
Meeting the Observability Challenges for VNFs in 5G systems

Wolfgang John, Farnaz Moradi
Ericsson Research, Stockholm, Sweden

email: {wolfgang.john,farnaz.moradi}@ericsson.com

Bertrand Pechenot, Pontus Sköldström
Acreo Swedish ICT, Stockholm, Sweden

email: {berpec,ponsko}@acreo.se

Abstract—5G mobile communication systems will need to
accommodate a variety of use-cases, resulting in a diverse set
of requirements. To meet these requirements, 5G systems take
advantage of modern virtualization possibilities offered by Net-
work Function Virtualization (NFV), enabling deployment agility
and dynamicity of virtualized network functions. With the trans-
formation of telecom towards virtualized environments, advanced
observability possibilities gain increasing importance as one of the
essential prerequisites, especially for successful DevOps opera-
tions. However, deployment agility also puts specific requirements
on monitoring solutions in order to adapt automatically and
continuously to frequent changes in service deployments. In
this short-paper, we establish and discuss essential properties
of observability systems for virtual network functions in a 5G
context. We take these properties as guiding design principles
for our software-defined monitoring framework and outline how
to evolve our existing components towards a flexible, scalable,
and programmable observability solution for microservice-based
NFV with features for increased manageability.

I. INTRODUCTION

5th generation mobile communication systems (5G) will

be designed to accommodate a variety of use-cases (mobile

broadband, media delivery, mission-critical, etc.), resulting in

a diverse set of requirements - like vast numbers of connected

devices, high capacities, and low latencies [1]. To facilitate

5G as a single, common platform realizing this wide range

of use-cases, flexibility, agility, and dynamicity are important

implicit system requirements. An essential part of the 5G

system design is thus the virtualization of wireless networks1,

allowing to flexibly adjust placement and scale of virtual

network functions (VNF) to specific use-case requirements.

The most promising technology for virtualization of net-

work/service functions is Network Function Virtualization

(NFV)2, which allows decoupling of well isolated service

instances from infrastructure resources (Fig.1). Flexibility and

dynamicity in NFV is further increased when VNFs are

realized by containers and run with DevOps-style continuous

integration and deployment. Using containers instead of VMs

opens up for efficient and resilient service applications realized

by a microservice architecture [2], i.e., independently deploy-

able containers communicating with each other via APIs.

Monitoring of services and service components has histor-

ically been of importance for telecom operators for network

troubleshooting and to follow up on customer service level

agreements (SLAs). With the transformation of telecom to-

wards virtualized environments, real-time observability gains

1We consider the wireless network to include both radio access network
(RAN) functions as well as core network (CN) functions.

2http://www.etsi.org/technologies-clusters/technologies/nfv

even more importance as one of the key prerequisites for

DevOps operations [3]. Assuming that some 5G applica-

tions will be realized by microservices, corresponding VNF

components (VNFCs), e.g., packaged as containers, can be

started, stopped, updated, scaled, and migrated frequently. A

monitoring system thus should be able to adapt automatically

and continuously to the changes in microservices deployments

and communications, and observe metrics related to both

containers as well as network and compute infrastructure. As

a result, we conclude that existing monitoring frameworks will

need to evolve in order to fulfill the following properties:

• Flexibility: observability needs to be ensured irrespective

of the virtualization format and technology (e.g., Virtual

Machines (VMs) or containers in various platforms).

• Dynamicity: observability components need to follow the

dynamic behavior of microservice instances seamlessly

(i.e., frequent scaling and migration of VNFCs).

• Scalability and non-intrusiveness: an observability sys-

tem needs to scale to large numbers of services/VNFCs

without a significant footprint on resource utilization.

• Programmability: observability features need to be pro-

grammable in order to enable full automation and tight

integration with orchestration and policy systems.

• Manageability: an observability system should be easy to

manage, e.g., by providing single-touch management and

configuration of monitoring functions.

• Decentralization: observability components need to deal

with distributed telco systems spreading over very large

geographical areas, in contrast to typical IT datacenters

with well connected, locally centralized resources.

• Multi-tenant isolation: an observability system needs to

support isolation of tenants to cater for the wide range of

use-cases supported in parallel by one 5G platform.

• Timeliness: observability results need to be provided in

close-to real-time to both dev and ops components and

personnel, facilitating fast control-loops.

This paper presents a software-defined monitoring framework

for microservice-based NFV, designed with the above require-

ments in mind. In our framework, monitoring intents realize

high-level programmability, resulting in automatic instantia-

tion and configuration of monitoring components following

the dynamic behavior of service VNFCs. Locally aggregated

results are shared by a carrier-grade messaging system.

This paper is organized as follows: Section II discusses

related work; Section III presents our proposed framework and

ongoing work. Finally, Section IV concludes the paper.

978-3-901882-89-0 @2017 IFIP 1127



Access
Data Center

Transport

Multi-Domain Orchestration and Assurance

Service Providers/Tenants 

Cloud Controller
Monitoring

VNFC1

VNFC2

VNFC3

Monitoring
System

Access Data Center

vSwitch

VNFC1

VNFC2

VNFC3

Monitoring
System

Central Data Center

vSwitch

Transport Controller
Monitoring

RAN Controller
Monitoring

Central
Data Center

Fig. 1. 5G multi-domain orchestration and assurance architecture with radio,
transport, and Cloud domains (more details in [4]). RAN functionality is split
between remote radio units and vRAN functions in access data centers, while
core network (CN) functions are running in a central data center. The focus
of this paper is the Cloud/DC monitoring system (depicted in solid green).

II. RELATED WORK

There are a variety of different observability systems that

have been designed for monitoring in virtualized environ-

ments. However, these solutions do not provide all the prop-

erties required for monitoring VNF instances in 5G systems.

In OpenStack Ceilometer is the service responsible for

metering data collection and Monasca3 provides a scalable,

multi-tenant, and fault-tolerant monitoring-as-a-service solu-

tion. Although these solutions are widely used, they do not

satisfy requirements such as flexibility and manageability.

Monitoring of containers can be performed using a va-

riety of tools. For instance, Docker provides a stats API

for obtaining a live stream of CPU, memory, network I/O,

and block I/O metrics. Other tools such as cAdvisor4 and

Prometheus5 are also widely used for monitoring resource

usage of containers. In Kubernetes6, Heapster7 discovers all

the nodes in the cluster and queries for container resource

usage information and transfers aggregate data to a config-

urable backend for storage and visualization. These tools do

not provide the means for monitoring the network performance

between containers forming microservices and have limitations

in satisfying requirements such as flexibility.

JCatascopia [5] is a monitoring system which dynami-

cally and automatically deploys monitoring agents on physi-

cal/virtual instances. The agents manage probes, which collect

low-level monitoring data, and aggregate and transfer metrics

to monitoring servers via a pub-sub messaging system. JCatas-

copia also uses filtering capabilities to minimize both storage

and communication overhead. Although JCatascopia addresses

many challenges related to 5G observability, it has limitations

with respect to flexibility and multi-tenancy support.

3http://monasca.io/
4https://github.com/google/cadvisor
5https://prometheus.io/
6http://kubernetes.io/
7https://github.com/kubernetes/heapster

NFVPerf [6] is introduced for performance analysis and

bottleneck identification in NFV. NFVPerf obtains a VNF
forwarding graph as input from the cloud management system

and then configures port mirroring to capture packets on all

hops of the VNF forwarding chain for measuring e.g., per-hop

delay. The collected metrics are transferred to a central anal-

ysis module, where application performance degradations are

identified and localized. NFVPerf does not fulfill requirements

such as dynamicity, manageability, and programmability.

The T-Nova projectintroduced an NFV monitoring frame-

work [7] which gathers monitoring data from OpenStack and

OpenDaylight as well as monitoring agents running inside

each VNF VM. The metrics are collected and aggregated by

a monitoring manager which produces alarms/events towards

the orchestrator. This framework focuses on addressing mon-

itoring challenges related to scalability and alarm generation.

However, T-Nova has a focus on OpenStack VMs and does

not introduce programmability features.

As part of the SP-DevOps concept [8], the UNIFY project8

developed a solution for efficient and programmable ob-

servability of software-defined environments. The SP-DevOps

observability process takes advantage of programmable mon-

itoring functions embedded in the infrastructure to provide

monitoring results with a fraction of the overhead of typical

management tools. Monitoring functions are deployed pro-

grammatically and provide data through a scalable messaging

system, easing integration with 3rd party management and

orchestration components. While this process meets most

monitoring requirements of 5G, it has shortcomings with

respect to manageability and integrated programmability [9].

III. SOFTWARE-DEFINED MONITORING FRAMEWORK

In this paper we present our software-defined monitoring

framework which aims to fulfill the desired properties for mon-

itoring of 5G systems as outlined in Section I. The framework

adapts the UNIFY SP-DevOps observability process to a 5G

scenario and advances it with updated programmability and

autonomous configuration features.

The architecture of our framework is shown in Fig. 2,

and represents the monitoring system for the Cloud/DC part

of a 5G network (Fig. 1). In this framework, distributed

Monitoring Controllers (MC) are responsible for management

of monitoring and analytics functions. 1© The MCs identify

the type of the instantiated VNF containers and 2© obtain the

corresponding monitoring intents from the MEASURE repos-

itory. 3© The container management systems obtain container

images of the required Monitoring and Analytics Functions

(MFs and AFs) from the Monitoring function repository, and

4© deploy the MF and AF containers on physical/virtual hosts.

5© Once MFs and AFs are configured, the collected monitoring

results or alarms are transferred to a monitoring management

system via a flexible messaging system called DoubleDecker.

This solution provides programmability and flexibility by

through MEASURE monitoring intents (Section III-A). Dis-

8https://www.fp7-unify.eu/

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Management of 5G Networks - Short Paper1128



Cloud Controller
Monitoring

Management
System

MEASURE
Repository

Monitoring
Function

Repository

D
ou

bl
e 

D
ec

ke
r

Analytics
Function

Monitoring
Controller

Monitoring
Function

Container
Management

System

VNF
container

VNF
container

VNF
Container

2

1

3

4

VNF container(s) are identified

MEASURE intents are obtained

Monitoring/Analytics function 
container images are obtained

Monitoring/Analytics functions 
are instantiated

Results/alarms are transferred

5

1

2

3

4

5

Fig. 2. Software-defined monitoring framework

tributed MCs realized within the container execution environ-

ment further ensure that dynamic and autonomous manage-

ment is achieved (Section III-B). Finally, the DoubleDecker

messaging system allows the system to operate flexible and

decentralized, while additionally adding scalability features

and multi-tenancy support for 5G observability (Section III-C).

A. Programmable monitoring deployment

To allow higher layer orchestration functions and tenants to

programmatically define their monitoring needs in a flexible

way we adapted the MEASURE monitoring intents, originally

designed in the UNIFY project [8]. These intents focus on

what metric to monitor (rather than on how to configure a

particular MF), and where in the service to monitor it (rather

than which specific container or network interface), and how

to analyze the metrics in AFs. This lets the MC decide which

available monitoring and analytics functions to use, how to

configure them, and where to instantiate them. Tenants and

higher layers need not know any details of the infrastructure,

but simply describe the metrics they want, as shown below:

monitor:
m1 = cpu(vnfc1); m2 = latency(vnfc1,vnfc2);

zones:
z1 = m1 < 0.8 AND m2 < 10ms; z2 = !z1;

reactions:
z2->z1 = publish(alarm, "Bad");
z1->z2 = publish(alarm, "Good");

In the monitor section, the required metrics are described

together with a reference to the target entity. Each metric

is assigned to a variable that can be used to refer to the

monitoring results. In this example the CPU load of the

VNF container vnfc1 and the latency between containers

vnfc1 and vnfc2 are requested and assigned to m1 and m2.

Zones describe how to calculate different states based on the

monitoring results. Here, state z1 is defined as low CPU load

and low latency, and state z2 as the negation of z1. In the zone

definitions aggregation functions supported by the Analytics

Function can be called, e.g. for calculating a moving average

on a metric. Finally, reactions describes actions that should

be taken when moving between states, for example publishing

a message when going between zones z1 and z2.

This information, together with data from the MEASURE

and Monitoring Function repositories (see Fig. 2), is used

by the MC to resolve the abstract entities (mapping e.g.

vnfc1 to a particular Docker container), and to generate

configuration for the Analytics Function, programming it to

perform the zone calculations and actions. The repositories

hold information about available metrics, where they can be

applied, and which Monitoring Functions can provide them.

They also hold information about the MFs themselves, e.g.,

how to start and configure them.

B. Autonomous monitoring management

In our framework, a container-based monitoring system

(ConMon) is used for monitoring of microservices [10].

ConMon has a decentralized architecture and enables multi-

tenancy by separating monitoring components from mi-

croservice instances. It provides autonomous management of

MFs/AFs and dynamically adapts to changes in the virtual-

ization environment and communication between microservice

instances in a timely manner. Although ConMon is realized for

containers, its generic design makes it suitable for monitoring

in other virtual execution environments as well (e.g., VMs).

The core components of ConMon are Monitoring Con-

trollers (MCs) which are distributed across physical servers in

a datacenter (see Fig. 2). Each MC listens to life-cycle events

of the service containers (i.e., VNF containers) generated by

the container management system (e.g., Docker). Whenever a

VNF container which requires monitoring is started, the MC

immediately instantiates and configures the needed MFs/AFs.

In ConMon, MFs are instantiated as separate containers

that run adjacently to the service containers. This means that

there is no need for executing a monitoring process inside

each service container and allows dynamic programming of

monitoring components without adversely affecting the service

applications. Such a monitor container can be used for mon-

itoring multiple VNFCs which belong to the same tenant or

for infrastructure-level monitoring of the VNFCs that belong

to different tenants, e.g., round-trip-time (RTT) measurements.

The information about the metrics that need to be monitored

are derived from monitoring intents. In our framework we use

MEASURE intents as described in Section III-A. Once an MC

identifies the type of VNFC being instantiated locally, e.g.,

by inspecting the VNF container, it obtains the corresponding

MEASURE intents from the MEASURE repository. The MC

then instantiates and configures MFs for the specified metrics

and configures the AFs based on the zones definitions.

An autonomous monitoring framework should keep up with

the dynamic nature of containers in microservice architectures

and adapt the monitoring accordingly. ConMon does so by

dynamically setting up and configuring network performance

monitoring between containers. Each MC instantiates a passive

monitoring container and configures the virtual switch (e.g.,

OpenvSwitch) to mirror the traffic to/from the VNF containers

towards it. The MF which is executed inside the passive

monitoring container can identify the source and destination

address of the VNF containers which communicate with each

other, e.g., vnfc1 and vnfc2. The local MC will then

discover the remote MC and exchange control messages. Once

the MCs have identified each other, they can start monitoring

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Management of 5G Networks - Short Paper 1129



sessions, e.g., RTT measurements. In this case both MCs

instantiate and configure MFs and start monitoring sessions.

More details about ConMon and the evaluation results indi-

cating its feasibility and effects of passive monitoring on the

service and background traffic can be found in [10].

C. Flexible, scalable, and isolated data transport

The UNIFY project developed a system that provides

carrier-grade and scalable messaging for easy integration of

diverse monitoring and orchestration functions as well as

efficient and secure transport of results [11]. DoubleDecker9

is a messaging system with distributed brokers allowing in-

terconnection between all components in our framework (see

Fig. 2), acting as DoubleDecker clients. The main features of

DoubleDecker in this context are the possibility to dynamically

connect and disconnect components, the distributed broker

architecture, and multi-tenancy isolation.

The first feature is critical because the framework will

autonomously adapt to VNF dynamics by continuous instan-

tiation, connection, and disconnection of respective MFs/AFs.

functions. The messaging system is thus built to be tolerant to

disconnection with a built-in reconnection procedure. Keeping

track of the connected clients is also an important feature as

it allows better fault tolerance. Furthermore, DoubleDecker is

a simple to use and technology-agnostic transport mechanism

between components realized in different implementation lan-

guages and execution environments.

Secondly, the distributed architecture is a key feature, and

the main driver behind our decision to use this system instead

of other popular messaging queues. Brokers can be distributed

on each physical or virtual node with a limited memory

footprint. Local clients can communicate with each other

without using any resources external to the node hence limiting

network load. Decentralized brokers also improve robustness

- if the connection between two brokers is lost, they can still

operate independently and will reconnect once connectivity is

restored. This fits perfectly with the ConMon system which

is also able to take local decisions even if the communication

with control/orchestration layers is unavailable.

Finally, all DoubleDecker clients have to provide a tenant

specific public/private key-pair on registration. This key-pair

is then used to encrypt messages sent though the system,

ensuring isolation of messages from different tenants in a

transparent way. Such multi-tenant isolation is crucial to allow

multiple use-cases in parallel on a single 5G system.

D. Discussion and work in progress

We presented a system that integrates novel components to

form a complete observability solution ready to meet the chal-

lenges of NFV-based 5G systems. However, to fully support

all observability properties identified in this paper, we are still

refining the framework to facilitate tighter integration of the

monitoring system with the control/orchestration architecture

(cf. Fig.1). This is important to synchronize life-cycles of

9Code available: https://github.com/Acreo/DoubleDecker

both VNFC instances and monitoring functions and handle

resource dependencies. Currently, we are also adding features

to further simplify manageability, such as auto-naming/scoping

for pub/sub messaging, and key management in DoubleDecker.
As future direction, we will continue the ongoing implemen-

tation of a test-bed in a local datacenter, realizing the complete

software-defined monitoring system by fully integrating the

components described earlier. Our initial experiments led to

valuable insights, and we expect further learnings once our

tests evolve. As upcoming goal, we aim to verify the scalability

of the system in a larger setup which also will allow us

to test timeliness properties. From early tests we know that

the individual dynamicity and automation features make fast

sharing of updated metrics and quick reactions possible, but we

still need to prove that the system can provide real-time data

in realistic end-to-end scenarios. Finally, we plan to verify the

practicality of the multi-tenancy features by running multiple

parallel use-cases in an advanced test environment.

IV. CONCLUSIONS

We have outlined the properties required to monitor VNF

instances in a 5G system, and have presented a software-

defined (i.e., programmable) monitoring framework which

fulfills these requirements. Our framework provides the means

for flexible and programmable monitoring deployment, single-

touch and dynamic monitoring configuration, and scalable,

multi-tenant capable transport of monitoring results. Finally,

we have discussed the identified shortcomings of the current

framework and presented ongoing work in this respect, as well

as future directions.

Acknowledgment: This work was in part supported by

the Swedish VINNOVA project Kista 5G Transport Lab. The

authors also want to thank Christofer Flinta and Catalin

Meirosu for many constructive discussions and comments.

REFERENCES

[1] J. F. Monserrat et al., “Rethinking the mobile and wireless network
architecture: The metis research into 5g,” in EuCNC, June 2014.

[2] A. Sheoran et al., “An empirical case for container-driven fine-grained
vnf resource flexing,” in IEEE NFV-SDN, 2016.

[3] S. Sharma and B. Coyne, “Devops for dummies,” 2nd IBM limited
edition, 2013. [Online]. Available: http://www.ibm.com/ibm/devops/us/
en/resources/dummiesbooks/

[4] A. Rostami et al., “Multi-domain orchestration across ran and transport
for 5g,” in ACM SIGCOMM’16 Demo Session, 2016.

[5] D. Trihinas et al., “JCatascopia: Monitoring elastically adaptive appli-
cations in the cloud,” in IEEE/ACM CCGrid, 2014.

[6] P. Naik et al., “NFVPerf: Online Performance Monitoring and Bottle-
neck Detection for NFV,” in IEEE NFV-SDN, 2016.

[7] G. Gardikis et al., “T-Nova deliverable D4.42: Monitoring and
maintenance,” 2016. [Online]. Available: http://www.t-nova.eu/results/

[8] G. Marchetto, R. Sisto, W. John et al., “Final Service Provider
DevOps concept and evaluation,” ArXiv e-prints, vol. 1610.02387,
2016. [Online]. Available: http://arxiv.org/abs/1610.02387

[9] S. Van Rossem et al., “NFV Service Dynamicity with a DevOps
Approach: Insights from a Use-case Realization,” in IFIP/IEEE IM,
Experience Session, 2017.

[10] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu, “ConMon: an
automated container based network performance monitoring system,”
in IFIP/IEEE IM, 2017.

[11] W. John et al., “Scalable Software Defined Monitoring for Service
Provider DevOps,” in EWSDN. IEEE, 2015.

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Management of 5G Networks - Short Paper1130




