
MILPFlow: a Toolset for Integration of

Computational Modelling and

Deployment of Data Paths for SDN

Lucio A. Rocha
Department of Computer Science

Federal University of São Carlos

Campus Sorocaba - Sorocaba, Brazil

E-mail: outrosdiasvirao@gmail.com

Fábio L. Verdi
Department of Computer Science

Federal University of São Carlos

Campus Sorocaba - Sorocaba, Brazil

E-mail: verdi@ufscar.br

Abstract—Software Defined Networking is one of the most
promising approaches to the deployment of future network
infrastructures. The most of the Internet service providers have
to deal with a number of configurations to a crescent amount of
network devices. SDN is a paradigm that proposes the separation
of data forwarding plane from the data control plane. OpenFlow
is an standard protocol used in SDN for establishing communi-
cation among switches and controllers. However, computational
modelling for SDN is still few researched in the literature. Com-
putational modelling is the key to describe, evaluate and analyse
the most diverse computational problems before its prototyping.
In this paper, we propose the integration between computational
modelling and the deployment of data paths for SDN. We develop
the toolset called MILPFlow to generate computational models
of data centers to solve routing problems and to establish data
paths between servers according to the solutions of these models.
Additionally, data paths are set before data flows are sent through
the network. As a consequence, MILPFlow contributes to reduce
the overhead to discover network routes among hosts of data
centers. We evaluate the effectiveness of our methodology by
using Mininet through a set of experiments.

Keywords—SDN, OpenFlow, Network Management.

I. INTRODUCTION

Computational modelling is crucial for network manage-
ment [1] since it helps to evaluate strategies prior their ex-
ecution in real scenarios, avoiding to spend resources with
problematic situations. In this sense, computational modelling
is useful in many aspects, mainly for detecting scenarios where
bottlenecks occur before receiving the network data traffic [2].

Computational modelling is a research area related to math-
ematical modelling of real-world problems, giving solutions
to analyze these problems in computers. Additionally, Oper-
ational Research is a particular area that groups techniques
of mathematical modelling with the objective of defining the
best planning for utilization of restricted resources, i.e., it is an
optimization process [3]. In this paper, we adopt computational
modelling using techniques of the Operational Research to
establish data paths for the traffic in SDN networks.

Computational modelling for data centers must take into
account the impact on the transport network, and is analyzed
by many authors in the literature [4–8]. Many of these stud-
ies contemplate modelling of VM placement. The placement

of VMs is the problem of selecting the servers where the
VMs are allocated in such a way that performance metrics
are optimized. These models receive as input only the most
relevant features of data center environments, commonly the
number of servers, number of VMs, network links, network
bandwidth and traffic matrices. These models are adequate to
evaluate how the traffic will be carried inside of data centers.
Nevertheless, many aspects of real networks, e.g., drop of
packets, delay and jitter are difficult to evaluate only with
computing modelling. So, it is important to consider how the
solution of these models is reflected on real networks.

In this paper, we present MILPFlow (Mixed Integer Linear
Programming with OpenFlow)1, a toolset for the integration
of computational modelling and deployment of SDN networks
using the OpenFlow protocol. Our approach is two-fold: MILP
modelling and the deployment of data paths in the SDN
network. We validate our approach using Mininet emulator.
MILPFlow is used to generate MILP models about the data
center resources, map the solution in OpenFlow rules and
deploy these rules in data paths of SDN networks. This
whole mapping is important to simplify the management of
OpenFlow rules by data center administrators for large SDN
topologies. The rest of this paper is structured as follows.
Section II presents the requirements for integrating compu-
tational modelling with the management of OpenFlow rules.
Section III presents an evaluation of MILPFlow. Finally, we
conclude our paper and contribute an overview of future works
in Section IV.

II. METHODOLOGY

Figure 1 illustrates the MILPFlow methodology. Our intent
is to keep the main functions of the OpenFlow controller
to deploy data paths for large SDN topologies, avoiding the
increasing of control messages in the network.

SDN Topology description: it describes the network char-
acteristics of the SDN environment in terms of network
topology, traffic matrices, racks of servers, number of servers,
number of switches, network links, bandwitdth, delay, and
other customized information. In particular, we describe our

1MILPFlow is published as open-source software at:
https://github.com/milpflow/milpflow.



DB

F2: (Source, Dest)

Fn: (Source, Dest)

F1: (Source, Dest)

Compose Data Paths

for Aggregated Flows
Data Path

...

...

Deploy of the Data Paths

...

SDN Topology Description

...

...

... Data Paths

Processing of the MILP model

Map Results on 
Generation of the

MILP model

Generation of the

Data Path Rules

Fig. 1. MILPFlow Methodology.

traffic matrix as the relationship of the whole data traffic that is
forwarded from each source Top of Rack (ToR) until reach its
destination ToR. The values of these matrices are well known
inside the datacenter or can be given from statistics and/or
historical data about the load of communication.

Generation of the MILP model: it is used to map the
SDN topology description in a MILP problem. We describe
the details of this formalization in [9] where we define a
linear model for VM placement. However, in this paper, we
extend this model to establish data paths to SDN topologies.
In our model, these elements are ToRs, switches, network
communication links, and traffic matrices.

Processing of the MILP Model: the processing is externally
done with MILP solvers, such as CPLEX or Lingo. The result
obtained from solving this MILP model is a set of routes
to forward data among ToRs, without over-utilization of the
network links. We show an example in Figure 2 and its
correspondence mapping of MILPFlow results in Table I. The
data structure F1 keeps the whole information about the links
with flows of F1. So, F1[1][2] = 1000 indicates that 1000
units of the flow F1 goes through the link between the nodes
H1 and s2. Our goal is simplify the mapping of MILP results
on data paths.

ARP and IP rules

flow−mod:

ARP and IP rules
flow−mod:

flow−mod:
ARP and IP rules

Source Destination

Data path

3

2 3
1

0

1 2

1 2

2

10

s2

s3

s4

s5
H6H1

Fig. 2. Mapping of Paths with MILPFlow.

TABLE I. MAPPING OF PORTS WITH MILPFLOW

MILPFlow results Mininet Topology MILPFlow Ports

F1[1][2]=1000 (h1,s2) (h1,0,s2,1)
F1[2][3]=200 (s2,s3) (s2,2,s3,1)
F1[2][4]=800 (s2,s4) (s2,3,s4,1)
F1[3][5]=200 (s3,s5) (s3,2,s5,1)
F1[4][5]=800 (s4,s5) (s4,3,s5,2)
F1[5][6]=1000 (h6,s5) (h6,0,s5,3)

Compose Data Paths: after executing the earlier step, an
extra effort is necessary to compose the data paths. As shows
the Table I, the flow F1 occurs on many links. However, it is
necessary to compose the path in the properly sequence, i.e.,
the sequence of nodes to forward data from source ToR to
reaches its destination ToR. For this we employ an algorithm
similar at the depth-first search algorithm in to explore as far
as possible each branch in the path of F1. We illustrate an
example in Figure 2. In this example, the sequence F1[2][3]
and F1[2][4] are the links between the node s2 to reach
the nodes s3 and s4. So, we have a split condition in this
path. Similarly, the sequence F1[3][5] and F1[4][5] are a join
condition near at the destination.

Generation of Data Path Rules: we describe this step with
an example of a flow generated from host H1 to host H6, as
illustrated in Figure 2. Each switch si communicates with each
other via communication ports. We combine MILP results with
Mininet to create a mapping of MILPFlow ports, as shown in
Table I. The first column in Table I shows the route created
by MILPFlow to go from host H1 to host H6. The second
column shows the hosts and switches in the Mininet Topology
and finally in the last column, we see each host-port-switch-
port connection. Emulators as Mininet read topology files to
create its virtual connections with Open vSwitch (OVS) kernel
switches. Mapping the input and output ports of each link that
connects switches is necessary to establish connectivity hop-
by-hop, and this task is generally performed by OpenFlow
controller. However, we acquire this information directly from
Mininet2. As a consequence, it is not necessary to send control

2Mininet network parsed from net command.



messages to discover the connection between the ports of
these switches. However, it is necessary to define ARP and
IP flow mod rules for the switches of each data path.

When splits of traffic occur we employ the group tables of
the OpenFlow 1.1.0 specification. This feature allows to create
the split of flows in the network as well as their subsequent
joins. For each group table, the value of the variable weight
indicates the amount of traffic that should be forwarded
through its sub-paths, as occurs in the switches s2 and s5 in
Figure 2. We set the normalized weight value of the MILP
result. As an example, we map the resultant flow of 200 units
in the link between the switches s2 and s3: F1[2][3] = 200,
and between the switches s2 and s4: F1[2][4] = 800. Then,
we set weight1=2, weight2=8, respectively.

Deployment of Data Paths: MILPFlow generates the set
of flow mod and group mod rules in an executable batch file.
The network administrator uses these rules to deploy its data
paths. Two output formats are generated: dpctl commands and
HTTP REST commands for using with REST API provided
by some controllers.

III. EXPERIMENTAL EVALUATION

We evaluate a set of scenarios on a Dell PowerEdge R420
with Intel Xeon Quad Core, 2.4GHz, and 48GB of RAM.
Our experiments run inside VMs of VirtualBox with XUbuntu
12.04.2 LTS with 1 Gbps NICs, and Open vSwitch compatible-
OpenFlow switches. We use Mininet and the Fat-tree topology
of Figure 3. Our experiments were done with Iperf software,
and streaming of video using the VLC application with Real-
time Streaming Protocol (RTSP). We choose the Ryu controller
since it provides a REST API and offers high performance to
establish data paths for non-trivial network topologies with
loops in its structure (e.g., fat-tree, BCube, VL2 topologies).
In order to show that MILPFlow keeps the same features as
other well known protocols, we compare it with the Spanning
Tree Protocol (STP) implementation of the Ryu OpenFlow
Controller. Our intention is evaluate the throughput of the
MILPFlow data paths. However, this evaluation has not in-
tention of comparing MILPFlow and STP in terms of offering
the best throughput for the flows.

Logical Links

Physical Links

H20 H22 H23H18 H21 H25 H27 H29H24 H26 H28

s1

s2 s3 s4 s5

s6 s7 s8 s9 s10 s11

s12 s13 s14 s15 s16 s17

H19

Fig. 3. Fat-tree Topology used in the Experiments.

We use MILPflow to generate the data paths, following
the steps of the methodology illustrated in the Figure 1. The

SDN topology description is done for the reference topology
of the Figure 3. This is a fat-tree topology with 29 nodes
(17 switches and 12 ToRs) and 36 edges. Our traffic matrix
is set to evaluate the throughput between the logical links
between the ToRs, and that are showed in dashed lines of
the Figure 3. In our traffic matrix each entry represents the
aggregate of the whole flows of traffic that are generated by a
source ToR, and that is consumed by its destination ToR. For
this experiment we set 6 aggregated flows of 5000 units each
to transverse our reference topology. We define the bandwidth
of the links in 10000 units to have a value near at 10Mbps of
our Mininet bandwidth. The next steps of our methodology are
automatically done with MIPLFlow. The evaluation was done
taking into account UDP and TCP traffic. In both experiments
we run Iperf measurements 30 times for each pair of ToRs
of the logical links. We collect data every 5 seconds for
each measurement. For UDP traffic we use Iperf to submit
5Mbps between the ToRs. For TCP traffic we run similarly, but
without restriction about the amount of data to be forwarded
among the ToRs.

������� ������� ������� ������	 ������
 �������


���������

��


�

��


�

��





�
�
��
�
�
�
�
�
��
��

�
�
�
�

(a) UDP Throughput with MILPFlow.

������� ������� ������� ������	 ������
 �������


���������

���

�

���

���

���

���

��


��	

���

�
�
��
�
�
�
�
�
��
��

�
�
�
�

(b) UDP Throughput with Ryu STP.

Fig. 4. Evaluation of UDP Traffic.

Figure 4 compares MILPFlow versus the STP protocol for
UDP traffic. The axis x represents the source and destination
TORs by which the traffic is sent. We observe that the
throughput of MILPFlow is similar to the throughput of the
STP proving that the deployment of the MILPFlow routes was
well done and is working. The packet losses are below 1% in
both scenarios We observe that the MILPFlow values are near
at 5Mbps, what indicates that the results are near at the defined
in the SDN topology description. We show a summary of these
results in the Table II.

The results with TCP traffic are similar to the UDP traffic
since the throughput is quite the same between MILPFlow
and STP and the packet losses are bellow 1%. The exact
numbers are shown in Table II. The throughput reached by



the STP is a little better (near 90Mbps) when compared to
the throughput reached by MILPFlow (near 80Mbps). This
is explained since the routes created by STP are always the
shortest ones among every pair of servers in the datacenter.
This is not true for the routes created by MILPFlow modelling
because it accommodates the flows taking into account the
capacity of each link and the shortest path is not always
obtained for all the flows. We show a summary of these results
in the Table II.

TABLE II. COMPARATIVE EVALUATION WITH IPERF

UDP TCP
MILPFlow Ryu STP MILPFlow Ryu STP

Average Throughput (Mbps) 4.13 4.25 79.71 89.34
Max. Throughput (Mbps) 4.64 4.69 271 586
Min. Throughput (Mbps) 2.96 3.95 7.34 7.28

Min. Std. Dev. 0.11 0.06 16.34 21.86

We also did an experiment with a real application using
RTSP. For this experiment, we choose an H.264 encoded a
movie of 10 minutes that streams from the server H18 to
the client H29. Figure 5 shows the throughput measurements
with Tcpstat, taking samples at each 5 seconds. The losses of
packets bellow 1% indicates that most of the data traffic is
forwarded between the hosts. Table III shows that the values
of the measurements (M1) with MILPFlow and measurements
(M2) with Ryu STP are closer, what indicates a similar
behavior in the utilization of both approaches.

� �� �� �� �� �� 	� 
� ��� ���

��
�����

�

����
�

����
�

����
�

����
�

��
�

��
�

�
�
��
�
�
�
�
�
��
��
�
�
�

���������� 

��
������� 

����!"# $%�&

��
�!"# $%�&

(a) Throughput of RTSP Streaming.

� �� �� �� �� �� 	� 
� ��� ���

��
�����

���

���

���

���

�
�
�
�
�
�
��
��
�
�
�
�
�
��
��
�
�

������ ��!�"#$�%��

������ ��!�&'��()� 

(b) Losses of Packets.

Fig. 5. Evaluation of RTSP Throughput.

The standard deviation is high in both approaches. This
inaccuracy is mainly introduced by the lack of synchronization
between the client and server stream applications. This occurs
because we are unable to synchronize the start of these
applications, and the traffic measure taken in one given period
in server will be taken some seconds ahead in the remote
client application. Also, the throughput measurements show
higher ponctual peaks in the beginning and in the end of the

streaming. We observe that these peaks occur in the parts of
the video when more changes of pixels is done. Although the
packet losses are not very accurate due to synchronization, the
low percentage of losses gives a good indication about the
quality of the data paths established by MILPFlow and the
STP of the Ryu controller.

TABLE III. COMPARATIVE EVALUATION WITH RTSP

MilpFlow Ryu STP M1-M2 M1-M2 (%)

Average Throughput (Mbps) 379.36 359.10 20.26 1.06
Max. Throughput (Mbps) 1036.32 971.89 64.44 1.07
Min. Throughput (Mbps) 157.99 144.81 13.18 1.09

Min. Std. Dev. 213.46 200.61 12.85 1.06

IV. CONCLUSIONS AND FUTURE WORKS

This article presents a methodology to integrate com-
putational modelling with management of SDN networks.
Our approach aims to promote proactive routing. In order
to validate our methodology, we implement the MILPFlow
framework, and conduct a set of experiments to evaluate our
approach. The main advantage of using MILPFlow is the
possibility of doing mathematical modelling together with the
deployment of SDN/OpenFlow rules as well as the capability
of reconfiguring routes in a finer granularity according to the
network administrator needs. Our work is innovative in the
sense that we aim at contributing to the state of the art in
affordable yet rich SDN experimentation using computational
modelling jointly with the deployment of rules in the network.
Future works are being devoted to evaluate the scalability of
MILPFlow for larger topologies.

ACKNOWLEDGMENT

The authors gratefully acknowledge the contribution of
CAPES, FAPESP and CNPq, Brazilian funding agencies.

REFERENCES

[1] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “Payless: A low
cost network monitoring framework for software defined networks,” in
Network Operations and Management Symposium (NOMS), 2014 IEEE,
May 2014, pp. 1–9.

[2] A. Schaeffer-Filho, A. Mauthe, D. Hutchison, P. Smith, Y. Yu, and
M. Fry, “Preset: A toolset for the evaluation of network resilience strate-
gies,” in Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on, May 2013, pp. 202–209.

[3] J. W. Chinnecke, Practical Optimization: A Gentle Introduction, 2012.
[Online]. Available: http://www.sce.carleton.ca/faculty;chinneck/po.html

[4] M. Portnoy, Virtualization Essentials. John Wiley & Sons, 2012.

[5] M. Alicherry and T. V. Lakshman, “Network aware resource allocation
in distributed clouds,” in INFOCOM, 2012 Proceedings IEEE, March
2012, pp. 963–971.

[6] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, “A stable network-aware vm placement for cloud systems,”
in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, May 2012, pp. 498–506.

[7] G. Wu, M. Tang, Y. Tian, and et al., Energy-Efficient Virtual Machine
Placement in Data Centers by Genetic Algorithm. Neural Information
Processing - Lecture Notes in Computer Science. Springer, 2012.

[8] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, March 2010, pp. 1–9.

[9] L. Rocha and E. Cardozo, “A Hybrid Optimization Model for Green
Cloud Computing,” 7th International Conference on Cloud and Utility
Computing - UCC 2014, p. 10, 2014.


