
A First Look at HTTP(S) Intrusion Detection
using NetFlow/IPFIX

Olivier van der Toorn, Rick Hofstede, Mattijs Jonker, Anna Sperotto
Design and Analysis of Communication Systems (DACS)
Centre for Telematics and Information Technology (CTIT)

University of Twente, Enschede, The Netherlands
E-mail: o.i.vdtoorn@student.utwente.nl, {r.j.hofstede, m.jonker, a.sperotto}@utwente.nl

Abstract—Brute-force attacks against Web site are a common
area of concern, both for Web site owners and hosters. This
is mainly due to the impact of potential compromises resulting
therefrom, and the increased load on the underlying infrastruc-
ture. The latter may even result in a Denial-of-Service (DoS).
Detecting brute-force attacks – and ultimately mitigating them –
is therefore of great importance. In this paper, we take the first
step in this direction, by presenting a network-based approach for
detecting HTTP(S) dictionary attacks using NetFlow/IPFIX. We
have developed a prototype Intrusion Detection System (IDS),
released as open-source software, by means of which we can
achieve accuracies close to 100%.

Index Terms—Network security, Intrusion detection, Net-
Flow/IPFIX.

I. INTRODUCTION

Wordpress, Joomla and Drupal have become the dominating
Content Management Systems (CMSes) with a market share of
almost 30% that is increasing evermore [1]. The problem with
many CMSes is that they are poorly protected against brute-
force attacks, which makes them a prime attack target [2],
[3]. The simple means by means of which Web applications
can be built attracts also less-technical people, who are often
completely unaware of security risks. Besides CMS backends,
there is another common attack target on Web servers that has
existed for much longer than CMSes: HTTP Basic Authenti-
cation (BA). HTTP BA is a standardized part of HTTP and
allows for password-protecting directories and files.

Antagonist, one of the major Web hosting companies in
the Netherlands that hosts over 100k Web applications, faces
brute-force attacks against HTTP BA and CMS backends in
a non-stop fashion. The problem with these attacks, typically
referred to as dictionary attacks,1 is twofold. On one hand, site
owners have the risk of having their Web site compromised,
after which the system may be misused for illegal activities,
such as distributing illegal content or sending SPAM. On
the other hand, dictionary attacks may constitute a Denial-
of-Service attack on the hosting infrastructure, because login
pages, which are typically PHP-based, have to be processed
with every request.

Dictionary attacks against Web applications can be easily
detected by means of access logs. This host-based approach

1Attacks that rely on lists with frequently used login credentials, commonly
referred to as dictionaries.

is however hardly scalable in larger networks, as access to
individual machines is required. We therefore take a flow-
based approach in this work, given the many advantages
provided by flow export technologies [4].

To the best of our knowledge, no work currently exists on
the flow-based detection of brute-force attacks against Web
sites. Work that comes close to ours is presented in [5], but
it works at the level of individual packets, rather than flows.
Other related works are presented in [6], which cover the flow-
based detection of dictionary attacks against SSH daemons.
Since there are many commonalities among dictionary attacks
against SSH daemons and Web servers, we will reuse parts of
the findings and methodology presented in related works.

The goal of this paper is to investigate the patterns of
HTTP(S) dictionary attacks at the flow-level, and define and
validate the corresponding signatures. We describe and analyze
the attack patterns that are common for HTTP(S) dictionary
attacks in Section II and III, respectively. After that, we present
the validation in Section IV and discuss our conclusions and
future work in Section VI.

II. ATTACK TYPES & PHASES

There are three common types of authentication mecha-
nisms by means of which Web sites are protected. Brute-force
attacks over HTTP(S) usually target one of these mechanisms.
These mechanisms are as follows:

• HTTP Basic Authentication (HTTP BA) – HTTP BA
is an authentication mechanism that provides password
protection on the level of files and directories. It uses
a dedicated window that is not embedded in a Web
page, prompting for credentials. Once authenticated, the
Web server sends the requested object; otherwise, a 401
Unauthorized status code is returned.

• Form-based Authentication (FA) – FA uses embedded
Web forms that allow credentials to be submitted to
the Web server using a HTTP POST request. If the
credentials are valid, a session is set up for the client.

• XML-RPC – XML-RPC provides a means for handling
Remote Procedure Calls (RPCs). RPCs have been used in
dictionary and DDoS attacks recently [7], [8]. Authentica-
tion attempts consist of XML files with the RPC’s name,
together with credentials.



TABLE I: Overview of CMS authentication mechanisms

CMS URL Attributes

Wordpress
/wp-login.php username, password
/xmlrpc.php username, password

Joomla
/administrator/index.php username, password
` ?option=com login access token, task

Drupal
/?q=user username, password

/?q=user/login access token, task
/xmlrpc.php username, password

The authentication mechanisms of the aforementioned CM-
Ses are listed in Table I. None of the CMSes use HTTP BA by
default. Noteworthy about the FA authentication mechanism
for Wordpress is that it merely relies on usernames and
passwords, while both Joomla and Drupal require an additional
access token to authenticate to the backend. This access token
is randomly generated when the login page is processed and,
as a consequence, a user must go through the original login
page to obtain a valid access token. Joomla and Drupal also
use an attribute for specifying which action needs to be taken
upon submission of the form, i.e., the task attribute.

What attacks against HTTP BA, FA and XML-RPC have in
common is that they are typically dictionary-based. As such,
they are brute-force in nature and consist of authentication
attempts using frequently-used credentials in an automated
fashion. While no work has been performed yet on the
detection of such attacks at the network-level, the detection
of similar attacks against SSH daemons has been studied
extensively. These works identify three phases in dictionary
attacks [6]:

• Scan – Attackers scan for specific ports with listening
daemons on servers.

• Brute-force – Attackers try to authenticate with varying
credentials.

• Compromise – Attackers have gained access to the
targeted service by using correct login credentials. In the
specific case of HTTP(S) attacks, this often means that
attackers have gained access to the backend of a Web
application, allowing the attacker to send SPAM or upload
illegal content, for example.

Although dictionary attacks over HTTP(S) typically consist
of these phases as well, the scan phase is slightly different
from the definition given in [6]. Dictionary attack tools need
target URLs instead of IP addresses, because multiple Web
sites can be hosted on the same Web server using virtual hosts.
Based on the URL, a request is dispatched to the applicable
virtual host. Scanning for Web servers merely results in a list
of IP addresses, which have to be translated to one or more
URLs. To this end, an attacker may use reverse DNS lookups
or services such as the Hurricane Electric BGP Toolkit.

III. ATTACK TOOL BEHAVIOR & SIGNATURES

To study the network-level behavior of attacks against Web
servers, we have acquired dictionary attack tools through

previous research experience and by searching the Web. We
selected Hydra v8.1-pre, Patator v0.7-beta and Medusa v2.1.1,
which support dictionary attacks against HTTP BA and FA. In
addition, we selected HTTP-Brute v0.2, an NMAP extension,
because its documentation suggests that HTTP pipelining is
supported.2 We also selected Intrinsec XML-RPC Scanner
v0.4 and XmlRpcBrute v1.0 for attacking XML-RPC, which
we found to be the only tools supporting such attacks. Us-
ing the aforementioned tools, we have performed dictionary
attacks upon against all three authentication mechanisms in a
lab environment, while capturing the generated traffic.

Based on the analysis of the listed attack tools and the
impact of SSL on the resulting network traffic, we have
created signatures for dictionary attacks over both HTTP and
HTTPS. These signatures are listed in Table II, and based
on the upper and lower limits of the number of packets and
bytes per flow for each individual tool. To create the HTTPS
signatures, all combinations of SSLv3/TLSv1.x with AES,
(3)DES and RC4 encryption were used, whenever possible.
Per such combination, commonly first-picked algorithms for
data authentication (HMAC) and key exchange were used, and
always without compression. While varying such algorithms
will affect the signatures both in terms of bytes and number
of packets, this was not done as part of this work for the sake
of brevity.

Several observations can be made regarding the signatures
in Table II. First, since a minimum of five packets is necessary
for a login attempt over HTTP, and seven for HTTPS, signa-
ture bounds with a lower number of PPF are not realistic.
Notwithstanding, these occur for HTTP-Brute, and in some
cases Hydra. Investigation has shown that in these cases a few
outlying flows push boundaries down, while consisting only
of zero-payload TCP packets. For HTTP-Brute, this behavior
results from an up front port scan triggered by the NMAP API.
For Hydra, this is because connections are sometimes closed
ungracefully. Given these findings, we ignore the outlying
flows in the definition of the signatures. Second, the use of
SSL does not change the characteristics of the attack tools, as
they treat an SSL socket in the same way as a TCP socket. As
such, the overhead introduced by the use of SSL is constant,
which is also related to the fact that attack flows are rather
small in terms of packets and bytes. Last, we can observe a
clear increase in the number of BPF for attacks against XML-
RPC, which can be accounted to the use of XML files.

IV. VALIDATION

In this section, we validate the signatures presented in the
previous section. To do so, we have developed an open-
source IDS prototype3 to automate the detection of HTTP(S)
dictionary attacks based on the presented signatures. We start
this section by discussing the dataset we have used to validate
the signatures. After that, we show and elaborate on the
validation results in terms of accuracy.

2We found that while NMAP’s HTTP library supports request pipelining,
this functionality is not actually being used by HTTP-Brute.

3The prototype is available at https://github.com/ut-dacs/https-ids.



TABLE II: Attack signatures based on PPF and BPF

PPF BPF

Attack tool HTTP HTTPS
Signature Signature

HTTP HTTPS
Signature Signature

HTTP HTTPS HTTP HTTPS

BA

HTTP-Brute 3 – 6 3 – 12

5 – 6 7 – 12

132 – 355 132 – 1425

367 – 438 789 – 1683
Hydra 5 – 6 7 – 9 372 – 432 789 – 1105

Medusa 6 8 – 10 395 – 438 952 – 1328
Patator 6 9 – 10 367 – 379 1091 – 1683

FA

Hydra – Drupal 2 – 9 4 – 12

5 – 12 8 – 17

100 – 696 216 – 1365

363 – 1130 828 – 2885

Medusa – Drupal 5 – 9 8 – 12 560 – 736 1169 – 1616
Patator – Drupal 8 – 12 12 – 16 686 – 848 1528 – 2328
Hydra – Joomla 5 – 9 2 – 10 371 – 674 100 – 1349
Patator – Joomla 9 – 12 13 – 17 1007 – 1130 1941 – 2885

Hydra – Wordpress 5 – 6 8 – 10 363 – 553 828 – 1281
Medusa – Wordpress 5 – 8 8 – 10 480 – 607 1089 – 1432
Patator – Wordpress 6 – 7 10 – 12 434 – 481 1179 – 1787

X
M

L
R

PC

Intrinsec XML-RPC Scanner 5 – 6 7 – 8
5 – 6

7 – 8 770 – 826 1105 – 1433
770 – 889

1105 – 1433

XmlRpcBrute 5 – 6 823 – 889

0 10 20 30 40 50
0

0.25

0.5

0.75

1

Flow records (N )

C
D

F

All N
N ≥ 5

Fig. 1: Distribution of consecutive flow records with similar
authentication URLs.

A. Dataset

For the validation of this work, we have created a month-
long dataset of flow data exported using IPFIX, captured over
the course of June/July 2014. The dataset consists of traffic
towards a Web server hosting roughly 100 Web sites, mainly
built using Wordpress and Joomla, and features 4.7M flow
records, worth of 179.7GB and 205.8M packets. Over the full
dataset, a total of 2.2G requests have been performed to the
Web server, resulting in 71.7k requests on average per day.
It should be noted that the exported flow data includes URLs
and HTTP status codes of HTTP traffic as well, serving as
the ground-truth for the validation. Since neither status codes
nor (full) URLs can be exported for HTTPS traffic (due to its
encrypted nature), we limit our validation to HTTP traffic.

Since the dataset consists of raw flow data only, it must be
post-processed by aggregating consecutive flow records into
attacks. In the case of FA and XML-RPC attacks, we perform
the aggregation based on similar4 consecutive backend URLs,
as listed in Table I. Such aggregation would fail for HTTP
BA, since it does not use a fixed set of URLs as the other

4As we have seen cases where attack tools append parameters to the URLs,
we use wildcards after the URLs in Table I.

mechanisms do, since any file on a Web server can be HTTP
BA-protected. Instead, we aggregate flow records based on
both URLs and HTTP status codes; N consecutive flow
records featuring identical URLs and a 401 Unauthorized
status code are aggregated into attacks.

After post-processing, we can perform a one-to-one com-
parison between the detection results and the ground-truth. In
total, we observed 3 attacks against HTTP BA, 1153 attacks
against FA and 3120 attacks against XML-RPC.

B. Detection Accuracy

In the remainder of this section, we distinguish between
attacks and tuples. Attacks always feature a single attacker
and one or more targets. Every pair of attacker and target is
referred to as a tuple. As a consequence, every attack consists
of one or more tuples. Since our ground-truth consists of data
of only a single machine, we perform the validation in terms of
tuples, where every tuple thus consists of an attacker and the
monitored machine as a target. A tuple can only be present as
part of an attack in the ground-truth if N or more consecutive
flow records with similar backend URLs have been found.

To evaluate the detection accuracy, we use the typical set of
metrics for evaluating the performance of IDSes, consisting of
True Positive (TP), False Positive (FP), True Negative (TN),
False Negative (FN) and Accuracy (Acc) [6]. This is done
in two dimensions. First, we consider multiple values of the
flow record threshold (N ), based on the distribution of attack
sizes in terms of similar consecutive flow records, as shown
in Fig. 1. To cover 25%, 50%, 75% and 95% of the attacks
that feature at least 5 flow records, we take thresholds of 6,
9, 14 and 37 flow records, respectively. Second, we evaluate
the detection accuracy when using only the PPF values, BPF
values, and both PPF and BPF values of our signatures. The
results are listed in Table III. Note that we express the results
in terms of percentages of the previously defined evaluation
metrics. For example, the True Positive Rate (TPR) is the



TABLE III: Detection accuracy

Flow record
threshold TPR TNR FPR FNR Acc

PP
F

6 0.948 0.947 0.053 0.052 0.947

9 0.936 0.969 0.031 0.064 0.969

14 0.923 0.983 0.017 0.077 0.983

37 0.918 0.996 0.004 0.082 0.996

B
PF

6 0.970 0.958 0.042 0.030 0.958

9 0.962 0.974 0.026 0.038 0.973

14 0.942 0.984 0.016 0.058 0.984

37 0.878 0.996 0.004 0.122 0.995

PP
F+

B
PF

6 0.937 0.965 0.035 0.063 0.965

9 0.920 0.979 0.021 0.080 0.979

14 0.899 0.989 0.011 0.101 0.988

37 0.864 0.997 0.003 0.136 0.997

percentage of correctly identified tuples for which N or more
consecutive flow records with similar CMS backend URLs are
reported in the ground-truth.

Increasing the flow record threshold generally results in a
higher accuracy. It can be observed that the TPR and FPR
decrease slightly, with an increasing flow record threshold,
while the TNR and FNR increase slightly. Another observation
that can be made from the validation results is that only using
the number of PPF of the signatures yields best results at
higher flow record thresholds, while the BPF approach yields
best results at lower thresholds. Combining the number of PPF
and BPF yields the highest accuracies.

Due to the encrypted nature of HTTPS traffic, we cannot
validate the HTTPS attack signatures by comparing detection
results to our ground-truth. However, given that the corre-
sponding signatures have been derived in the same way as
for attacks over HTTP, we believe that the detection results
for attacks over HTTPS are similar to those for attacks over
HTTP.

V. DISCUSSION

The dataset used for validation of this work, as described
in Section IV-A, consists of flow data exported using IPFIX.
This data features L5 information, i.e., URLs in HTTP traf-
fic, besides the traditional L3 and L4 information typically
exported in flow data. Based on the per-flow information on
URLs, we could have performed HTTP intrusion detection
without the need of generating signatures, as shown in Table II.
That approach would also have avoided false detections, as
benign traffic could be discriminated based on the URL.
However, given that the amount of Web traffic is rapidly
increasing in favor of HTTPS, detection based on URLs is
no longer feasible, as (full) URLs cannot be extracted from
traffic anymore due to end-to-end encryption. This advocates
the use of signatures that are resilient against encryption, as
presented in this work. In addition, the fact that our approach
does not rely on L5 information makes it widely deployable,
as any data exported using NetFlow or IPFIX can be used.

VI. CONCLUSIONS

This paper has presented the first work on the flow-based de-
tection of HTTP(S) dictionary attacks. By means of analyzing
attack tools, defining flow-level fingerprints and developing a
prototype IDS, we have achieved promising results in detecting
attacks against HTTP(S) BA, FA and XML-RPC. Validation of
our signatures has shown that HTTP(S) dictionary attacks are
identified accurately and that signatures that utilize both the
PPF and BPF yield the best detection results. However, there
are false positives, which are mainly caused by automated yet
legitimate traffic, such as Web crawlers and calendar fetchers.
We realize that this traffic can be of great importance to Web
site owners, as they often rely on search engine rankings for
their income, for example. Further investigation of this traffic
will therefore be part of our future work.

In talks with Antagonist, we have learned that a system as
presented in this paper may prove very useful. For example,
it could be integrated with an automated system for blocking
attackers based on detection results of our IDS. Requests from
blocked hosts could be forwarded to a static landing page, from
which one can choose to be unblocked. Since such behavior
is not understood by the current generation of attack tools,
humans can easily be unblocked while automated attacks are
effectively mitigated.

ACKNOWLEDGMENTS

Special thanks go to Antagonist B.V. for their valuable
contributions. This work was partly funded by FLAMINGO, a
Network of Excellence project (ICT-318488), and SALUS, a
STREP project (ICT-313296), both supported by the European
Commission under its Seventh Framework Programme.

REFERENCES

[1] W3Techs, “Historical yearly trends in the usage of content management
systems for websites,” June 2014, accessed on 21 January 2015.
[Online]. Available: http://w3techs.com/technologies/history overview/
content management/all/y

[2] M. Mimoso, “Hackers Using Brute-Force Attacks to Harvest
WordPress Sites,” April 2013, accessed on 21 January 2015.
[Online]. Available: http://threatpost.com/hackers-using-brute-force-
attacks-harvest-wordpress-sites-041513/77730

[3] T. Perez, “Understanding Denial of Service and Brute
Force Attacks - WordPress, Joomla, Drupal, vBulletin,” March
2014, accessed on 21 January 2015. [Online]. Avail-
able: http://blog.sucuri.net/2014/03/understanding-denial-of-service-and-
brute-force-attacks-wordpress-joomla-drupal-vbulletin.html

[4] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis with Netflow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[5] R. Koch, “Systemarchitektur zur Ein- und Ausbruchserkennung in ver-
schlsselten Umgebungen,” Ph.D. dissertation, Universität der Bundeswehr
München, Germany, 2011.

[6] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH Compromise
Detection using NetFlow/IPFIX,” ACM SIGCOMM Computer Communi-
cation Review, vol. 44, no. 5, pp. 20–26, 2014.

[7] D. Cid, “New Brute Force Attacks Exploiting XMLRPC
in WordPress,” July 2014, accessed on 21 January 2015.
[Online]. Available: http://blog.sucuri.net/2014/07/new-brute-force-
attacks-exploiting-xmlrpc-in-wordpress.html

[8] I. Zeifman, “New WordPress and Drupal Denial Of Service Vulnerability
Fixed,” Incapsula, August 2014, accessed on 21 January 2015.
[Online]. Available: http://www.incapsula.com/blog/new-vulnerability-
xmp-rpc-wp-drupal-fixed.html


