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Abstract—In the event of natural or man-made disasters,
many videos may be collected by civilians and surveillance
cameras that can be extremely useful for first responders trying to
ascertain the extent of the damage. However, watching and ana-
lyzing numerous videos on separate screens can be a cumbersome
task. Registering a set of 2D videos with a 3D model can provide
an intuitive venue for viewing multiple videos simultaneously. In
such a setup, it is likely that the user will want to work with
the dynamic 3D environment from a remote location, requiring
that videos be transferred over a network to be registered with
a 3D model. In this paper, we propose combining the fields of
computer vision, cloud computing, and high-speed networking to
create a system that takes in HD videos, streams the data to a
server where a dynamic 3D model is constructed, and provides
a virtual scene navigation program for viewing the videos in a
3D scene from a mobile device. We test transferring the data of
interest over different types of networks and processing the videos
on various server configurations to determine the capabilities of
such a system and the necessary requirements for it to provide
a high-quality user experience.

I. INTRODUCTION

During natural or man-made disasters, videos from many
perspectives are collected by security cameras and civilian
observers. This abundance of data can be helpful for officials
and emergency responders who need to quickly ascertain the
state of affairs. When the normal infrastructure starts breaking
down, it can be difficult for the authorities deciding how
to respond to access, observe, and determine the extent of
the damage. However, it is becoming increasingly common
for civilians to record videos of unfolding events on cell
phones, making crowd-source information available in addition
to video feeds from mounted security cameras. Unfortunately,
handling such large collections of videos and performing this
type of surveillance on a traditional 2D grid display can be
quite challenging. It is difficult for users of such systems to
perceive the spatio-temporal relationships between different
video streams, understand the geographical context of the
situation, track and analyze events as they unfold, and predict
possible outcomes. On the other hand, 3D virtualizations of
scenes can help a great deal in obtaining such information,
especially in disaster scenarios [1]. Allowing a model of a 3D
scene to be viewed from remote locations by sending it over
available networks to officials can aid in response organization.
Large scale models can be created using 3D LIDAR (Light
Detection and Ranging) scans that use a laser to determine
distance to surfaces and reconstruct a scene [2]. This type
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of LIDAR data has been shown to be useful for assessing
the aftermath of natural disasters since highly accurate scans
can be obtained very quickly [3]. However, LIDAR data by
nature can be large and computationally expensive to process
so adequate resources must be available to take advantage of
this rich source of information. Leveraging the elasticity of
cloud computing and the resources of high-speed networks
provides new opportunities for using LIDAR data for life-
saving applications.
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Fig. 1.  Diagram showing overview of system. Videos are collected at

disaster scene and transfered wirelessly to the server where their 3D poses
are estimated. The virtual 3D environment is transferred from the server to
thin clients for data consumption.

In this project, we study how these opportunities can be
realized by working with a dynamic interactive 3D scene
visualization system in which videos are captured at a disaster
site, transferred to a server for on-demand processing and
model construction, and viewed remotely with a thin-client. We
look at provisioning options such as elastic compute to carry
out these tasks. This overall process of collection, computation,
and consumption is outlined in Figure 1. By seamlessly
rendering dynamic video data from multiple cameras on top
of a LIDAR point cloud, the system allows the users to view
the recorded action in the context of a global 3D model from
the viewpoints of any virtual camera. We test running our
system over various application-driven overlay networks using
concepts of software defined networking (SDN) [4], [5] to
identify the network configuration requirements for processing
and viewing 3D video and delivering high Quality of Service
(QoS). We use a wireless overlay network (WON) to represent
a standardly available network and a higher-speed network
that simulates a fast overlay network made available on top
of existing infrastructure in a disaster scenario that meets
special needs, which we refer to as a disaster overlay network
(DON). Videos must be able to be uploaded to the server over
DON without encountering network congestion so that they
can be processed on-demand in the cloud infrastructure and
transferred via the same network to thin-client protocols for
first responders to view.

The remainder of our paper is organized as follows. Sec-
tion II reviews related work in the network and vision com-



munities. Section III summarizes our computer-vision based
techniques for the computation stage referred to in Figure 1 in
which videos are registed with LIDAR range scans to create
3D virtual representations of videos. Section IV details the
technology we use in our virtual environment setup, our system
requirements, and our data acquisition process as well as our
experimental setup. In Section V we report the results of our
study and Section VI concludes our work.

II. LITERATURE REVIEW

3D representations of a disaster scenario can be transferred
over wireless networks to remote locations for better scene
understanding than what a set of disjointed videos and pho-
tographs would provide. Research on how to set up mobile
networks in a disaster scenario and on how to create 3D
models and simulations using LIDAR data have provided
strong foundations for accomplishing this, but to the best
of our knowledge, they have only been studied as separate
topics. It is important in disaster scenarios to be able to
transfer and share data amongst emergency response crews,
administrative officials, and medical professionals for planning
and rescue purposes. Several groups have investigated ways
in which wireless networks can be set up and utilized for
communication in the event of an emergency [6]. Chissungo et.
al [7] have studied using Wireless Mesh Networks to transfer
medical information throughout disaster zones in situations
where wired networks are damaged. Witkowski et. al [8] set
up mobile ad hoc networks that allow humans to communicate
with robots being used to explore the aftermath of a disaster.
As these types of studies have become more popular, the
speed of message delivery over wireless networks and the
energy efficiency of these on-the-fly network setups has been
prioritized and explored [9]. In this work, we study achieving
similar goals of high-speed communication with DON.

The fact that fusing 2D imagery with 3D LIDAR scans
can be used to create large scale, photorealistic 3D models
very quickly and easily with a high degree of accuracy has
motivated several research projects in the computer vision
field. Many groups have focused on performing registration
on urban data which has an abundance of regularized features
such as line segments and arcs that can be matched across
dimensions [10]. Mutual information can also be used for
direct 2D-3D registration in which various properties of a scan
such as laser reflectivity or point cloud height are visualized
in 2D [11], [12]. If the scanner has a build in camera,
keypoint features can be matched in 2D to obtain an camera
pose estimate that can be refined with 3D normal or edge
information [2], [13].

These methods make available visually rich information
for scene understanding but are computationally intensive and
can benefit performance-wise from high-speed networking and
cloud computing resources. By transferring collected 2D and
3D data to a remote server for real-time computation and
processing and transferring the final fused results to mobile
devices for consumption, a whole new range of use cases for
LIDAR data in disaster scenarios becomes possible.

III. 2D-3D REGISTRATION

In order to register a video with the LIDAR range scan,
we must calculate the camera poses for video frames in
relation to the 3D point cloud. This entails matching a video

Fig. 2.
Bottom Left: Video frame projected onto range scan without using our method
for modeling moving objects. Right: 3D planes constructed for moving objects
identified in video using our modeling method.

Creating 3D planes for dynamic objects. Top Left: 2D video frame.

frame to LIDAR photographs whose 3D correspondences are
known and solving for the cameras projection matrix. To
initially determine the 2D-3D relationship between the LIDAR
photographs and the LIDAR scan, we have a pre-processing
stage during which we map 2D pixels to 3D points. The
mapping between the camera and the scan is known from a
provided file giving the camera’s focal length in pixels and
rotation and translation. Using this information, each 3D point
is projected onto each image plane to find its corresponding 2D
point. The entire point cloud is projected onto each image onto
each image once and the 2D-3D correspondences are saved on
the server.

Once we have this information, we perform SIFT (Scale
Invariant Feature Transform) matching between video frames
and LIDAR photographs [14] and obtain a set of 2D-3D
keypoint matches between the video frame and the LIDAR
scan. We use this set of 2D-3D correspondences to calculate
the projection matrix, P, of the camera using the six-point
algorithm [15]. The projection matrix maps 3D LIDAR scan
points to 2D video frame pixels, fusing the two modalities.

When a moving object, such as a person walking, that
was not scanned is present in a video it will be projected
onto an incorrect location in the 3D space because there is
no structure that corresponds to it. These errors are very
apparent when the user starts changing perspectives away
from the original camera’s viewpoint, as is demonstrated in
Figure 2, Bottom Left.

To handle such situations, we segment out the motion in
videos using the Mixture of Gaussians (MOG) algorithm [16]
and add 3D planes to the virtual environment to “catch”
the projection of these new entities. MOG yields a binary
image with the motion segmented from the background. The
connected components algorithm is applied to the MOG image
to create cohesive segments. We scan this image starting from
the bottom row of pixels to find the lowest point in each
moving segment and identify its matching 3D point. Assuming
that the moving object is touching the ground, this 3D point is
the correct location for the bottom of the segmented object.
New 3D points with the same depth as the bottom point
and varying heights are created and projected onto the MOG
image. If they fall within the segmented portion of the image,
they correspond to a moving object that was not scanned
and are added into the 3D space with the corresponding
color information from the original video frame. The result
of performing these steps is shown in Figure 2, Right.



IV. EXPERIMENTAL METHODOLOGY
A. Experimental Setup

Our testbed setup consists of clients connected to WON
(~10Mbps) that represent a standardly available campus en-
terprise network for QoS priorities and a compute manager
VMware Horizon View® connected over a higher-speed
campus research network DON (~600Mbps). We emulate a
network made available in a disaster scenario in which these
two networks can be used in parallel. By pooling resources,
our collection, computation, and consumption steps can be
employed effectively by first responders. We have a virtual
server setup with 6vCPU (12GHz) and 16 GB of memory with
Windows 2008R2 64bits installed. Our physical server has 2
processors Intel Xeon Processor E5-2640 v2, 8 cores each for
a total of 16 cores. The clients have a Windows 7 Enterprise
64 bits O.S. installed. Our clients are able to stream data to
the server by using curl Linux utility functionality that is
authenticated by the FTP server in the virtual server.

To obtain a 3D model for our location of interest, we use a
Leica C10 HDS LIDAR scanner that provides a high-resolution
point cloud of a scene and 2D images using a built-in camera.
We also capture multiple video streams of people walking
around the university campus with HD video cameras. This
video data needs to be transferred in real-time to the HPC
server for data processing.

B. Design of Experiments

We separately evaluate the performance for the three stages
of our system shown in Figure 1, i.e. collection and transferring
the 3D scan and video files, computing the 2D-3D data fusion,
and consumption by the user to receive 3D scenes and multiple
videos for virtual navigation and video analysis. The goal is to
obtain real-time (or near real-time) responses for all of these
tasks. We also experiment with scaling up the amount of data
transferred to see how many videos we can handle and how
large the 3D model data can be, depending on the hardware
used.

To simulate the collecting and transferring of any number
of real-time video streams, we first obtain several HD videos
on campus. These videos are stored on a laptop and a varying
number of duplicates are sent over the network simultaneously
to tax the system. Our goal is to observe what happens to the
system when one verses many videos become available and
need to be viewed. Individual video frames are transferred
sequentially to mimic real-time video capture. The 2D-3D
registration and video motion analysis stages are performed
on the server.

For the final consumption stage, the large 3D model only
needs to be transferred over the network to the remote device
one time when it is first requested. If the user wishes to a view
a different location, a new model will need to be sent to the
mobile device (laptop, tablet, cellular phone, etc.).

V. STUDY RESULTS
We studied the collection, computation, and consumption
sections of our pipeline individually. All of our tests were
performed three times, and in this section we report the
averages of these tests as our final results.

A. Collection

We tested sending varying file sizes over the server (52,
105, 210, and 316 MB) to account for situations where
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Fig. 3. Collection stage transfer times for varying video sizes. Left: Transfer
times for WON. Right: Transfer times for DON.
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Fig. 4. Performance during the computation stage. Left: Time measured

in seconds required to compute 3D pose for increasing number of dynamic
objects in videos on different server configurations. Right: CPU utilization on
server during computation stage for different configurations.

different definition videos are streamed from client connected
to WON and DON. The transfer times in seconds for these
tests are shown in Figure 3. The maximum number of videos
we tested sending at once is five because our server has six
cores and cannot process more than that number of videos at
once. Despite the fact that these are relatively small-scale tests,
we still get a good sense from the charts how communication
time will increase as the number of videos rises. These tests
also show that DON is able to transfer data about 10 times
faster than WON and would be very beneficial in a disaster
scenario where timely information sharing is key.

B. Computation

We modified the vCPU capacity of our virtual server with
2, 4, 8 and 12 GHz, testing the processing times in seconds for
videos containing 1-28 moving objects. Each dynamic object
in every video needs to be identified, segmented from the
static background, and modeled in 3D so we are interested
in what happens to our overall performance as more objects
are recorded. We stopped at 28 objects because this seems
to be a reasonable limit on the maximum number of people
that will be captured in a typical camera’s field of view and
be able to be separately identified and modeled as individual
objects in 3D. We also tested the system’s performance when
processing 1 to 4 videos of 185MB each with the same content
simultaneously and looked at the CPU percentage utilization.
These results are all shown in Figure 4. We observe here that
the system becomes saturated when processing four videos
and can see what will happen as more videos are added to
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Fig. 5. Consumption evaluation measured in seconds. Transfer times for

dynamic 3D objects captured in videos to be sent to remote device for viewing.
Left: Transfer times for WON. Right: Transfer times for DON.

the system. We gain the greatest boost in performance when
increasing from two to four videos.

C. Consumption

During the consumption stage, the clients need to download
the files containing 3D information from the server. In the case
that a client is connected to the server via WON, this process
is time consuming compared with a virtual desktop accessed
from a thin-client (hardware/software). For both cases, Teradici
PColIP protocol© is used for remote access. A comparison of
file transfer times in seconds between a physical client con-
nected to WON and using a virtual desktop setup on a server
connected to DON is shown in Figure 5. We tested transferring
3D data files for between 377 and 3,496 individual moving
objects simultaneously to significantly stress the system and to
find out how much information can be processed in a timely
manner if the disaster site is very congested with people and
cameras. We can see that using DON, thousands of moving
objects can be transferred and displayed in a matter of seconds,
making this setup great for first responders needing to rapidly
sift through vast information from the disaster scene.

Our final stage of testing looks at the actual user experience
during the consumption stage. We evaluated the data transfer
times in Kbps for running various programs over the thin-
client. We compared the performance of our 3D video program
to everyday programs that most people are familiar with
such as Excel and Internet Explorer on four different types
and speeds of networks, as shown in Figure 6. We can see
that the 3D video program requires a tremendous amount of
resources for processing because it contains vast amounts of
rich visual information even after encoding. Ideally, emergency
responders will be able to use thin-clients for 3D video analysis
to avoid potentially long download times, 3D viewing software
setup and speed up data acquisition.

VI. CONCLUSION

In this paper, we combined the fields of computer vision,
cloud computing, and high-speed networking to create 3D vi-
sualizations of disaster scenarios for scene understanding. We
presented results for the three stages of a system that collects
videos of a scene, performs the necessary computations to
register them with a 3D LIDAR scan on a remote server, and
transfers them to mobile devices for consumption and scene
viewing. Our tests demonstrate how a high-speed network used
in a disaster scenario can greatly increase the speed at which
data can be shared amongst officials and emergency responders
spread out over numerous locations making crucial decisions.
We also show that multiple videos with recordings of many
moving objects such as people and cars can be sent to a cloud
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Fig. 6. Comparing user experience of our program to other standard programs
over the thin-client during the consumption stage. Network 1 the Campus
Wireless with a bandwidth of 8-9 Mbps/10 Mbps. Network 2 is a Wired Lab
with 7 Mbps/7 Mbps. Network 3 is a Wired Lab with 5 Mbps/3 Mbps, and
Network 4 is a Wired Lab with 3 Mbps/1 Mbps.

server, registered, and viewed in 3D simultaneously using thin-
clients by emergency response teams. Thus, we avoid having
to download all the data and necessary analysis software, and
increase the usefulness of this system in critical moments when
officials need to make quick, informed decisions to save lives.
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