Towards a Hybrid Intrusion Detection System for
Android-based PPDR Terminals

Pedro Borgesl, Bruno Sousal'2, Luis Ferreira?, Firooz B. Saghezchi3, Georgios Mantas?,

Jose Ribeiro®, Jonathan RodriguezS, Luis Cordeiro?, Paulo Simoes

1

1University of Coimbra, Portugal
20neSource, Consultoria Informatica Lda. Coimbra, Portugal
3Instituto de Telecomunicagdes, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal

Abstract—Mobile devices are used for communication and
for tasks that are sensitive and subject to tampering. Indeed,
attacks can be performed on the users’ devices without user
awareness, this represents additional risk in mission critical
scenarios, such as Public Protection and Disaster Relief (PPDR).
Intrusion Detection Systems are important for scenarios where
information leakage is of crucial importance, since they allow
to detect possible attacks to information assets (e.g., installation
of malware), or can even compromise the security of PPDR
personnel. HyIDS is an Hybrid IDS for Android and supporting
the stringent security requirements of PPDR, by comprising
agents that continuously monitor mobile device and periodically
transmit the data to an analysis framework at the Command
Control Center (CCC). The data collection retrieves resource
usage metrics for each installed application such as CPU, memory
usage, and incoming and outgoing network traffic. At the CCC,
the HyIDS employs Machine Learning techniques to identify
patterns that are consistent with malware signatures based on
the data collected from the applications. The HyIDS’s evaluation
results demonstrate that the proposed solution has low impact
on the mobile device in terms of battery consumption and
CPU/memory usage.

I. INTRODUCTION

Nowadays, users devices are more than simple mobile
phones, they have the processing power of a small computer
and provide diverse functionalities such as document pro-
cessing, photo editing, pay wallet among others. In addition,
they are capable of using multiple technologies to connect
to the Internet, such technologies can include GSM, LTE,
WiFi, Bluetooth, NFC. The proportion of mobile phones with
broadband access globally is 47% and there is a clear tendency
for mobile broadband access ratios [1]. Android’s market share
ranges from 70% to 80% [2]. Additionally, the advances
in LTE, mainly to support mission critical functionalities of
Private Mobile Radio (PMR) networks such as group and
air encryption communications also increase the possibility of
using personal devices of PPDR (Public Protection Disaster
Relief) users in such scenarios. Indeed, Bring Your Own De-
vice (BYOD) can further enhance situation awareness by col-
lecting images, videos, transmitting information of biosensors.
Nonetheless, it also introduces additional security risks [3].

BYOD devices, managed by personal users represent a
security threat to the security model that is employed in
PMR networks, where the network and mobile terminals are

978-3-901882-89-0 @2017 IFIP

managed by a single entity. The applications installed in
BYOD can be malware, or other kind of malicious applications
that aim to allow hackers to meddle sensitive information
stored in mobile devices (e.g., credit card information, keys
for authentication). These attacks come in several forms and
ways and compromise the device by disrupting the operating
system and network service, inducing data and financial loss
and leaking private information. While the infection rate in
Android devices fell from 2014 to 2015 the attackers are quick
to take advantage of vulnerabilities and just in the first half
of 2015 the number of Android malware samples more than
doubled with most of the attacks being spyware [4].

Host Intrusion Detection Systems (IDS) are employed as
a solution to perform single host monitoring of several assets
such as network traffic (e.g., web-sites visited, secure commu-
nications in place), system logs, running processes, application
activity, file access and modification, and system or application
configuration changes. During monitoring, the characteristics
are analysed to detect possible violations or possible threats of
security policy violation [5] [6]. Anomalous events detection
can rely on several mechanisms: (1) signature-based detec-
tion which compares features to identify known threats; (2)
anomaly-based detection, which compares patterns of normal
activities with suspicious behaviour to determine if significant
deviations occured; and (3) stateful protocol analysis that
compares predetermined profiles of benign protocol interaction
against observed events to identify deviations. Upon detection
of an intrusion event, such systems perform several important
features: gather detected event information and forward it
to a logging server; notify the secure system’s administrator
through an alert; produce monitored events summaries or
provide further detail on events of interest; and put in place
intrusion prevention/protection policies.

Nevertheless, such systems are not suited for mobile device
use: they require high processing power to perform analysis
of several criteria. Even though mobile devices are becoming
more powerful, there are energy constraints that are tightly
linked with device usability; they are not scalable for mobile
devices because they have no coordination and control mech-
anism; they are not prepared to collect features and metrics
inline with the information that is on the mobile device.

This paper presents and validates a Hybrid architecture for

1034

an Intrusion Detection System — HyIDS. It enables the identi-
fication of malware and security-threatening events by relying
on data collection mechanisms, correlation mechanisms and
Machine Learning (ML) algorithms. The HyIDS architecture is
designed to run on the majority devices, without requiring root
access, to collect data that is provided by the logging services
and Android APIs. Such information, is securely transmitted
to a Command Control Center (CCC) to be analysed to reveal
malware behaviour — Dynamic analysis. HyIDS also supports
Static Analysis by correlating mobile device application’s
permission information. The evaluation results demonstrate
that HyIDS has a neglectable impact in the data collection
process, in terms of CPU, memory and battery usage.

The rest of this paper is organized as follows. Firstly,
Section II describes the related work and Section III describes
the architecture of the HyIDS solution. Secondly, in Section IV
we present the evaluation methodology to assess the designed
solution’s impact in terms of resource usage. Thirdly, in
Section V we analyse and discuss the results work that need
to be performed to further improve the solution. Finally, in
Section VI we conclude the paper and present our future work.

II. RELATED WORK

There are several techniques which can be employed to
mitigate the security threats of Android malware. They can
either be classified as static or dynamic techniques. The static
analysis approaches were the first to be used in Android and
aim to analyse the code without executing it. They disassemble
and decompile the application and try to recreate its algo-
rithms through reverse engineering techniques. The requested
permissions’ analysis is a common method of static analysis;
nevertheless, this method is not accurate since it relies on
the specification that developers perform, which may request
permissions that are not needed for the designed application.

Static analysis methods are quick but can be fooled by
code obfuscation or transformation techniques. For instance,
AndroSimilar [7], is an automated framework that extracts
unique statistical features from the applications and uses them
to build a signature database to compare with known malware
signatures. Drebin [8] is another approach that performs ge-
ometrical analysis using ML techniques to identify malicious
applications based on the features that are extracted from the
applications’ code. Google supports this type of analysis for
all applications that are installed from the play store and any
external sources [9]. Nonetheless, this type of analysis, in some
cases requires source code access and does not detect usage
patterns, or other actions performed by the users.

Dynamic approaches usually rely on the collection of data
from the devices (CPU usage, network traffic, battery con-
sumption, etc.) which is examined using data mining methods
to extract patterns or behaviours that represent normal or
abnormal activities. These patterns are combined and used
to create rules that detect known and unknown malicious
activities through similarities with the well known existing-
patterns. Dynamic approaches can monitor the behaviour of
programs during runtime using heuristic methods, therefore the

IFIP/IEEE IM 2017 Workshop: 3rd International Workshop on Security for Emerging Distributed Network Technologies - Full Paper

problems related to malware which uses obfuscation methods
to bypass the static analysis are solved. Nevertheless, dynamic
analysis also fails when malware employs evasion techniques.
DroidScope [10] is an off device emulation based analysis
framework which uses a taint analysis component to track
and monitor how malware obtains and leaks sensitive infor-
mation at the machine code level. Andromaly [11] proposes
a user-configurable framework to help users detect suspicious
activities on their devices. It collects processor, network and
battery data and analyses it to generate notifications that alert
to the possibility of malicious behaviour on the device. This
approach only runs on the device and is limited to the simple
identification of malware that is installed on the device.

Hybrid approaches were conceived to overcome the limi-
tations of static and dynamic approaches, as hybrid schemes
aim to combine and complement the information collected by
each to detect malware in a more accurate and robust fashion.
DroidRanger [12] has two detection engines, the first uses
information collected from malware pre-processing and the
second uses heuristics to recognize suspicious behaviours and
misused features in applications. A suspicious application is
examined manually and its characteristics are added to the first
detection engine. Spreitzenbarth et al. [13] present a mobile-
sandbox system where the application’s Android Manifest is
parsed and matched against a virus database. The application’s
bytecode is examined to detect malicious pieces of code that
are used to extract sensitive information with the help of
TaintDroid [14], and DroidBox [15] to trace the native calls.

ML techniques can be used to develop malware detection
mechanisms based on data collected from applications running
on the device. There are three main categories of algorithms
in ML: supervised learning, unsupervised learning, and semi-
supervised learning. Unsupervised or semi-supervised learning
algorithms are preferred to their supervised counterparts for
IDS design since (i) having labelled data for all existing
malwares is impractical since there are always some unknown
ones that the designer might be unaware about them; and
(ii) supervised learning can only detect attacks that have
representative examples in the training set.

Our solution, HyIDS is an hybrid approach that supports
static and dynamic analysis by collecting information related
to applications and their respective resource consumption in an
integrated approach that combines ML for malware detection
and correlation engine to correlate events to determine if
security-policies are followed. Contrary to many dynamic
and hybrid approaches, HyIDS does not perform any kind
of analysis on emulators, since some malware can detect
such and avoid detection by limiting its execution. Also, the
operator on the CCC for the PPDR situation management
manually responds to the suggestions of the IDS to enforce any
management actions on the devices. Furthermore, HyIDS takes
into account high level events caused by the device user that
may indicate misusage of the device which can compromise
a PPDR operation.

1035

III. HYBRID IDS ARCHITECTURE

The HyIDS consists of several components, shown in Fig-
ure 1. Some on the mobile device, and others at the infras-
tructure side, for instance at the CCC in a PPDR scenario.
The former collects and reports data while the latter handles,
stores, and performs malicious actions detection on the device.
The mobile component for intrusion detection also includes
the analysis of files and security configurations, as well as
attempts of privilege escalation. The components running on
the mobile device and the components in the CCC exchange
information over Transport Layer Security (TLS) for the
secure transmission of the collected data across the network.

A. Mobile Device Components

The mobile device application consists of three modules:
the monitoring; the communication and control; the mobile
correlator. For the sake of simplification, from this point on,
the mobile device components will be called MDC.

Communication and control module: This component
is responsible for periodically gathering and reporting the
data collected by the monitoring module to the CCC. It is
also responsible for performing control operations on the
device that are triggered from either the CCC or the Mobile
correlator module. The supported operations aim to enforce the
placement of security policies and may include the following
actions: installation of applications; removal of unauthorized
applications (i.e., not allowed in a PPDR context, represent a
security risk); device locking through a randomized PIN that is
dynamically modified if brute-force attacks are detected; and
device data wiping when disclosure of sensitive information is
verified. This module is also used for mobile correlator module
rule configuration.

Monitoring module: This component is responsible for
mobile device data collection from system APIs (CPU, mem-
ory usage, network traffic input/output, GPS), content ob-
servers and broadcast receivers (installation/uninstallation of
applications, outgoing and incoming calls, sent and received
messages, visited websites, battery status). It also monitors the
file access and usage namely to detect unwanted modifications
or attempts of privilege escalation. All the collected infor-
mation is used afterwards by the ML module and correlator
modules on the CCC to assess if the user or any of mobile
device’s applications represent a security threat, either by
performing data leaks, or by performing malicious actions.

Mobile correlator module: This component is responsible
for performing the correlation of simple events according

Command and Control !
' Center

i Mobile Device :
H ' . Data Handler :
t | Monitoring Module | d ¢ :
i [Communications and ¢/ i 1 IDS Orchestrator : :

Control Module

E : : Machine Learning : :
| |

Mobile Correlator

Fig. 1: Architecture of Hybrid HIDS

1036

to rules and application permissions. This way, this module
assures that the most important security assets can be analysed,
considering the trade-off of the impact of the analysis in the
overall mobile device resource usage.

B. Command Control Center Components

The HyIDS architecture at the Command Control Center
or server side, includes a data handler component to support
a scalable process of data collection (e.g., from the order of
thousands to millions of devices); an Orchestration module
that combines the ML analysis algorithm and correlation to
detect malicious behaviour.

Data Handler: This module stores the data gathered from
all devices and also malicious application signature and be-
haviour information. This dataset is used by the IDS Orches-
trator and other components to detect malicious actions. Such
process was decoupled from the orchestrator to enable scalable
deployments of the HyIDS solution, for instance to support
private cloud deployments by PPDR organizations.

Correlation Engine: The correlation engine on the CCC
is based on the Esper Engine [16]. Esper is an event se-
ries analysis and Complex Event Processing (CEP) system
that combines and examines information from several data
stream sources to detect events or patterns indicating the
occurrence meaningful events. Correlation is used, for instance
in forensics analysis [17] to help analysts sift through large
amounts of data in order to gather evidence of malicious action
posthumously. The correlator module in HyIDS leverages
from the advantages of CEP to process several events and
detect correlations that may correspond to security attacks.
The events that are correlated include: unauthorized calls
(i.e., calls to numbers that are not assigned to PPDR orga-
nizations or health organizations - hospitals), call duration
and frequency, unauthorized messages, installation of mal-
ware flagged applications, wrongful device unlock attempts,
removal of applications, and geographical location of users,
especially in an emergency scenario. For instance, an SMS sent
from an application different from the default SMS application
may indicate the presence of malware. Whenever the events
correlation detects suspicious behaviour, an alert is generated,
considering the level of severity that is determined.

Machine Learning: We use two learning algorithms for
IDS. The first one is called Anomaly Detection algorithm,
which is a semi-supervised learning algorithm and is based
on statistical methods. More specifically, it models the normal
behaviour of the system as a Gaussian Mixture model, and then
detects outliers that occur in the tail of the distribution [18].
The second algorithm that we use is the K-means clustering al-
gorithm, which is an unsupervised learning algorithm [19,20].
The rational behind using Anomaly Detection algorithm is that
most of the collected data represents the normal behaviour
although we have few training examples representing the
anomalous behaviour. On the other hand, K-means clustering
algorithm is suitable since (i) there is no need for labelled
data; and (ii) we know a priori that we have only two clusters:
normal and malicious.

IFIP/IEEE IM 2017 Workshop: 3rd International Workshop on Security for Emerging Distributed Network Technologies - Full Paper

Feature Selection: Representative features are memory us-
age, CPU consumption, battery consumption, and network
traffic per device or per each application as well as system calls
that the Operating System receives from each application. Let
dataset {z(!), ..., 2("™)} represent the normal behaviour of the
device sampled in regular intervals, say every 2s.

Anomaly Detection Algorithm: Following are four steps for
Anomaly Detection algorithm.

1) Choose features z; that might be indicative of anomalous
examples.
2) Fit parameters fi1, ..., fin, 05, ..., 02 as follows:

1<~ @) 1<~)
o iy, 2 i 2
Hj = m 21 Ti' 5 05 = m -E,l(xj)")

3) Given a new example z, compute p(x):

— . o 22 - L —(xj—p;)? /207
p(z) jgp(x]aﬂjvag)]];[1 me
2
We assume that x;s are iid (independent and iden-
tically distributed) random variables with distribution
N (,uja 032)

4) Flag anomaly if p(z) < e.

K-means Clustering Algorithm: Clustering and the K-Means
algorithm are common ML practices for anomaly detection.
Since we classify the behaviour of any malware as either
benign or malicious, the clustering algorithm will end up
in two clusters, so K=2 [11,21]. In general, K-Means algo-
rithm randomly initializes K points, called cluster centroids,
Wi, ... pbn, € R™. Then, it iteratively performs the following two
steps until the cluster centroids do not change any more:

1) assigns every training example to the cluster whose
centroid has the closest distance to it; ie., c® <«
arg min | @ — g ||?, where ¢ is the index of
the associated cluster;

2) move each cluster centroid to the sample mean of its
assigned examples.

IDS Orchestrator: This component includes the ML and
correlator components, previously described, and additionally
includes an orchestration component, mainly for synchroniza-
tion regarding the action to perform considering the suggested
security levels for malicious behaviour either from the ML
algorithm or from the correlator engine. For such, the LOW,
MEDIUM, HIGH security levels are defined, which lead to
different actions. For instance, the MEDIUM and HIGH levels
might lead to a lock action if suspicious behaviour from the
user is detected, or a wipe action is suggested if malware is
being installed to avoid information leakage.

IV. HYBRID IDS TRAINING AND EVALUATION

This section presents the methodology followed to perform
the ML component training and to assess the Hybrid IDS
architecture MDC performance.

IFIP/IEEE IM 2017 Workshop: 3rd International Workshop on Security for Emerging Distributed Network Technologies - Full Paper

A. Machine Learning Training

To assess the Hybrid IDS efficiency to detect malware,
four scenarios were devised: The first without malware —
noMalware, the second with the first malware sample —
withMalwarel, the third with the second malware sample —
withMalware2, and finally the fourth with the combination
of both malware samples — withMalwareland2. The malware
samples that were installed in the mobile phone include Pincer
[22] and Hehe [23], these are known to have the following
effects: Pincer is able to forward SMS messages to a server
with the device’s phone number, device serial number, device
model, and OS version; Hehe registers itself on a server,
then monitors incoming phone calls and SMS messages. It
is able to intercept and block calls and messages. These can
be forwarded to a malicious server, after which the malware
cleans up any trace of the communications from the device.

The scenarios use the same applications, which include the
Google Chrome web browser, the GMail email client, and
the Patience game application. Each scenario involves several
data collection runs with a period of 5 minutes, on which such
applications are used. In each of these runs, the data collection
mechanism retrieves information for all the applications on the
device that are using the CPU, memory or network interface.

The automation process for the data collection tests has been
performed using Ul Automator [24]. It allowed us to stimulate
the Android system and its applications by triggering touches
on specific application components, system buttons, and screen
locations. Specific stimulation scenarios with the applications
were developed to replicate the actions performed on a mobile
device (e.g., sending an e-mail, visiting a website, playing a
card game). This way, by making the device behave like it
is being used, we collect data similar to a real world usage
pattern to use it for training the ML algorithm.

B. Evaluation Scenarios

The HyIDS was evaluated on a performance level, with the
goal to assess the resource usage impact.

Two scenarios were used to assess the HyIDS application
performance on the mobile phone: OHyIDS - where the
HyIDS is the only running application on the device; AHyIDS
- where the HyIDS app is running on the device with other
applications running in the background. Such applications are
equal to those used in the ML training (cf. IV-A).

Two mobile phones with different characteristics were used
to assess the impact of the data collection process. The first
device is a Google Nexus 5 with 2 GB of RAM with a quad-
core (Snapdragon 800) processor clocked at 2.3 GHz, and 16
GB of internal memory. The second device is a One Plus X
with 3 GB of RAM, a quad-core (Snapdragon 801) processor
clocked at 2.3 GHz, and 16 GB of internal memory. The 6.0.1
Android version was used on both devices.

During the battery performance evaluation, the devices’
displays were kept on to more closely represent a situation
where the device is being used. Also, the brightness setting
was set to 50%, and the HIDS application was open on

1037

foreground. This was done to ensure that both devices are
in similar conditions throughout the performance evaluation.

C. Performance Evaluation metrics

The performance evaluation aims to determine the impact
that the MDC component has on the device’s resources and
battery consumption. Table I depicts evaluation metrics.

TABLE I: Evaluation metrics

Metric Unit Description

CPU % Percentage of CPU used by the
usage ¢ monitoring component
RAM Z[ll; Amount of memory used by the
usage % monitoring component
Battery % Amount of battery consumption
Sent/Recv MB Amount of data transferred during
packets communication

To collect the CPU and RAM usage metrics, the Another-
Monitor [25] tool was used. This tool can monitor the CPU
and RAM usage of the HyIDS components and record the
measurements into log files and was used to validate the
measurements taken by the MDC. The network traffic statistics
are collected by the monitoring component.

V. RESULTS

This section presents the results of the performance evalua-
tion, which comprise the execution of 5 runs for each scenario.

60
55
50
45
40
35
30
25
20

CPU usage (%)

5 11.8
419

OHyIDS_N5 OHyIDS_OX AHyIDS_N5 AHyIDS_OX

Fig. 2: Average CPU usage

The CPU performance analysis results of the application are
depicted in Figure 2. The impact of the MDC is low in terms of
CPU consumption. Such impact is even lower in more recent
devices, such as the ONE Plus X, since the CPU consumption
for the MDC is ~4% for both of the evaluation scenarios. On
the other hand, the CPU consumption in the Nexus 5 device
is higher, increasing to values of ~12%. In comparison with
the AnotherMonitor program, which performs the same func-
tionality in terms of collecting metrics, the AnotherMonitor
consumes ~15% of CPU on the Nexus 5 device, while the
MDC’s CPU usage is lower, with ~12% of CPU usage.

The memory analysis results are presented in Figure 3. The
impact of the MDC is low in terms of memory consumption,
inline with the CPU results. The memory impact represents a

1038

45

40

35 31.54

30

25

20 20.2

HIDS memory usage (MB)

AHyIDS_OX

OHyIDS_N5 OHyIDS_OX AHyIDS_N5

Fig. 3: Average memory usage

~0,648% memory usage for both scenarios on the One Plus
X. On the Nexus 5, the memory usage increases to ~1,653%,
this behaviour is expected since the Nexus 5 has only 2GB of
memory opposed to the 3GB of the One Plus X. As depicted in
Figure 3, the Nexus 5 device reports more memory usage (in
MB). The devices have different memory capacities, despite
the same Android base, they have different systems, Nexus
5 has installed Cyanogen Mod, while the One Plus X has
the official system from One Plus, the Oxygen OS. Such fact
justifies the different memory usage behaviour in the devices.

603.82 626.52

500 513.49

573.49

100

25 average_ix
average_rx

15.63 17:94 15.21 17.09

Data volume (Kbytes)

OHyIDS_N5 OHyIDS_OX AHyIDS_N5 AHyIDS_OX

Fig. 4: Average data volume

The transmitted data analysis results are depicted in Fig-
ure 4. Similarly to the CPU and memory results, the network
data results show that the MDC generates a low volume of
data, considering the features that are collected. The results
of the received data are similar for both devices with ~15
and ~18 Kbytes of data for the Nexus 5 and One Plus
X devices, respectively. Such behaviour is expected, since
the MDC is receiving acknowledgement messages from the
server to confirm the reception of the messages containing
information of the collected metrics. Regarding transmitted
data, there are some differences. The One Plus X transmits
on average more data than the Nexus 5 which is explained by
the greater processing capacity of the former which in turn
results on more collected samples. On average, the One Plus
X collects ~19% more samples than the Nexus 5.

The battery usage analysis results are depicted in Figure 5.
The results show that the battery usage is low on both devices.
Also, on the Nexus 5 device the battery usage is higher than

IFIP/IEEE IM 2017 Workshop: 3rd International Workshop on Security for Emerging Distributed Network Technologies - Full Paper

Battery usage (%)

OHyIDS_N5 OHyIDS_OX AHyIDS_N5 AHyIDS_OX

Fig. 5: Average battery usage

on the One Plus X (=3% versus ~1,4%). Per the CPU usage
results, the MDC uses more CPU on the Nexus 5 device
than on the One Plus X; therefore, the device that uses more
CPU has a higher battery draw. There is no clear distinction
between regarding the the battery consumption when there are
no applications running and applications running (e.g., GMail),
since they are running in background.

One important result is that the MDC’s performance is
not hindered by the number of applications that are running
in the background on the device. This is supported by the
performance evaluation results that show that the CPU and
memory usage are similar in both scenarios.

VI. CONCLUSION & FUTURE WORK

This paper presents and validates the Hybrid IDS designed
to support the BYOD paradigm in PPDR scenarios. HyIDS
supports static and dynamic IDS analysis by performing
automated permission and behaviour analysis for detecting and
preventing malware, and with the aid of an operator at the CCC
identify and isolate the risk of user actions that negatively
impact the safety of PPDR operations. The validation results
demonstrate that the monitoring component of HyIDS has a
low impact on the device in terms of CPU and memory usage,
and battery consumption. Indeed, such results highlight the
design choices of HyIDS, where the collected information
is not stored in the RAM of the mobile device, leading to
low memory consumption (i.e., not interfering with other
applications) and increasing resilience, by persistently storing
the collected information. The impact on the CPU usage is
low, where measured values are below 15% on a device with
a quad core 2.3 GHz processor. The low impact in the network
infrastruture is also accomplished, even in collection intervals
of 2s, with low volume of data transfer from devices to CCC.
Thus, enabling the collection of thousands of devices without
upgrading existent PPDR infrastructures.

The mobile correlator design in the mobile device com-
ponent is being improved. Our plans include optimizations to
use selective monitoring (e.g. collect more information, reduce
frequency intervals) when suspicious events are detected.
Additionally, policy synchronisation is also required between
the mobile device and the CCC.

IFIP/IEEE IM 2017 Workshop: 3rd International Workshop on Security for Emerging Distributed Network Technologies - Full Paper

ACKNOWLEDGMENT

This work was carried out with the support of the Centro
2020 Project Mobitrust (CENTRO-01-0247-FEDER-003343).

REFERENCES

[1] ITU ICT, “The World in 2015 ICT Facts & Figures,” Tech. Rep., 2015.

[2] Idc, “IDC_ Smartphone OS Market Share 2015, 2014, 2013, and 2012,”
2015. [Online]. Available: http://www.idc.com/prodserv/smartphone-os-
market-share.jsp

[3] H. M. et al., Next Generation Communication Systems for PPDR - The
SALUS Perspective. Wiley-ISTE, 2015.

[4] M. S. L. Alcatel-Lucent, “Malware Report H1 2015,” pp. 1-17, 2015.

[51 G. S. et al,, “NIST Special Publication 800-30 Revision 1,” Risk
Management Guide for Information Security, 2012.

[6] P.Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, and M. S. Gaur, “Android
Security : A Survey of Issues, Malware Penetrarion and Defenses,”
vol. 17, no. 2, pp. 998-1022, 2015.

[7] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, “An-

droSimilar: Robust Statistical Feature Signature for Android Malware

Detection,” Proceedings of the 6th International Conference on Security

of Information and Networks, pp. 152-159, 2013.

D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck, “Drebin:

Effective and Explainable Detection of Android Malware in Your

Pocket,” NDSS, pp. 23-26, 2014.

Google, “Protect against harmful apps.” [Online].

https://support.google.com/accounts/answer/28 12853 ?hl=en

[10] L. Yan and H. Yin, “Droidscope: seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,”
Proceedings of the 21st USENIX Security Symposium, p. 29, 2012.

[11] A.e. a. Shabtai, “Andromaly: a behavioral malware detection framework
for android devices,” Journal of Intelligent Information Systems, vol. 38,
no. 1, pp. 161-190, 2012.

[12] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets,” 19th NDSS, no. 2, pp. 5-8, 2012.

[13] M. Spreitzenbarth, F. C. Freiling, F. Echtler, T. Schreck, and J. Hoff-
mann, “Mobile-Sandbox: Having a Deeper Look into Android Applica-
tions,” ACM SAC, pp. 18081815, 2013.

[14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” Osdi '10, vol. 49, pp.

[8

[

[9 Available:

—

1-6, 2010.

[15] P. Lantz, “DroidBox,” 2012. [Online]. Available:
https://www.honeynet.org/node/940

[16] EsperTech, “Esper Correlation Engine.” [Online]. Available:

http://www.espertech.com/products/esper.php

[17] D. Kasiaras, T. Zafeiropoulos, N. Clarke, and G. Kambourakis, “Android
forensics: Correlation analysis,” 9th ICITST 2014, pp. 157-162, 2014.

[18] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85-126, 2004. [Online].
Available: http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9

[19] Z. Muda, W. Yassin, M. N. Sulaiman, and N. I. Udzir, “Intrusion
detection based on k-means clustering and naive bayes classification,” in
2011 7th International Conference on Information Technology in Asia,
July 2011, pp. 1-6.

[20] M. Jianliang, S. Haikun, and B. Ling, “The application on intrusion
detection based on k-means cluster algorithm,” in 2009 International
Forum on Information Technology and Applications, vol. 1, May 2009,
pp. 150-152.

[21] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach,
B. Shapira, and Y. Elovici, “Mobile malware detection through
analysis of deviations in application network behavior,” Computers
& Security, vol. 43, pp. 1 — 18, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404814000285

[22] F-Secure, “Threat Report H1 2013, Tech. Rep., 2013.

[23] Symantec, “Android.Hehe,” 2014. [Online]. Available:
https://www.symantec.com/security_response/writeup.jsp?docid=2014-
012211-0020-99

[24] Google, “Testing Support Library (Ul Automator) .” [Online].
Available: https://developer.android.com/topic/libraries/testing-support-
library/index.html

[25] A. Redondo, “AnotherMonitor,” 2016. [Online].
https://github.com/AntonioRedondo/AnotherMonitor

Available:

1039

