
Software Defined Wireless Access
for a Two-Tier Cloud System

Sina Monfared, Hadi Bannazadeh, Alberto Leon-Garcia
Department of Electrical and Computer Engineering

University of Toronto

{Sina.Monfared, Hadi.Bannazadeh, Alberto.Leong}@utoronto.ca

Abstract—In this paper we introduce an architecture
for wireless access on two-tiered heterogeneous clouds.
We first discuss the concept of Software Defined In-
frastructure (SDI), and role of Software Defined Radio
in SDI, and review relevant literature. Next we present
the architecture design for a Software Defined Wireless
Access module in detail and provide measurements
for the implemented solution. While the architecture
introduced is capable of handling protocols such as LTE
and WiFi, GSM is used for in our implementation.

I. Introduction
We present an architecture for creating a converged

wireless access module that can be deployed in two-tier
clouds. This wireless access network can implement vari-
ous wireless protocols such as WiFi, LTE, GSM, HSPA,
FM radio, Bluetooth, etc. Software Defined Radio (SDR)
transceiver units have advanced to cover a wide range of
frequencies, covering all such protocols [1] [2].

Our goal is to make the access network for the cloud as
programmable as possible. The key to achieve this is virtu-
alization of the networking resource. Hence our approach
is to redefine the functionalities of the access network so
that they can be implemented in an infrastructure that
has been virtualized.

II. SOFTWARE DEFINED INFRASTRUCTURE
SDI is a new conceptual architecture that for supporting

applications through virtualization and integrated man-
agement of converged heterogeneous resources within a
multi-tiered cloud [3]. Its objective is to provide high level
abstraction and programmability for both cloud appli-
cations and network functions. The type of resources in
a heterogeneous cloud include computing resources, pro-
grammable hardware (FPGAs), and networking resources.
SDI allows the combination of the concepts of Software
Defined Networking (SDN), Cloud Computing, and Soft-
ware Defined Radio (SDR) to introduce an environment
where applications can be deployed quickly and with great
flexibility on an infrastructure that includes heterogeneous
resources.

In general, multi-tiered clouds include large remote data
centers and smart edge nodes, the latter being closer to
the end-user. Having such closer smart edges helps address
issues such as latency and security. The smart edge may

also be used to increase the bandwidth efficiency of content
distribution, by caching packets of popular content.

The design of the control and management system SDI
is crucial to providing programmability and flexibility
in the platform. Conventionally, there has been separate
modules for the control and management of the cloud and
network resources. In SDI, however, we combine the two,
resulting in a single control/management module. This
enhances the overall platform to have higher performance
and flexibility, as the centralized control module can plan
resource scheduling and modifications more efficiently.
This approach leads to reductions in operational expenses,
as there will be automated control and management of the
virtualized resources.

A. SDI Architecture
Figure 1 shows the components of the SDI Resource

Management System (RMS). The RMS includes various
Resource Controllers (RCs) to provide support for differ-
ent types of resources. The RCs are all connected and
managed by two higher level modules, SDI Manager and
the Topology Manager.

SDI Manager Topology Manager

Resource
Controller A

Resource
Controller B

Resource
Controller C

SDI Resource
Management
System (RMS)

Open Interface

External
Application

System
Administrator

Resource CResource BResource A

Converged Heterogonous
Resources

Physical
Resource

Virtual
Resource

Fig. 1. SDI Components

The Topology Manager monitors the resources and
stores particular parameters of interest, such as connection
status, bandwidth, CPU utilization, etc. The SDI Man-
ager takes the role of deploying applications, consulting
with Topology Manager when needed. Both provide open
interfaces for the user, which is either a developer or the
application itself.

B. SAVI Testbed
The Canadian Smart Applications for Virtual Infras-

tructure (SAVI) Testbed includes an implementation of
the SDI architecture [3]. The SAVI Testbed has a dat-
acenter as its Core node, and it also includes Smart
Edge nodes at seven universities. These nodes provide
virtualized resources.

Figure 2 shows a high level representation of SAVI
SDI RMS. The RMS uses Openstack (as the controller
for the cloud computing resources) and an Openflow-
based platform (to implement the control of networking
resources). The two are governed by a higher level SDI
Manager, code-named Janus.

Fig. 2. SAVI Implementation of SDI RMS

The Topology Manager (code-named Whale) holds in-
formation on physical and virtual resources in SAVI as
well as interconnections between them. It uses RESTful
APIs of Cloud Controller and SDN Controller and other
management protocols such as SNMP and IPMI to gather
these information.

III. Related Work
The mobile provider market has been facing new chal-

lenges. From the mobile operators perspective, the demand
for mobile Internet bandwidth keeps growing, resulting in
growing amortized costs, while the profit per customer

is marginalized, by decreasing prices as a result of com-
petition. Hence, the mobile operators have to expand
their Radio Access Networks (RAN) by investing in new
hardware for their Base Stations while keeping the expan-
sion cost minimal. Furthermore, they need to deploy new
resources to meet new standards and remain competitive,
and deploying new proprietary hardware is known to be a
slow task [4].

These challenges have led to innovations using virtual-
ization. Virtualized resources are not only faster to deploy
and more scalable, but they introduce new perspectives
such as energy optimization and carbon footprint reduced
networking. RANs have had a vertical architecture, in-
volving purpose built boxes for Base Stations. The Base
Stations are not used all the time, with quite a high load
variance between peak and surge times. While utilization
patterns are mostly predictable (e.g. people go to work
at downtown during the day and come back to suburbs
at night), the conventional Base Stations need to be on
around the clock and ready for the maximum load possi-
ble. Having the flexibility to adapt their operation as well
having less active sites without a reduction in delivered
performance are key strategies for mobile operators to
reduce the costs.

This is where virtualization and centralized signal pro-
cessing can come into play. The evolution of Base Stations
has led to the virtualization of resources. As shown in
Figure 3, there are at least two methods proposed for
breaking down the Base Station into separable compo-
nents. Both solutions have the Antenna, Power Amplifier
(PA), Low Noise Amplifier (LNA), TX/RX (Transmitting
and Receiving), and Digital front end at the distributed
sites. These modules together are called a Remote Radio
Unit (RRU), also known as Remote Radio Head (RRH).
The primary task of the RRH is to deal with sending and
receiving signals, and the aim is to reduce the compu-
tational capacity such that the signal processing can be
centralized as much as possible.

Fig. 3. Baseband Unit and Remote Radio Head

One method involves doing the baseband processing
as part of RRH, while the other would leave it for the

baseband unit (BBU). The advantage of doing baseband
processing as part of RRH is that this reduces the band-
width requirements between the RRH and BBU. The
disadvantage is that upgrade costs will be higher for the
distributed baseband processing solution.

Within the BBU, the rest of signal processing is per-
formed, including synchronization with a GPS clock. The
BBU may include other centralized functions performed
on the edge of the Core network, and so may require high
speed processors.

A significant factor in separating the Base Station into
the BBU and RRH is the delay between the two. While
the recent protocols have higher data rates, they also have
more stringent time delay budgets. LTE requires the sum
of the propagation, transporting, and processing delays
between the BBU and RRH to be lower than 3ms [5].
Hence, LTE requires the BBU and RRH to be located
within 40 km of each other, having a link capacity of at
least 10Gbps between the two [6].

Potential benefits of using Software Defined Networks
to manage cellular data networks have been discussed in
[7] [8] and demonstrated in [9]. They include scalabil-
ity, finer granularity in control, simplified routing, and
rapid topology adaptation upon need. It has further been
demonstrated that SDN based architectures can efficiently
amalgamate various wireless protocols [10].

The SAVI Testbed provides an SDI environment for
experimentation. SAVI can run centralized experiments
with physical resources away from each, even with hun-
dreds of miles of distance. Centralized management of the
cloud and its network allow for programmability of the
network and allocation of computing resources to meet
delay requirements. In particular the VMs in Smart Edges
can be located closer to users and include certain delay
sensitive signal processing on the edge of the network.
Finally, SAVI’s feature of smart mobile edges can be
exploited to provide wireless access for an area in case of
an emergency situation. This is described in more detail
in the section below.

IV. High Level Design
The overall architecture implements the wireless access

as a modular SDR system. The functionalities of the
wireless access are divided such that they can be realized
in software and implemented across the cloud. The design
relies on having a multi-tier cloud, with Smart Edges and
Core datacenters. This is needed to divide the modules of
the Base Station into those that need to located closer to
user (and hence implemented in a distributed fashion) and
those that can be centralized on a more computationally
capable backbone datacenter (Core).

The first sub-module that the wireless signals are passed
to is the physical layer TRX (Transceiver / Transmitter
and Receiver). From a software perspective, this is a dumb
module that translates the given digital input onto an
electromagnetic signal meeting certain requirements. The

main parameter to be specified for such module is the
frequency range, while other parameters of interest can
include output signal power, type of modulation, etc. For
TRX, we use low power transmitters that meet the power
efficiency and sustainability objectives outlined below.

The TRX is implemented along with signal amplifiers
(Low Noise Amplifier and Power Amplifier), as well as
Digital Intermediate Frequency (IF) module [4]. The two
stages of amplifier are used such that one initially am-
plifies the signal without introducing a significant noise
coefficient (LNA), and a second one increase the power
of the signal and noise altogether (PA), preparing it for
final transmission. The Digital IF module is in charge of
first moving the signal to an intermediate frequency, and
then again further down converting it to be used by the
baseband module.

All three components mentioned so far (TRX, Ampli-
fiers, and Digital IF) are implemented within a single
component of the system, SDR unit. The SDR units
are available off-the-shelf, and provide the layer 1 and
2 functionalities (physical layer and data link layer) for
wireless communication.

The next module is the baseband signal processing
module. This module performs Digital Signal Processing
(DSP) on an already digitized and down converted sig-
nal outputted from the Digital IF. The DSP includes
sampling, noise filtering, clock and data recovery, and
decision circuits. We implemented this module within the
distributed Base Station (on the Smart Edge close to the
SDR unit). Implementing it in a centralized fashion (on
backbone datacenters) would pose difficulties meeting the
bandwidth and delay requirements.

The SDR Software on the Smart Edge (in charge of
Baseband processing) reaches out to the backbone dat-
acenters (Core) via the Wide Area Network, providing it
with datagrams. At that point, the Core datacenters could
perform functions such as session initiation, subscriber /
network registry, etc.

Figure 4 shows the overall architecture of SAVI Wireless
Access. SDR units function similar to the minimized Base
Station, with limited processing capability. Their modules
include Antenna, PA, LNA, TRX, and Digital IF. Wireless
Access for SAVI would not only include Cellular service,
but also WiFi, as most Software Defined Radio (SDR)
units offer coverage for a wide range of radio spectrum.

Fig. 4. High Level Architecture for Wireless Access

Some cellular and WiFi operations are delay sensitive
(such as TX and RX), while some are not (such as IMS /
packet routing operations). SAVI Smart Edges are used to
implement the SDR Software so that the round trip time
(RTT) is minimized for the delay sensitive operations. The
SDR Software on the Smart Edge performs the Baseband
signal processing to reduce the bandwidth requirements
between the Smart Edge and SDR units. Also, there are
constraints on the channel bandwidth between the Core
and Smart Edges, depending on the application to be
implemented.

V. Design Objectives
The design objectives includes reliability, guaranteed

Quality of Service (QoS), platform power consumption,
environmental sustainability, and flexibility of having mo-
bile Base Stations. Most of the objectives can be met in
the current SAVI Testbed. However, some require a bigger
infrastructure.

By reliability, we mean reliable delivery of mobile ser-
vices, including LTE, 3G, GSM, and WiFi. This is reflected
in percentage of successful calls, maximum duration of
calls without interruption, maximum number of calls per
SDR unit, etc.

By using low power transmitters that cover smaller
areas, we can make our distributed Base Stations more
power efficient and environmentally sustainable. Of course,
this increases the total number of Base Stations needed for
a wide area, but the centralized resources can be reallo-
cated to the busier Base Stations, and the VMs within the
less busy Base Stations can be downsized and/or migrated.

Finally, having mobile smart edges, we may provide
mobile Base Stations for an area facing a disaster. We may
leave the centralized functionalities to the core network, so
long as we ensure we provide sufficient bandwidth between
the smart edges and the core datacenter. Also, it would be
useful to have automated orchestration to deploy resources
on the fly. SAVI has a project dedicated to orchestration
using overlay networks, namely Virtual Network Overlay
(ViNO). Using ViNO, we could quickly deploy predefined
topologies.

VI. Detailed Design
As a proof of concept, we implemented the proposed

architecture for GSM cellular service on the SAVI testbed.
The Core node and the Smart Edge were located in the
University of Toronto.

For the SDR Unit, we used Ettus USRP-N210. This
device is programmed using its Ethernet interface [11].
There are two ways to provide synchronization / discipline
clock for this device, one using an internal GPSDO (GPS
Disciplined Oscillator) kit, the other inputting the clock
using SMA interface. We used the former as we imple-
mented the Base Station with a single SDR. Of course, we
could have implemented several SDR Units within on Base
Stations, should we wish to cover several protocols / ranges

of frequencies at the same time, and several SDR units
input a single GSPDO signal, using the SMA interfaces.

We used OpenBTS (Open Base Transceiver Station,
developed by Range Networks [12]) for the SDR Software.
OpenBTS is designed as wireless access point software
dedicated for GSM. It defines mobile phones as SIP
(Session Initiation Protocol) end users, and implements
VOIP (Voice Over IP). OpenBTS is open source, and that
permitted us to modify certain parts of the code for it to
meet our architectural requirements.

The physical and data link layer components of the
design are demonstrated in Figure 5. The main modules
are Ettus USRP-N210 (for SDR unit) and OpenBTS (for
SDR Software).

Mobile 1
SDR Unit (Ettus

USRP N210)

OpenBTS VM

Smart Edge
(Edge TR-3)

Mobile 2

SAVI Testbed
Network

Fig. 5. Layer 1 and 2 Components

For GSM, one of the centralized functions implemented
on Core is the SIP Soft switch. Soft switch can be thought
of as a telephone switch, matching phones IMSI (Inter-
national Mobile Subscriber Identity) with Extension (i.e.
phone number) and setting up calls using SIP protocol.
IMSI is the unique ID that are on phone and get registered
on the Base Station. IMSI can be thought of as a MAC
Address for cellular phones, except it is an identifier of the
phone on the radio network than over the Internet. For the
Soft switch, we chose Asterisk real-time [13], a modified
version of Asterisk, with faster database read/write capa-
bilities. The default port for SIP communication between
the Soft switch and OpenBTS is UDP port #5060.

Two other centralized functions of OpenBTS are
Smqueue (store-and-forward text messaging server) and
Subscriber Registry (SIPAuthServer). Smqueue enables
Short Message Service (SMS) by storing the message
once sent and forwarding it once the destination becomes
available. Subscriber Registry is the SIP endpoint reg-
istration as well as SIP Authorization. This is needed
to reflect location changes (pairing IMSIâĂŹies with the
IP Address of the Smart Edge VM that the phone is
registered on). Smqueue uses UDP port #5063 while uses
UDP port #5064. These two are provided as part of the
OpenBTS platform and do not require separate code.
However, they do need some tuning as by default they

are not configured to run on a VM separate than that of
OpenBTS transceiver (i.e. the module that does baseband
processing).

Each of the Software components mentioned so far has
its own dedicated database. In particular, OpenBTS.db
stores SDR Unit parameters such as GSM Frequency
and IMSI registration RegEx (regular expression for IMSI
of phones to be permitted to register). Furthermore,
sipauthserver.db stores IP address and IMSI pairs and
smqueue.db stores short messages waiting to be delivered.
Finally, sqlite3.db is used by Real-Time Asterisk to store
pairs of extension (phone number) and IMSI.

Figure 6 demonstrates the interactions between the
OpenBTS components and Asterisk. Unlike the architec-
ture introduced in the related work section, the GPS clock
synchronization happens at the SDR Unit itself. This is
due to the fact such local synchronization is more exact
and less prone to RTT.

IMS Core VM

Fig. 6. Software Components

VII. MEASUREMENT AND VERIFICATION
A. Test Setup

As mentioned earlier, we needed to have at least two
VMs, one running the SDR Software (OpenBTS) and the
other running the centralized functionalities. The setup
included 2 VMs, one named “TRX”, implemented on the
Smart Edge (Edge TR-3) and the other named “IMS Core”
implemented at the backbone datacenter (Core). Together,
the TRX and SDR Unit represented the distributed Base
Station, while IMS Core represented the centralized core.
The specifications for the two VMs are listed in Table I.
The Smart Edge and code nodes were connected through
the backbone network, which includes several 1GE and
10GE Openflow switches.

OpenBTS was installed on both TRX and IMS Core.
However, on TRX, only the transceiver components (per-
forming baseband signal processing) were activated, and
it was tuned to leave the rest of the tasks (communicating

TABLE I
VM Specification

.

VM
Name

Operating
System RAM

Size
of

VCPUs Disk
Size

Location

TRX
Ubuntu
12.04.2

8
GB 4 80

GB TR-3

TRX
Ubuntu
12.04.2

8
GB 4 80

GB TR-3

with the Soft switch, Smqueue, and Subscriber Registry,
which were all installed on IMS Core) to the remote
OpenBTS (on IMS Core). Hence the remote OpenBTS
just takes the output of baseband signal processed and
does the necessary communications with other compo-
nents accordingly.

There were slight code modifications as well as database
parameters tuning to have these components work with
each other, as by default they are designed to all operate
within the same machine (i.e. OpenBTS Transceiver and
control modules are within the same machine by default).

We used two Android low level smartphones for the
handsets to make the calls. The system was implemented
and tested, and its operation was verified. The operation
included echo test (provided by the OpenBTS software,
a service where everything said is repeated back to give
a sense of delay), Short Message Service (SMS / Text
Message), and VOIP phone calls between the two cell
phones.

B. Measurement
The key parameters of interest are the following:
• Call connection reliability

◦Percentage of successful call connections (i.e. not
dropped)
◦Length of successful call

• Bandwidth usage for calling and SMS (in Bytes/Sec)
• Round Trip Time (RTT)
• Call Setup Time
In terms of successful connecting of calls, we found the

system to complete 93% of calls (over 56 test calls, only 4
were unsuccessful, in one case getting a busy signal, and
in 3 cases the system simply dropping the call without
connecting at all). However, once a call connection was
made, we found that the call would not disconnect due
to network issues. In particular, we recorded two 24 hour
long phone conversations. For that, we used two computers
playing two different 1 hour long recorded calls repeatedly
into earphones, which were located close to handsets.

The measurements for total bandwidth usage in IMS
Core are reflected in Figure 8. This measurement is for
a total of 14 hours of call, using various ranges of voice
and music frequency. Each sample reflects the average
traffic rate over a 2 second window. We used bwm-ng and
iftop programs to record and compare these data. The
averages for the total, outbound, and inbound traffic are

8705.953 Byte/s, 8774.400 Byte/s, and 17480.35 Byte/s.
The standard deviations for the total, output, and input
traffic are 49.2, 87.75, and 114.12 Byte/s.

Fig. 7. Total Traffic of IMS Core over 10 Hours

Fig. 8. Total Traffic of TRX over 14 Hours

For round trip time (RTT), the value of interest was
that of TRX pinging the SDR unit, as that would show
the minimum delay that a VOIP packet would face in case
of echoing and that would hence represent the network
delay. Performing 1000 ping tests while 2 handsets were in
active call, we found the maximum, average, and standard
deviation for RTT to be 1.692 ms, 1.417 ms, and 0.161
ms. These numbers are well below the 3ms delay budget
required for LTE (of course these do not reflect processing
and framing delays which should be taken into account).
The other parameter that is not as significant but could
be considered is the RTT between TRX and IMS Core,
which could potentially affect the initial call setup time.
For 1000 pings. We found the maximum, average, and
standard deviation for that RTT to be 1.708ms, 1.227ms,
and 0.122ms.

For call setup times, 50 call response times were mea-
sured. We defined the call setup time as the delay in
between the time the one cellular device would dial and
send the call request to server (i.e. call button is pressed)
to the time the call shows up on the second device (i.e.
the second phone rings). We observed that on average,

Handset #1 experienced shorter delays than handset #2,
which could relate to technical issues within the handset
itself. Overall, the mean and standard deviation for call
setup time were 6.6 and 4.3 seconds.

VIII. Conclusion
We have demonstrated how SDI, using the SAVI

Testbed, can create wireless access networks in software.
We made the case for smart edges for separating SDR
functionalities that are delay sensitive and need to be
closer to the user and those that can be centralized. We
introduced an architecture that can be scaled up and down
and deployed on the fly. As a proof of concept, we detailed
an implementation of the proposed architecture for a GSM
application and provided measurements for it, arguing
that the architecture is also capable of implementing other
wireless protocols such as LTE and WiFi which will be our
focus for future work. More utilization of SDI capabilities
including hand-over is another area that we would like to
explore.

References
[1] F. Daneshgaran and M. Laddomada, “Transceiver front-end

technology for software radio implementation of wideband satel-
lite communication systems,” Wireless Personal Communica-
tions, vol. 24, no. 2, pp. 99–121, 2003.

[2] S. Bang, C. Ahn, Y. Jin, S. Choi, J. Glossner, and S. Ahn,
“Implementation of lte system on an sdr platform using cuda
and uhd,” Analog Integrated Circuits and Signal Processing,
vol. 78, no. 3, pp. 599–610, 2014.

[3] J.-M. Kang, H. Bannazadeh, H. Rahimi, T. Lin, M. Faraji,
and A. Leon-Garcia, “Software-defined infrastructure and the
future central office,” in Communications Workshops (ICC),
2013 IEEE International Conference on. IEEE, 2013, pp. 225–
229.

[4] C. Mobile, “C-ran: the road towards green ran,” White Paper,
ver, vol. 2, 2011.

[5] B. Ullman. (2013) Designing an arm-based cloud
ran cellular/wireless base station. [Online]. Available:
http://www.embedded.com/design/connectivity/4425740/
Designing-an-ARM-based-Cloud-RAN-cellular-wireless-base-
station

[6] J. Davies. (2014) Mobile fronthaul optimized for
cloud ran. [Online]. Available: http://www2.alcatel-
lucent.com/techzine/mobile-fronthaul-optimized-cloud-ran

[7] J. Kempf, B. Johansson, S. Pettersson, H. Luning, and T. Nils-
son, “Moving the mobile evolved packet core to the cloud,” in
Wireless and Mobile Computing, Networking and Communica-
tions (WiMob), 2012 IEEE 8th International Conference on.
IEEE, 2012, pp. 784–791.

[8] M. Dayananda and J. Priyanka, “Managing software defined
radio through cloud computing,” in Advanced Communication
Control and Computing Technologies (ICACCCT), 2012 IEEE
International Conference on. IEEE, 2012, pp. 50–55.

[9] L. E. Li, Z. M. Mao, and J. Rexford, “Toward software-defined
cellular networks,” in Software Defined Networking (EWSDN),
2012 European Workshop on. IEEE, 2012, pp. 7–12.

[10] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkata-
subramanian, “A software defined networking architecture for
the internet-of-things,” in Network Operations and Management
Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp. 1–9.

[11] E. Reseach. (2014) Usrp n210. [Online]. Available:
https://www.ettus.com/product/details/UN210-KIT

[12] Range Networks Incorporated. (2014) Openbts. [Online].
Available: https://wush.net/trac/rangepublic

[13] Voip-Info.org LLC. (2014) Asterisk realtime. [Online]. Available:
http://www.voip-info.org/wiki/ view/Asterisk/+RealTime

