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Abstract—The popularity of container technologies and their
widespread usage for building microservices demands solutions
dedicated for efficient monitoring of containers and their in-
teractions. In this paper we present ConMon, an automated
system for monitoring the network performance of container-
based applications. It automatically identifies newly instantiated
application containers and observes passively their traffic. Based
on these observations, it configures and executes monitoring
functions inside adjacent monitoring containers. The system
adapts the monitoring containers to changes driven by either
the application or the execution platform. The evaluation results
validate the feasibility of the ConMon approach and illustrate
its scalability in terms of low overhead on compute resources,
moderate impact on applications, and negligible impact on the
background network traffic.

I. INTRODUCTION

Containerization technologies are becoming more prevalent

in development and operational environments. Containers are

considered as lightweight alternatives to virtual machines [1],

since they have low overhead and can be created and stopped

quickly [2]. Each container typically runs a single process

and can communicate with other containers using virtual

networks. Containers are major enablers for microservice ar-

chitectures, where applications are distributed among a number

of instances, each running in an isolated container. These

instances can be dynamically started, stopped, and changed.

The dynamic nature of microservices makes monitoring them

a challenging task.

Tools for monitoring containers typically provide compute

resource utilization metrics such as CPU, memory, and block

I/O usage as well as counters for packets and bytes trans-

ferred over container network interfaces. However, none of

the existing tools provide an automated solution for dynamic

monitoring of network performance metrics such as delay,

jitter, and packet loss between application containers.

Another popular approach involves injecting monitoring

code into application containers. This requires preparing spe-

cial images of the application containers that enable executing

additional code within the container envelope, or running

extra processes inside the container after it has been started.

However practical, such method contradicts the best practices

of microservice architectures where each container runs a

single isolated process that can be easily restarted or moved

with little dependence on other components of the software-

defined infrastructure. It increases the risk that issues with the

monitoring process (such as crashes or overuse of resources)

would affect directly the application by limiting the perfor-

mance or, in extreme cases, making it crash. Furthermore,

the life-cycle management of the monitoring functionality

becomes more complex due to both potential effects on the

application performance and limitations regarding IP address-

ing for individual containers.

In microservice architectures, application component in-

stances deployed within containers communicate only within

dynamically changing subsets of instances. The communica-

tion pattern depends for example on where an initial request

is assigned for handling and where the data associated to that

request might be stored. Clearly, a full mesh monitoring of all

the possible communication paths for several network metrics

simultaneously would introduce a significant messaging over-

head, in particular when it would be carried at sub-second

intervals that ensure fast failure detection for mission-critical

applications. It would thus be desirable to develop solutions

that are capable of reducing the unnecessary cost of monitoring

links between the containers that do not communicate with

each other.

To address these challenges we propose ConMon, a dis-

tributed and automated solution for observing network metrics

in container execution environments. ConMon eliminates the

manual selection and configuration of measurement points. It

keeps up with the dynamic nature of containerized applications

and adapts the monitoring to continuously perform accurate,

both in terms of location and metric precision, and timely

performance measurements. In ConMon, the containers that

communicate with each other are automatically discovered

and network performance is monitored only between them.

The automatic discovery and setup of monitoring containers

in ConMon provides uninterrupted monitoring in case of

container scaling and migration without manual intervention.

In this paper ConMon and its different components are pre-

sented and evaluated by investigating its feasibility, scalability,

and in particular the effects of passive traffic observation on the

performance of the application containers and on the system

resources. The remainder of this paper is organized as follows.

Section II presents the related work. Section III describes

ConMon and its components. In Section V the testbed and

the performance evaluation results are presented. Section VI

presents some discussions and finally Section VII concludes

the paper.
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Fig. 1. ConMon components in our testbed.

II. RELATED WORK

A wide variety of monitoring solutions developed for cloud

environments exist both commercially and open sourced.

These solutions range from generic tools that are extended for

monitoring in cloud environments such as Nagios [3] to cloud-

specific ones such as Amazon CloudWatch [4] for monitoring

AWS cloud resources and applications, and Ceilometer and

Monasca [5] for monitoring in OpenStack environments [6].

The requirements and properties of monitoring solutions for

cloud and a survey of existing platforms can be found in [7].

Some existing cloud monitoring systems have added func-

tionality to support container monitoring and some new solu-

tions have been designed and created specifically for container

environments. Most of the existing tools gather resource usage

metrics such as CPU, memory, and block I/O usage for

containers running on a host machine. Network metrics are

limited to the number of packets and bytes observed on an

interface. For example, Docker [8] provides a stats API which

allows access to a live stream of counters for running Docker

containers. Tools such as CAdvisor [9] create a monitoring

container to monitor resource usage and network interface

counters of containers on a host.

Other container monitoring systems such as Dynatrace [10]

allow monitoring the processes and applications running inside

the containers. The monitoring agent on each host automat-

ically detects when a container is started and injects the

desired monitoring function into the container. Such solutions

are designed to monitor the application functionality within

containers and not the network performance between the

containers. Another container native monitoring solution is

Sysdig [11] which installs a Linux kernel module to observe

the system calls from the containers and other Operating

System events and allows zero-configuration monitoring from

a single monitoring container. These tools do not support

autonomous and dynamic monitoring of the network perfor-

mance between microservice containers.

Network monitoring in cloud environments can also be per-

formed by general purpose monitoring systems. An example is

sFlow [12], which has added support for containers to obtain

standard sFlow performance metrics, but does not provide end-

to-end measurements by itself. In [13] Pingmesh is introduced

to ensure continuous network monitoring with maximum mea-

surement coverage for troubleshooting network performance

degradations across a datacenter or between datacenters, using

active measurements. However, it is not designed for monitor-

ing network performance perceived by applications running

inside virtual machines or containers. Network monitoring in

Software Defined Networks (SDN) have also received consid-

erable attention. In these environments network monitoring is

typically performed using OpenFlow messages in OpenFlow-

enabled virtual and physical switches in the network. Exam-

ples of such methods are latency [14], link utilization [15] and

low-overhead packet loss measurements [16].

The effects of packet mirroring, which is required for

passive network measurements, on network traffic have been

studied before. It was shown in [17] that port mirroring in

commodity switches can slightly increase packet drops for

non-mirrored traffic due to shared buffer space. In [18] it

was shown that data collection on hypervisor virtual switches

does not impact the user traffic because the capacity of the

virtual switches is higher than the 10 Gbps capacity of the

NIC card. However, dumping traffic adds extra cost to memory

throughput. In this paper we further study the impact of passive

monitoring in a container execution environment.

III. THE CONMON MONITORING SYSTEM

The architecture of ConMon is shown in Figure 1. Con-

Mon consists of three main components: Monitoring Con-

trollers (MCs), Passive network Monitoring (PM) containers,

and Active network Monitoring (AM) containers. Different

types of Monitoring Functions (MFs) can be executed inside

the PM/AM containers. ConMon relies on the underlying

Container Management System to obtain container life-cycle

events and instantiate or remove monitoring containers. It also

uses virtual switches for tapping the application traffic.

A. Monitoring Controller

The core components of the ConMon system are the Mon-

itoring Controllers (MCs) which run on each physical server

and communicate with each other in a distributed fashion. The

communication can be implemented in several ways such as

via a distributed database, a messaging system, or a central

management system.
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Fig. 2. Steps for monitoring container instantiation by MC.

B. Monitoring Containers

The monitoring functions (MFs) are deployed inside mon-

itoring containers, adjacent to the application containers and

interconnected via virtual switches (see Figure 1). ConMon

allows a variety of different types of active and passive MFs to

be deployed in the monitoring containers in order to monitor

different network performance metrics such as packet loss,

delay, jitter, and available path capacity.

Passive Monitoring (PM) container: A PM container re-

ceives a copy of packets from the monitored application on

its interface on the virtual switch either via port mirroring or

tapping. The MF which runs inside the PM container, e.g.,

tcpdump, can capture, filter and timestamp the copy of pack-

ets. Additionally, an MF can estimate different performance

metrics using different algorithms such as COLATE [19] for

measuring latency between containers [20].

The MF inside a PM container can also be used for

identifying changes in the application communications, e.g.,

a new flow or an expired flow. This information can be used

by MC to dynamically (re-)configure active or passive MFs in

reaction to the changes. A single PM container can be used

for monitoring multiple application containers if they belong

to the same entity, e.g., tenant.

Active Monitoring (AM) container: An AM container is

connected to the same virtual switch as the application

container. An active MF, a.k.a. probe, runs inside the AM

container, and injects probe packets in the network which

are received in another probe. The probe packets can be

collected in the receiver probe or reflected back to the sender

probe. Some measurements require the probe packets to be

timestamped in both probes at sending and arrival events. In

this way one could study interaction between probe packets

and the cross traffic and draw conclusions about the network

characteristics and the cross traffic dynamics. Examples of

active MFs that can run inside AM containers include ICMP

ping, TWAMP [21], iperf [22], and netperf [23]. An AM

container can be shared by multiple application containers that

reside on the same physical server.

C. Automatic instantiation of monitoring containers

Each PM or AM container is instantiated and configured by

a local MC which resides on the same physical server. The

steps taken by MC to setup monitoring containers are shown

in Figure 2. MCs continuously listen to events generated by a

local or remote container management system or orchestrator,

e.g., Docker [8]. Once an event regarding instantiation of

an application container is observed, the MC requests from

the container management system to start the required mon-

itoring containers. MC then attaches the created monitoring

container(s) to the virtual switch to which the application

container is connected. For passive network monitoring, MC

also configures the virtual switch to tap/mirror the application

traffic to the PM container. For active network monitoring, in

order to adapt the active monitoring sessions to the application

communications both a PM and an AM container are required

which can be instantiated at the same time.

Once an AM or PM container is started and configured, MC

has to store the information about mapping of the application

container and corresponding monitoring containers. This infor-

mation, which is required for monitor discovery, can be kept

locally or stored in a distributed or centralized database.

D. Automatic discovery of remote monitor(s)

Some metrics, such as latency and throughput, require that

the MFs on the sender and receiver side are able to identify

each other and exchange messages, such as synchronization

information, or probe packets. The information about remote

MFs can be provided in advance (e.g., as part of the monitoring

intents) or be obtained by the MFs (e.g., by communicating

with each other via an overlay network). Otherwise, MCs can

provide monitor discovery services to the MFs.

The local MC receives information about the application

container flows via the passive monitoring function, e.g.,

source and destination IP addresses. For each new flow, the

MC identifies the monitoring container associated with the

corresponding remote container by either directly contacting

other MCs or by accessing a centralized/distributed database.

If a remote monitoring container exists, MC will receive

information about its address and can use it to configure the

MF. Otherwise, the local MC can request the remote MC to

instantiate and configure a monitoring container so that net-

work performance measurements can be performed. Figure 3

shows a sequence diagram for instantiating active network

monitoring between containers on a sender and a receiver host.

The figure also shows that once the communication between

the application containers is stopped, the MC is notified and

can decide to stop or modify the active monitoring session and

inform the receiver side MC.

In active network monitoring, if the performance between

containers on two servers is being monitored by already

existing AM containers, the MCs will not instantiate new AM

containers and monitoring sessions. Therefore, the unneces-

sary cost of exchanging extra probe packets is eliminated.

IV. CONMON USE CASES

A. Creating a traffic matrix

ConMon can be used for obtaining a real-time traffic matrix

describing the container communications. Information about

active flows, including metrics such as latency and packet loss,

observed by PM containers are stored locally on the server. A
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Fig. 3. Sequence diagram of example interactions between different ConMon components for performing adaptive active network monitoring.

snapshot of the entire system is then obtained by collecting

these local traffic matrices from different MCs, e.g., using a

simple RESTful API.

Traffic matrices can be used for making placement deci-

sions, e.g., to improve the performance of a set of microser-

vices, or reduce the communication costs. Load balancing and

rerouting decisions are other examples.

B. Measuring container packet processing time

ConMon can also be used for measuring the packet pro-

cessing time of a single container. Some network functions

such as Firewalls and Deep Packet Inspectors can run in

containers as Virtual Network Functions (VNF). Measuring

the time it takes for network traffic to be processed by

these functions is important for troubleshooting performance

degradations in the network. To monitor the processing time,

an MF inside a PM container has to record the time when

a packet has arrived at container interface together with a

signature for the packet. When the corresponding packet leaves

the container, the MF identifies the packet using a signature,

e.g., based on the IP packet, and records another timestamp

and calculates the time difference between the arrival and

departure of the packet from the VNF container to measure

the packet processing time. A similar approach has been used

for measuring metrics such as per-hop delay for VNFs running

in an OpenStack environment [24]. The measured data can be

used for troubleshooting as well as triggering elasticity actions

such as scaling up or out the VNF instance.

C. Network performance measurements between containers

ConMon supports network performance monitoring (e.g.,

latency) between containers using both passive and active

monitoring methods. In passive measurement methods, packet

hashes together with timestamp information are stored in

specifically defined datastructures at both sender and receiver

side PMs. These datastructures can be periodically accessed

or exchanged to estimate one-way latency. Examples of

such methods include Lossy Difference Aggregator (LDA)

method [25] which calculates aggregate latency values, and

COLATE method [19] which provides lightweight per-flow

latency measurements.

Active network measurements are enabled through ConMon

using the AM containers. Examples of MFs to run inside

includes ICMP ping, TWAMP, traceroute, iperf, and netperf.
The metrics that are measured either passively or actively

can be stored for online or offline analysis, for example for

anomaly detection, change detection, and prediction purposes.

The measurements can also be used for triggering actions such

as migration and scaling of the application containers.

V. EVALUATION

In this section we present our testbed and experimental

evaluation results. The main focus is on evaluating the setup

time for monitoring, the impact of passive monitoring on the

host resources and the application containers.

A. Testbed

Figure 1 shows the testbed used for evaluating ConMon.

The testbed consists of two physical servers that are directly

connected with a 10 Gbps link1. Each physical server has 2

Intel Xeon X5660 2.8GHz with 24 CPU cores in total, 48 GB

RAM, running Ubuntu 14.04 LTS. In the testbed, we have used

Docker (v. 1.10.2) as the container management system for

creating application, monitoring, and background containers.

These containers are connected to Open vSwitch (v. 2.0.2)

virtual switches (OVS). Each virtual switch is responsible for

copying the application packets to the monitoring ports, in

order to allow a passive MF, within the PM container, to

capture and analyze packets. The background containers are

used for for evaluating the impact of the ConMon system on

other applications.

In all experiments, a sender application container sends

traffic to a receiver application container. These containers

1In order to study the monitoring impact on the applications we used a direct
link to minimize the effects from physical switching/routing and reduce the
physical latency between the hosts to a minimum.
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Fig. 4. Setup and teardown time for monitoring.

can reside on the same physical host or on two different

hosts. Inside the application containers, the netperf tool was

used to generate TCP or UDP traffic. Although netperf is an

active network monitoring tool, in our experiments has been

used as a simple representation of application traffic while

allowing us to measure the throughput and latency from the

application’s perspective. The tcpdump tool was used for traffic

capturing either inside the application containers or inside the

PM containers. The tapping in the OVS was performed by

adding OpenFlow rules to perform two actions on each packet

of the application containers, i.e., forward as normal and send

to the monitor port to which the PM container is attached.

Some notes regarding the figures in the next subsections:

• Base: refers to experiments with no monitoring.

• Internal: refers to monitoring from inside the application

containers (used as a representative of solutions requiring

monitoring code inside application containers).

• Adjacent: refers to monitoring from inside the adjacent

monitoring containers.

Each experiment was performed 10 times and average results

are presented in the figures.

B. Setup time

In this section we evaluate the performance of the ConMon

system by measuring the time it takes for the PM and AM

containers to be started and configured by the MCs.

In our testbed, each container, after being started by Docker,

is connected to an OVS virtual switch using the pipework
tool [26] and then a process is executed inside it by Docker.

Figure 4 shows the time it takes for each of these steps to

be executed in our testbed. Starting a container and attaching

it to the switch takes around half a second (t5 − t1 for

application and t6−t2 for monitoring container(s)). The figure

also shows that in average it takes around 53 ms for MC

to prepare a request for instantiating a PM container after

detecting the “create” event from Docker (t2 − t1). The time

it takes for instantiating PM container depends on where the

container image is stored (locally in our testbed). MC then has

to configure the tapping on the virtual switch which in our

implementation is done by adding an OpenFlow rule which

takes around 12 ms (t7− t6). Overall, the delay for setting up

monitoring in our testbed has been around 79 ms (t7 − t5).

Depending on when the application starts to send or receive

traffic, the MF can miss some initial application packets during

this delay. We tested this by measuring the number of packets

which were not observed by tcpdump in the PM container.

We used an application container which immediately after

instantiation and connection to the OVS started to send packets

with a rate of 1000 packets per second. We observed that

tcpdump inside the PM container in average missed the first

76 packets due to the setup time which is consistent with the

delay time (t7 − t5).
The monitoring setup time can be dramatically reduced by

starting a PM container and attaching it to the virtual switch

in advance on each server, and adding the tapping rule after

the application container is attached to OVS. In this case, the

monitoring setup time in our testbed is reduced to 28 ms.
An AM container can also be created at the same time

as the PM container if active monitoring is also required.

However, if remote monitor discovery is required, additional

setup time is introduced. For automatic discovery of remote

monitoring containers, an MC has to obtain the address of

the receiver AM container. In our implementation, each MC

after creating a monitoring container updates Consul [27],

which is a distributed key/value storage, by adding a record

showing the mapping between the address of the application

and the monitoring container associated to it. Any other type

of centralized or distributed database can be used for this

purpose. For monitor discovery, an MC has to query Consul

for the mapping. The query time in our testbed when a consul

container resides locally is around 3-4 ms even when the

storage has more than 800K key-value pairs stored in it. In

a realistic implementation the query time depends on the

location and the type of the database.
If a remote monitoring container is not running, the local

MC can request the remote MC to instantiate and configure

one, e.g., an AM container to reflect probe packets. In this case

the monitor setup will take longer time including the time for

sending the request to the remote MC and starting a monitoring

container, i.e., around half a second. The time it takes for

a request to be received by an MC depends on the latency

between the servers. In our testbed the RTT between containers

on two servers has been around 0.15 ms. RTT measurements

in an operational datacenter have shown that the median RTT

between servers are 0.22 ms and 1.26 ms for intra-racks and

inter-rack communications, respectively [13].
Finally, we have measured the time it takes for ConMon to

remove a monitoring container after an application container
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has been removed. In our implementation, once MC detects

that an application container is stopped (i.e., detect a “kill”

event by Docker), it reacts by sending a request for stopping

the corresponding monitoring container(s). This reaction time

in our testbed is around 3 ms (t9 − t8). The graceful stopping

and removing the containers by Docker then takes more than

10 s (t10 − t8 for application container and t11 − t9 for

monitoring container).

C. Impact on resource usage

In this section we present the experimental results for the

impact of the ConMon monitoring system, in particular passive

traffic collection on the resource usage of the servers.

Figure 5 shows the accumulated CPU usage (for both user

space and kernel space) for different processes during a netperf
UDP throughput test between two application containers, with

the maximum message size. The CPU statistics are obtained

from System Activity Report (SAR) [28], which is a widely-

used open source Linux tool. In the figure, the first three bars

from the left, show the accumulated CPU usage where the

sender and receiver application containers reside on the same

server. The three bars on the right show the CPU usage on the

sender side server where the sender and receiver containers

were placed on two different servers. It can be seen that

netperf and netserver processes use the highest portion of

CPU. The tcpdump tool which is used for capturing traffic uses

the same amount of CPU regardless of where the monitoring

is performed, i.e., inside the sender application container

(Internal) or inside a PM container (Adjacent). Moreover,

Docker and OVS virtual switch have very low CPU usage

in all the experiments. The low CPU usage of OVS in this

experiment (which is due to the fact that there is only one

forwarding rule in the OVS and it is not under load) does not

increase by adding tapping to OVS which means that tapping

adds negligible extra cost to the cost of data collection.

D. Impact on application performance

In this section we evaluate the impact of the ConMon system

on the performance of the applications.
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Fig. 6. Throughput measured using UDP traffic between two application
containers on (top) the same server and (bottom) two different servers.

Throughput: We have evaluated the impact of passive

monitoring on the network throughput of the applications.

Figure 6 shows the results for measurements on one server and

between two servers obtained from netperf tool running inside

application containers with different message sizes using UDP

packets. It can be seen that a higher message size gives higher

throughput by enabling a higher send rate.

In measurements between two servers, where the maximum

throughput of 10 Gbps is reached, the passive monitoring does

not affect the throughput. For all send rates lower than the

link capacity we can see a penalty for monitoring which is

translated into a lower throughput. This can be seen in both

scenarios, where throughput values for Internal and Adjacent

are lower than Base. However, when the send rate is much

larger than the link capacity, the link becomes the bottleneck

that restricts the throughput. In that case the penalty on the

send rates created by monitoring is not seen, since the send

rates with monitoring are still over the bottleneck rate.

In the measurements where the sender and receiver appli-

cation containers reside on the same server, the throughput

between them is limited by the capacity of the virtual switch

(38.5 Gbps measured peak rate). Measurements with TCP

traffic showed similar results and are therefore not presented.

Latency: We investigated the latency between application

containers and the effects of monitoring on their perceived

delay. Figure 7 shows the Round Trip Time (RTT) mea-

surement results obtained from netperf. It can be seen that

Internal data collection has increased the RTT by 4.5 μs when

the containers reside on the same server and by more than
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130 μs when the containers are located in two servers. Data

collection in adjacent monitoring containers has less impact on

the application RTT which was negligible when the containers

reside on the same server and increased only by 22 μs when

the containers reside on two servers.

Packet loss: In our evaluations we have not observed any

packet loss according to the counters reported by the virtual

switches. However, we observed that in experiments where the

throughput reached 10 Gbps the tcpdump tool did not manage

to capture all the observed packets and some of the packets

that have been captured were dropped by kernel before being

processed by tcpdump.

E. Impact on background traffic

In order to study the effects of passive monitoring on back-

ground network traffic, we started two application containers

and one adjacent monitoring container on each server. The

netperf tool was used inside the application containers to

measure throughput and latency. The traffic between one of the

application container pairs was copied to the monitoring con-

tainer and captured by tcpdump while the traffic between the

other application container pairs (i.e., background containers)

was forwarded normally. We also performed the same mea-

surements without the adjacent monitoring containers where

traffic was captured internally inside the containers of one of

the application pairs for comparison.

Figure 8 shows the throughput and latency for monitored

applications and background applications. It can be seen that

for throughput measurements using TCP (with default message

sizes of 16384), the monitoring had negligible effect on the

background traffic. In RTT measurements, while monitoring

increased the latency of the monitored application, the latency

perceived by background containers was not affected by using

an adjacent monitoring container. Measurements with multiple

background container pairs have shown the same results and

are therefore not presented here.

F. Scalability

We have evaluated the scalability of our monitoring system

by increasing the number of application containers (running

netperf ) which are being monitored. Application containers

that belong to the same tenant can share a single monitoring
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Fig. 8. Impact of monitoring application containers on the background traffic.

container. However, in a multi-tenant cloud environment, ap-

plication containers that belong to different tenants require sep-

arate monitoring containers to ensure isolation. Therefore, two

scenarios were studied: a single monitoring container is used

for monitoring multiple application containers (Adjacent-1),

and one dedicated monitoring container per application con-

tainer (Adjacent-N).

Figure 9 shows the total CPU usage on the sender host. It

can be seen that the CPU usage is increased by increasing

the number of application containers. In scenario Adjacent-1

where a single monitoring container is used, the increase in

CPU usage does not change much compared to the Base case,

where no monitoring is performed. However, in Adjacent-N

scenario where each application container is monitored by a

dedicated monitoring container, the increase in CPU usage

with increasing the number of containers is slightly higher than

running tcpdump inside each application container (Internal).

Figure 9 also shows the total memory usage in Gigabytes. It

can be seen that by increasing the number of application con-

tainers, the memory usage increases. In scenario Adjacent-1

the memory usage is very close to the Base scenario. However,

in Adjacent-N scenario the memory usage is higher than the

Base but is similar to the Internal scenario.

Additionally, Figure 9 shows that by increasing the number

of application containers, the average Throughput is reduced

since the application containers have to compete for the

10 Gbps link which is the shared resource. However, it can be

seen that the throughput values are not affected much when

monitoring is performed even when there is one monitoring

container per each application container (Adjacent-N).

VI. DISCUSSION

The evaluation results presented in this paper indicate the

feasibility of the ConMon system. It was shown that the most

time-consuming step in the automatic setup of monitors in the

ConMon system is the creation of monitoring containers and

attaching to the virtual switch. This step can be eliminated if

monitoring containers are started and attached to the virtual

switch in advance. Moreover, if a single monitoring container

is used to monitor multiple application containers the CPU and

memory usage on the servers is substantially lower compared

to using an MF per application container (either internally or

in a dedicated adjacent container). These observations suggest
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Fig. 9. Scalability results for different number of containers on each host: (left) CPU usage, (middle) Memory usage, and (right) TCP Throughput.

that once a monitoring container is started on a server, it

can be reused by updating tapping rules for other application

containers.

Our results show that the resource usage overhead of

ConMon is manageable. The network overhead, however, is

highly depending on the frequency in which the containers

are started and stopped. Each MC shares the information about

mapping of application and monitoring container(s) with other

MCs, for example by updating a distributed database whenever

a monitoring container is started or removed. MCs also query

the database whenever remote monitor discovery is required.

MCs can also communicate with each other to request starting

or stopping of remote MFs.

The network overhead required for active monitoring can

be high depending on the monitoring intents, e.g., the fre-

quency and type of monitoring. For example, sending one

ping packet every second between two physical servers has

a negligible overhead while throughput measurements using

tools such as iperf and netperf can introduce higher overhead

which can even affect the application and background traffic.

ConMon supports reduction of network overhead by reducing

the unnecessary overhead by reusing an AM container pair

to monitor the network between containers on one server

that communicate with containers that reside on the same

remote server. However, it is up to the monitoring policies

and monitoring functions to implement scheduling strategies

to avoid overloading the network links with probe packets.

The accuracy of many types of network measurements, such

as latency, depends on accurate timestamping information.

The impact of passive monitoring in adjacent monitoring

containers on the accuracy of the measured timestamps have

been studied in our previous work [20]. In this study we

performed additional measurements on a new testbed and

observed similar results for different types of traffic which are

therefore not presented. Overall, we observed low and stable

timestamping errors (in average 3.2 μs and 0.2 μs on the

sender and receiver sides, respectively). The errors are mainly

caused by the packet processing time of the virtual switch on

the sender side and can be used for calibration.

We show that monitoring can affect throughput and latency

of the monitored application. However, when applications

send traffic with a higher rate than the capacity of the link,

the link becomes the bottleneck so the penalty caused by

monitoring is not visible. Overall, the results indicate that

using an adjacent monitoring container is more suitable than

internal data collection within the application containers due

to its lower impact on the application performance.

VII. CONCLUSIONS

In this paper we presented ConMon, a distributed container-

based system for automated monitoring of network perfor-

mance in a cloud environment.

In ConMon, containers that communicate with each other

are automatically discovered and network performance is mon-

itored only between them. The automatic discovery and setup

provides uninterrupted monitoring in case of container scal-

ing and migration, without manual intervention. Furthermore,

ConMon does not inject monitoring code into application

containers and instead executes network monitoring functions

inside monitoring containers that are interconnected to the

application containers via virtual switches.

By running monitoring functions inside adjacent containers,

the monitoring is isolated from the application and does not

require instrumenting the image of the application container

or running extra processes inside the container. Moreover,

the monitoring becomes more flexible since the monitoring

functions can be started, stopped, and re-configured either

by the application owner or infrastructure providers without

affecting the application. Additionally, by passively observing

application traffic, the monitoring controllers can quickly adapt

the monitoring functions to the changes in the communication

between the containers. Therefore, by dynamically adapting to

the changes in the container environment and the application

communications, ConMon provides continuous monitoring

and eliminates the unnecessary cost of monitoring links be-

tween the containers that do not communicate with each other.

The evaluation results indicate that the ConMon system is

feasible and has negligible impact on background network

traffic. However, monitoring does not come without cost and in

some cases passive traffic collection can affect the throughput

and latency of the applications being monitored. This cost

can be reduced by sharing a passive monitoring container to

monitor multiple application containers.
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[1] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization,” ACM SIGOPS Op-
erating Systems Review, vol. 41, p. 275, 2007.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 61



[2] R. R. W. Felter, A. Ferreira and J. Rubio, “An updated performance com-
parison of virtual machines and linux containers,” in IEEE Symposium
on Performance Analysis of Systems and Software, 2015.

[3] “Nagios.” [Online]. Available: https://www.nagios.org
[4] “Amazon CloudWatch.” [Online]. Available: https://aws.amazon.com/

cloudwatch
[5] “Monasca (Monitoring-as-a-Service (at-Scale)).” [Online]. Available:

http://monasca.io/
[6] “OpenStack.” [Online]. Available: https://www.openstack.org
[7] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring:
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