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Abstract—The wireless/cellular communications network is
composed of a complex set of interconnected computation
units that form the mobile core network. The mobile core
network is engineered to be fault tolerant and redundant; small
errors that manifest themselves in the network are usually
resolved automatically. However, some errors remain latent,
and if discovered early enough can provide warnings to the
network operator about a pending service outage. For mobile
network operators, it is of high interest to detect these minor
anomalies near real-time. In this work we use performance
data from a 4G-LTE network carrier to train two parameter-
free models. A first model relies on isolation forests, and the
second is histogram based. The trained models represent the
data characteristics for normal periods; new data is matched
against the trained models to classify the new time period as
being normal or abnormal. We show that the proposed methods
can gauge the mobile network state with more subtlety than
standard success/failure thresholds used in real-world networks
today.

I. INTRODUCTION

In the second quarter of 2016, the wireless mobile network
in the US supported 410 million devices, and these numbers
are expected to continue on an upward trajectory. The packet
based 4G-LTE network provides the infrastructure support
for these devices. The two out of many network components
of interest for this paper are: the eNodeB (Evolved Node
B) and MME (Mobility Management Entity). User devices
access the eNodeB over the radio network; the eNodeB is
a base station that controls the mobile devices in one or
more geographical areas. The MME is the primary node
in the core network that controls important aspects related
to mobile devices: it communicates with the eNodeB to
establish radio communication channels with the mobile
devices, it is responsible for user authentication, and for
finding the mobile endpoint. In fact, the MME acts as a
central orchestrator that controls the mobile device; as it
communicates with the mobile device and the core network,
it logs these communications as events in a specific format,
called the Per Call Measurement Data (PCMD) format. A
PCMD record contains about 250 fields, the most impor-
tant for our work are the fields that contain the messages
exchanged between the MME and other core entities, to
provide services to the mobile device, and how long it took
the message exchanges to complete.
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Problem Statement: MME logs are commonly monitored
by network operators, but not in real-time. In most cases
the log files are consulted offline by domain experts after
a network outage has occurred, in order to determine the
magnitude and cause of the outage. Furthermore, anomalies
of short duration are of minor impact, are often hidden
by the automatic network resilience mechanisms, and may
not raise alarms. These resilience mechanisms may mask
anomalies that have the potential to forecast a large outage.
With greater complexity in the networks, it becomes crucial
to perform network health measurement real-time, with a
model sensitive to the minimal shifts of the mobile network
state.

Contributions and summary of results: Our previous work
[6] studied a mix of models, parametric (Gaussian Mixture
Model) and non-parametric (x2); here we focus exclusively
on the latter. Our assumption remains that in the mobile
network few anomalous procedures happen during normal
periods, and that the network’s resiliency mechanisms allow
it to perform some useful work even during outages. How-
ever, such mechanisms may mask an impending outage; we
expect our work to detect even the minor perturbations that
could be used to signal the degradation of the network. The
proposed approaches in this work are based on Isolation
Forests (IF) [8, 9] and on Histogram-Based Outlier Scores
(HBOS) [5]. Using the data from a normal period, a model
of normality is trained and subsequently used to predict new
incoming data. The analysis of two datasets from recorded
network outages, shows that both IF and HBOS are able
to accurately detect the state of the network, and in fact are
resilient in the face of an outage that went undetected for 20
minutes using traditional mechanisms that network operators
use. The rest of this paper is structured as follows: In Section
II related work on anomaly detection and mobile network
data is surveyed. Section III describes how IF and HBOS
are used with PCMD data. In Section IV both approaches
are evaluated on two real-world PCMD log data-sets from
recorded network outages. Section V concludes the paper.

II. RELATED WORK

Anomaly detection is applied in a variety of areas from
finance to health care. A survey can be found in [3].



Anomaly detection methods for communication networks
based on unsupervised learning are presented in [11]. The
initial challenge of anomaly detection is to define what
constitutes the anomaly [1, 3]. In cases in which anomalies
are not clearly defined, a system can be trained to detect data
outliers taking values far outside the expected intervals. In
such cases histogram based methods as HBOS or IF, can
be employed [1]. An example of anomaly detection using
HBOS is given in [5], a use case employing IF is described
in [13]. For our intended application of gauging the mobile
network state in real-time both techniques are a good fit.
They are robust against data noise, they can be applied to
uni-variate data, and the evaluation of novel data is fast,
which is mandatory for real-time monitoring.

For mobile networks in particular, a widely studied topic
has been the investigation of human mobility patterns using
Call Detail Records (CDR) [10, 2, 7]. PCMD records can
also be employed for the purpose of locating users, as
demonstrated in [4]. In [12] the information drawn from
PCMD records is used to efficiently pinpoint the position
of a mobile device, improving mobile paging. To our best
knowledge this work is the first to consider PCMD data to
detect shifts in the mobile network state in real-time.

III. METHODOLOGY

A common advantage of HBOS and IF is that the
inclusion of anomalies in the training stage interfere
very little in the accuracy of detection. This feature is
very convenient for our experiments, because instances in
our dataset are not individually labeled as anomalies or
non-anomalies. Another property of both methodologies is
that they detect anomalies even when they are clustered
(masking effect) [8, 9, 5], something that happens when
a lot consecutive errors emerge during mobile network
outages. Finally, both techniques are capable of handling
datasets that exhibit long-tail distributions, as it is the case
with PCMD records.

The Dataset: MMEs produce a PCMD log file in 1 minute
time intervals and each minute produces in the range of
300K-800K records. The dependability of mobile networks
implies a small number of anomalous procedures per unit
time, while the fault tolerant algorithms of the network
further masks these anomalous procedures. The PCMD
attributes of relevance for this work are the procedure
identifier (ProcID), the procedure duration (ProcDur), and
the procedure fault code (FaultCode). Working with domain
experts, we have identified ProcID 11 (Pidy;) and 16
(Pidye) to be of particular interest. Pidy; corresponds to a
User Equipment (UE) bearer release request and Pidjg to
the UE paging request. Our dataset is composed of a set of
observations, S, where each element s; € S is produced by
the MME every minute. Each s; contains ¢ records. More
concretely, each s; corresponds to a PCMD file with 1..q

records. For training the models, we divide S into S;,orm, 6
minutes of data from a normal period; Siyqin, 1S composed
of a separate set of 6 minutes from a normal period and
used for threshold determination in IF; and S,,;, composed
of 6 minutes of data corresponding to an outage. The
data is univariate and measures the time between network
components sending requests and getting back responses
(ProcDur).

Isolation Forest: Using different sub-samples IF builds an
ensemble of binary trees by randomly splitting the value
ranges of each sub-sample; anomalies are those instances
with a short average path length on the ensemble of trees in
the IF [8, 9]. IF, in essence, isolates anomalies. /Fs define
an anomaly score, s, of an instance such that 0 < s < 1: if
instances return s very close to 1.0, they are anomalies. If
instances have s much smaller than 0.5, they can be regarded
as normal.

There are two parameters to the IF algorithm: ¢, or the
number of trees (default: 100) and 1), or sample size (default:
2%). We achieved good performances with default ¢, but
we found out that leaving 1 at a default of 28 leads to
underfitting during training and failed to generalize well. 1
of 2° proved to be the right fit, as anything less than that
would run the risk of overfitting. In the evaluation stage, an
anomaly score s is derived for each record in the PCMD log
file. Here we faced a dilemma because we are not interested
in scoring each PCMD record, rather, we are interested in
characterizing the entire minute represented by the PCMD
log file. To solve this problem we derived scores s; for each
record in the PCMD file and derived an overall anomaly
ratio, ar, as follows:

ar = (), score(s;))/total records (1)
where score(s;) returns 1 if the record with score s; is
anomalous and O otherwise. For the training of the /F model
Strain Was split: 4 minutes dedicated to the actual training
phase, and 2 minutes for the threshold determination. The
latter is designated as Sipres- To set the threshold e, n
equally sized samples are generated from Sipres and Soy;-
Every measure = of the samples is evaluated to obtain the
anomaly score for the measure. The ratio is computed for
each of the n samples. ¢ is then determined by:

€= (min(a’rnormal) + maz(arout(zge))/Q 2

For validation the trained [F models were evaluated

using the Sy,orm and Soye.

Histogram-based Outlier Score: HBOS [5] is an unsu-
pervised anomaly detection algorithm based on histograms.
Anomaly detection methods based on histograms rate novel
data by assigning it to histogram bins. Data items assigned to
a bin estimate the degree of normality: A large bin represents
frequent items and is therefore presumed to contain normal
data, whereas small bins contain outliers. HBOS uses a
dynamic bin-width strategy: feature values are sorted first
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Figure 1: Network performance measurement for the /F model for Pidy; and Pid;g on Outage-1 and Outage-2.

and a fixed amount of % successive values are assigned to
a single bin, where NN is the number of total instances and
k =+/n is the number of bins. HBOS makes an exception
for long-tailed distributions of the type exhibited by ProcDur
by allowing more than % values in the same bin. The final
bin widths are normalized using the number of elements in
the bin, the total amount of records, and the value range
covered by the underlying bin. The normalized bin width is
then used as a score for the evaluation of novel data. The
score is expressed via a color coding: the most normal score
taking a green color, while the most abnormal bin is red.

The training phase uses Syqin to build the HBOS model,
which we validate using minutes from Sy, o, and Soye. As
with IF we seek to determine whether an entire minute is
normal or anomalous. To that extent, we extract the average
of all observations that occur in a minute after they have
fit the model and used it to determine the outcome of that
particular minute. The outcome will be color coded with
gradients from the familiar [green, red] range.

IV. EVALUATION

We use two real-world outages, Outage-1 and Outage-2,
produced by two distinct MMEs serving different geograph-
ical areas in the US. Outage-1 occurred abruptly and spans a
time period of 25 minutes; the network transitions abruptly
from normal to an outage at minute 2, and then it gradually
recovers. Outage-2 spans 108 minutes, and during the whole
time period the network remained unstable. An important
aspect of Outage-2 uncovered by our models was that while
the peak of the outage occurred at minute 20, the network
was constantly trending towards an outage even during the
first 20 minutes.

Models have to be trained on the MME whose data they
will analyze; models do not generalize well across different
MMEs. This is because the distributions of the ProcDur
across each MME is distinct and includes artifacts related
to how each network operator configures their core network
and the expected traffic on the network. Models are trained
according to the description given in Section III.

Isolation Forest: The results of Outage-1 for /F are in
Figure 1. The second y-axis contains a %-based model (red
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curve). The %-based model is used in production networks
to trigger a warning when the number of PCMD records
with fault code value of 2 (error) are observed. This is
a very coarse model that largely fails to detect outages,
only detecting them when the network behaves extremely.
Furthermore, it does not contain the nuances of the IF and
HBOS as we discover below. Nonetheless, in the absence of
better models, %-based models are used widely in service-
provider networks.

Each Panel in Figure 1 also contains a horizontal line,
which corresponds to our threshold, e (c.f., Equation 2).
Points below the threshold are normal and those above are
anomalous. For Outage-1, IF correctly detects the first two
minutes as normal, and then the abrupt outage starts at
minute 3. The network starts to return to normality at around
minute 8-10, as is reflected in Panels 1A and 1B. The outage
remains undetected by the %-based system until the peak
occurs at around minute 6, after that, the %-based system
simply assumes that the network has recovered. Clearly, this
is not the case as the network has mostly recovered but some
variations are still occurring as shown by the IF curve. There
is a difference in how quickly the network is tending towards
normalcy between Panels 1A and 1B; this has to do with the
procedure represented by the PIDs. PI D, implies that the
UEs are releasing bearer sessions in response to the outage,
and most of those have been released by minute 10. On the
other hand, PID+¢ is used to establish new bearer sessions,
thus the move towards normalcy is gradual after the peak as
UEs establish new sessions. As more UEs establish bearer
sessions, it takes less for remaining UEs to do so, and hence
the gradual downward slope. The %-based model performs
better for PI D¢ than it does for PI1 D1, which implies that
it depends strongly on the PID being tracked. Our models,
by contrast, do not.

Panels 1C and 1D track Outage-2. Our models show that
the outage builds up in the first 20 minutes and reaches
a critical point at around minute 20. The %-based model
is not able to detect the outage until minute 20. This is
important because the network operator can take proactive
actions with a 20 minute advance warning.
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Figure 2: Network performance measurement for the HBOS model for Pidy; and Pid;g on Outage-1 and Outage-2.

Histogram Based Outlier Score: Unlike /F, HBOS does
not have a threshold; instead, evaluating test data for outage
is relative since the results are presented on a color scale
that goes from green to red. Minutes in between can be
calibrated according to the preferences of the operator to be
conservative or aggressive. In the context of mobile network-
ing where the core is running on an infrastructure of highly
dependable nodes, it may be justified to consider every slight
deviation as anomalies, although such an interpretation may
be too aggressive.

The graphs for Outage-1 (2A and 2B) are as expected.
The first minutes are characterized as normal and then the
outage occurs and exacerbates before stable state is reached.
The downward slope of PIDi; and PIDg tracks the
equivalent slopes of the IF model for Outage-1 (Panels 1A
and 1B). Because there is no specific threshold in HBOS
the first couple of minutes fall in the yellow zone on the
graphs of Panels 2C and 2D, thereby making them suspect.

Summary: Overall the /FF and HBOS models give a more
nuanced representation of the network state than the existing
percentage model. For Pid;; the %-based models registered
a peak of anomalous procedure terminations late into the
outage periods. The amount of Pidy; requests drops during
outage periods. For this reason less errors are registered by
the percentage model, which is why it is less accurate as
the two proposed methods also considering ProcDur. For
Pidi¢ there exists a symmetry between the threshold tech-
nique and the IF and HBOS predictions. The conclusions are
twofold: (a) During outages the amount of Pidig requests
increases because of retries. They imply previously failed
requests which are captured by the percentage model, im-
proving its accuracy. (b) Unlike the %-based model, which
depends on the particular PID, ITF/HBOS are independent of
the specific PID. Thus they are more general than the %-
based model and accurately reflect the state of the network
by tracking the Procedure Duration distribution instead of
raw counts on how many times a procedure was invoked.

V. CONCLUSION AND FUTURE WORK

We have presented novel approaches to detecting outages
in a mobile network using non-parametric anomaly detection
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methods. To run the models only few attributes are required
from the dataset. The IF and HBOS approaches perform
better than the percentage-based model, which only responds
to the peak of the outage, thereby making it ineffectual
for detection until the outage occurs. The models we used,
by contrast, are able to characterize discrete states of the
network: stable, trending towards outage, and then trending
back towards stable.

Future work includes building large-scale analytic
pipelines that use these real-time models to not only detect,
but also predict the state of the network. We are exploring
how to evolve the models so they can be complemented by
the evaluation of additional data to contextualize the network
state.
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