completion time, especially in the
case of scarcity of resources. In particular, when application
budget is 6.4, Opt iCA can achieve query completion times
1.5 smaller than util, the second best algorithm. When the
core resources are abundant, such as budget is 25.6 cores,
the differences across algorithms are minor. Moreover, looking
at performance degradation when the core budget reduces by
three quarters, i.e.25.6 to 6.4, the average completion times
under Opt 1 CA increase by only 2X, whereas other algorithms
results into an increment of 2.8X up to 4X.

We present the throughput of Pi executing with queryla
and querylb, in Figure 5b and 5d respectively. One can
see most of algorithms achieve similar levels of throughput,
except for the case of core budget of 6.4. This is due to all
Pi slaves receiving similar amount of computation allocation.
When Pi receives core budget of 6.4, static algorithm
achieves the highest throughput, roughly 1.44 times better than
util (the worst algorithm). This is attributed to the fact that
static policy is able to even out the resource consumption
between the two applications better. As such, when the total
core budget is 32 (resources abundant), static policy can be
considered as a good alternative to Opt 1 CA, i.e., slightly lower
completion time of queryla and querylb and a higher
throughput of Pi.

Moreover, we also investigate how the allocated cores
are actually consumed under different schemes. To formally
quantify how effectively the budget is consumed, we propose a
metric, termed slack, defined as the average difference between
the budget and the global consumption samples. Table I
summarizes the values of slack for all the algorithms, both
the absolute and relative value (shown within brackets). The

Algorithm
Budget fair static util OptiCA
8 4.8 (60%) 5.2 (65%) 4.8 (60%) 3.7 (46%)
12 7.4 (62%) 7.7 (64%) 7.3 (60%) 5.7 (47%)
16 10.0 (62%) 10.3 (64%) 9.6 (60%) 8.3 (52%)
24 15.5 (65%) 15.6 (65%) 14.5 (60%) 14.4 (60%)
32 23.1 (712%) | 21.3 (67%) | 22.5 (70%) | 22.2 (70%)

TABLE I: BigDataBench and Pi: absolute and relative slack
values across different algorithms.

relative values can be interpreted as the percentage of global
budget potentially wasted. For low budgets, Opt iCA has a
slack much smaller than all the other algorithms; while as the
budget increases the difference among algorithms decreases.
Combining this with the observation about completion times,
we thus conclude that Opt iCA can more effectively assign
core capacities to components which have higher demands.

C. Terasort and Pi

In this subsection, we present the results of executing
Terasort and Pi, using the same set of budget values of the
previous subsection. In Figure 6a and Figure 6b summarize
the completion times of Terasort and throughput of Pi, respec-
tively. The overall findings here are similar to the experiment of
the previous subsection: Opt 1CA can achieve low completion
times for Terasort and decent throughput for Pi when the core
budget is low. In particular, the average completion time of
OptiCA is lower than the second best algorithms by 30% to
40%, except in the case of budget being 9.6. Moreover, when
the application budgets for Pi are 4.8 and 6.4, static policy
can achieve higher throughput. Again, this can be explained by
the free core capacity left by Terasort under different schemes.
Both util and OptiCA tend to grab more core resources
on physical server 1 and thus very little core capacity can be
given to Pi computation. In addition to low average completion
times, Opt iCA systematically has the minimum completion-
time under different core budgets.

In summary, Opt i CA is able to achieve robust performance
for big data applications under different core budgets, by
efficiently allocating component budgets.

V. RELATED WORK

Motivated by the increasing importance of big data appli-
cations in today’s cloud data centers, there is a plethora of
related studies addressing the performance issues of big data
from the perspectives of management platforms, and resource
allocation of MapReduce jobs and tasks.

A. Big Data Platforms

Several platforms have emerged in recent years to ad-
dress the challenges of resource management of big data
applications at cluster level. Mesos [12] is a multi-platform
manager enabling resource sharing across different big data
platforms, such as Hadoop, Spark and MPI. YARN [10] is
the next generation of the Hadoop, platform featuring fault-
tolerance, high-scalability, while being extensible to different
applications. Omega [13] addresses resource allocations across
applications and resolves conflicts by optimistic concurrency
control. In contrast to above studies, Ghit et al. [14] propose
a resource management system to facilitate the deployment
of MapReduce clusters in an on-demand fashion and with

W 300 . £ 25 :
= fair j" fair
g 250 static 2 20 static
5 LS00 util g util
P optica n 15 optica
g 150 »

. 10

T 100 2

3 50 H s

g H

§ 2o

6.4 9.6 12.8 19.2 25.6 il 1.6 2.4 3.2 4.8 6.4

application budget application budget

(c) querylb (querylb + Pi) (d) Pi (querylb + Pi)

Fig. 5: BigDataBench and Pi: application performance under different resource allocation schemes.

W 200 - £ 2 :
- fair ﬂ fair
] static 2 20 static
E 150 util H util
i OpticCa 8 15 optica
& 100 -
3 A
3 50 % s
£ ¢
0 6.4 9.6 12.8 19.2 25.6 5 1.6 2.4 3.2 4.8 6.4
application budget application budget
(a) queryla (queryla + Pi) (b) Pi (queryla + Pi)
700 -
fair
W 600 static
= util
g 500 OpticCa
A
+ 400
g
S 300t
]
a 200
g
8 100 r
0
6.4 9.6 12.8 19.2 25.6

application budget

(a) performance of Terasort co-located with simple-pi

- 20 T
5] fair
E static
> util
g 15| optica
g
n
2 10l
i)
2
B 5¢
3
o
Y
<
» 0

1.6 2.4 3.2 4.8 6.4

application budget

(b) performance of simple-pi co-located with Terasort

Fig. 6: TeraSort and Pi: application performance under different resource allocation schemes.

particular focus on component level. Overall, aforementioned
studies tend to develop platform-specific resource management
policies at application or cluster levels.

B. Resource Allocation and Scheduling of MapReduce

Studies on dynamical resources allocation to MapReduce
tasks as well as jobs employ different methodologies, such as
off-line profiling, on-line monitoring, machine learning, and
economics cost model [15, 16]. Often, they focus on scenarios
where resources are abundant. Verma et. al. [17, 18] developed
a deadline-driven framework which can dynamically resize
the map and reduce tasks and further allocate resources, in
particular slots, to tasks as well as jobs. Their methodology
is based on profiling and performance modeling. MROrches-
trator [19] is a resource manager that monitors online the
performance of each node, such that performance bottlenecks
of MapReduce tasks can be detected to adjust resource allo-
cations, such CPU and memory. AROMA [20] uses machine
learning and optimization techniques to both configure and
provision resources for MapReduce jobs. Nephele [21] focuses
on scheduling jobs on different types of virtual machines based
on their requirements of CPU, memory, network and disk.
Zhang et al. [22] passively characterize the cost-performance
trade-off when executing MapReduce jobs running on different
kinds of Amazon EC2 virtual machines and conclude that a
properly sized VM can results into a 70% cost saving without
performance penalty. All in all, the prior art tends to investigate
the resource allocation at level of MapReduce jobs or tasks,
and, more importantly, in a dedicated cluster, except [23]
which explicitly discusses the scheduling problem in a shared
environment.

In contrast to the related work, OptiCA is a portable and
platform independent solution that eases the deployment of
applications and their components. OptiCA is designed to
allocate core resources to components in a resource constrained
situation, particularly suitable for highly distributed applica-
tions.

VI. CONCLUSION

In this paper, we present an integrated solution, OptiCA,
to optimize the computation allocation of big data applications
and their components, co-executed with background applica-
tions in a cloud datacenter. Two key functionalities of OptiCA
are efficient deployment and computation allocation of big
data components. Using the novel ideas of effective demands
and fraction of core capacity, OptiCA is able to effectively
allocate the required core resources. Our evaluation results
show that OptiCA achieves low performance degradation of
big data applications and a good throughput for background
applications when the available core resources are low. For our
future work, we plan to explore different schemes to allocate
application core budgets and expand the evaluation on a larger
number of applications and clusters.

VII. ACKNOWLEDGMENTS

The research presented in this paper has been sup-
ported by the Swiss National Science Foundation (project
200021_141002). This work has been partly funded by the EU
Commission under the FP7 GENiC project (Grant Agreement
No 608826).

REFERENCES

[1] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica, “Shark: Fast Data Analysis Us-
ing Coarse-grained Distributed Memory,” in Proceedings
of SIGMOD’12, pp. 689-692.

[2] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H.
Andrew, “Greening Geographical Load Balancing,” in
Proceedings of SIGMETRICS’11, pp. 233-244.

[3] N. El-Sayed, 1. A. Stefanovici, G. Amvrosiadis, A. A.
Hwang, and B. Schroeder, “Temperature Management
in Data Centers: Why Some (Might) Like It Hot,” in
Proceedings of SIGMETRICS’12, pp. 163-174.

[4] R. Birke, L. Y. Chen, and E. Smirni, “Data centers in the
cloud: A large scale performance study,” in Proceedings
of CLOUD’12, pp. 336-343.

[5] BigDataBench, “https://amplab.cs.berkeley.edu/benchmark/.”

[6] Terasort, “http://sortbenchmark.org/yahoohadoop.pdf.”

[7] H. Lim, A. Kansal, and J. Liu, “Power Budgeting for
Virtualized Data Centers,” in Proceedings of ATC’11, pp.
59-72.

[8] Hadoop, “http://hadoop.apache.org/.”

[9] L. A. Barroso and U. Holzle, “The Case for Energy-

Proportional Computing,” IEEE Computer, vol. 40,

no. 12, pp. 33-37, 2007.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,

B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and

E. Baldeschwieler, “Apache Hadoop YARN: Yet Another

Resource Negotiator,” in Proceedings of SOCC’13, pp.

63-78.

[11] Docker, “https://www.docker.com/.”

[12] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A
Platform for Fine-Grained Resource Sharing in the Data
Center,” in Proceedings of NSDI'11.

[13] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: Flexible, Scalable Schedulers for
Large Compute Clusters,” in Proceedings of EuroSys’13,

[10]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

(23]

pp- 351-364.

B. Ghit, N. Yigitbasi, and D. H. J. Epema, “Resource
Management for Dynamic MapReduce Clusters in Mul-
ticluster Systems,” in Proceedings of SC’12, pp. 1252—
1259.

F. Tian and K. Chen, “Towards Optimal Resource Pro-
visioning for Running MapReduce Programs in Public
Clouds,” in Proceedings of CLOUD’11, pp. 155-162.

I. Menache, O. Shamir, and N. Jain, “On-demand, Spot,
or Both: Dynamic Resource Allocation for Executing
Batch Jobs in the Cloud,” in Proceedings of ICAC’I4,
pp. 177-187.

A. Verma, L. Cherkasova, and R. H. Campbell,
“ARIA: Automatic Resource Inference and Allocation for
MapReduce Environments,” in Proceedings of ICAC’11,
pp. 235-244.

A. Verma, L. Cherkasova, V. S. Kumar, and R. H.
Campbell, “Deadline-based Workload Management for
MapReduce Environments: Pieces of the Performance
Puzzle,” in Proceedings of NOMS’12, pp. 900-905.

B. Sharma, R. Prabhakar, S. Lim, M. T. Kandemir, and
C. R. Das, “MROrchestrator: A Fine-Grained Resource
Orchestration Framework for MapReduce Clusters,” in

Proceedings of CLOUD’12, pp. 1-8.

P. Lama and X. Zhou, “AROMA: Automated Resource
Allocation and Configuration of MapReduce Environ-
ment in the Cloud,” in Proceedings of ICAC’12, pp. 63—
72.

D. Warneke and O. Kao, “Exploiting Dynamic Resource
Allocation for Efficient Parallel Data Processing in the
Cloud,” IEEE Transactions Parallel Distributed Systems,
vol. 22, no. 6, pp. 985-997, 2011.

Z. Zhang, L. Cherkasova, and B. T. Loo, “Optimizing
Cost and Performance Trade-offs for Performance Job
Processing in the Cloud,” in Proceedings of NOMS’14,
pp- 1-8.

B. Sharma, T. Wood, and C. R. Das, “HybridMR: A Hier-
archical MapReduce Scheduler for Hybrid Data Centers,”
in Proceedings of ICDCS’13, pp. 102-111.

