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Abstract—In a Mobile-CDN, Base Stations (BSs) are equipped
with storages for replicating content, and they are allowed to
cooperate in replying user requests through backhaul links.
In this paper, we investigate the joint optimization problem
of content placement and user request redirection for such a
BS-based mobile CDN system. Specifically, each BS maintains
a transmission queue for replying user requests issued from
other BSs. Due to the limited link capacity and the dynamic
network environment, the optimization problem should be jointly
considered with the transmission queue states. We employ the
Stochastic optimization model to minimize the long-term time-
average transmission cost under content availability and network
stability constraints. By applying the Lyapunov optimization
technique, we transform the long-term problem into a set of
linear programming (LP) problems, which are solved in each
short time duration. Further, we propose a semi-distributed
online algorithm to jointly decide content placement and user
request redirection. The evaluation confirms that our solution
guarantees network stability comparing to the traditional user
request redirection scheme.

I. INTRODUCTION

With the development of Network Function Virtualization
(NFV) and Software Defined Network (SDN) standards, Mo-
bile Network Operators (MNOs) are offered with the opportu-
nity to deploy Content Delivery Network (CDN) functionality
within the mobile network. For instance, Base Stations (BSs)
can be equipped with storage and computing capabilities to
establish the Mobile-CDN system to facilitate content distri-
bution in mobile networks [1]. This integrated mobile network
service is the main research direction for the upcoming 5G era.
On one hand, the availability of content near the end-users
improves the Quality of Experience (QoE) of mobile users,
on the other hand Mobile-CDN mitigates the traffic burden on
the mobile core network. In this paper, we consider such a
mobile CDN system in which cooperative BSs leverage their
storage and computing capabilities to replicate content and to
reply mobile users’ content requests.

The first proposals toward the design of cooperative Mobile-
CDN [2, 3] consider the same cooperative principles as in the
traditional CDN systems for wired networks. A mobile user,
who is attached to a given BS, sends requests for content
to this BS, which checks whether the requested content is
stored in its local cache. In case of a miss, the request is
redirected to another BS, from which the requested content is
replied in case of a hit. Cooperative mechanisms are known
to enhance the diversity of replicated content and to improve
the overall hit-ratio of the system. To implement a cooperative
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CDN, there are two important issues to be considered: 1) the
content placement problem decides content replication on each
BS storage; 2) the user request redirection problem determines
to which BS a missing request should be redirected.

Both problems are tightly coupled. Content placement de-
termines content availability on each BS, and the latter affects
the decision on user request redirection. The joint optimization
problem of content placement and request redirection has been
extensively investigated in the literature related to CDN [4, 5].
However, these works ignore the transmission capacity of the
replying caches. User requests can be redirected to another
cache having a high probability to be a hit for a requested
content, without taking into account the link capacity and
workload of the cache. Such redirection mechanism can lead
to traffic congestion and unbalanced work load. In mobile net-
works where BSs are standard network equipments connected
by constrained backhauls, avoiding network congestion and
balancing traffic loads for BSs are two key requirements for
designing the user request redirection mechanism of Mobile-
CDNs. Moreover, mobile networks are highly dynamic. Net-
work parameters (such as user demands distribution) can vary
frequently due to user mobility. This characteristic calls for
designing online algorithm which achieves the optimization
goal without requiring a-priori knowledge on the statistical
distribution of the network parameters.

We propose a joint content placement and user request redi-
rection mechanism in Mobile-CDNs. The optimization goal is
to minimize the overall inter-BSs transmission cost incurred
by the redirection traffic. Specifically, we utilize a Stochastic
optimization model to cope with variable network environment
parameters. We aim at minimizing the long-term time-average
transmission cost while at the same time at ensuring network
stability to avoid BSs forwarding traffic congestions. We use
the Lyapunov optimization framework to transform the long-
term optimization problem into a set of linear programming
(LP) problems, which are solved in each short time duration.
Based on this method, we propose a semi-distributed online
algorithm to decide content placement and request redirection
without requiring any a-priori knowledge on network param-
eters. The online nature of the algorithm makes it suitable to
be practically implemented to cope with the mobile network
dynamics. Finally, simulation results confirm that our proposal
guarantees network stability by comparing to the traditional
user request redirection scheme.

The remainder of this paper is organized as follows. Related



works are summarized in Section II, followed by the system
model description in Section III. Then, we detail the stochas-
tic optimization formulation and its transformation into LP
problems in Section IV. Our proposed semi-distributed online
joint content placement and request redirection algorithm is
presented in Section V. The evaluation is provided in Sec-
tion VI. Finally, we conclude this work in Section VII.

II. RELATED WORKS

The MNOs have growing interest in integrating CDN func-
tionalities into the mobile network infrastructures. In the litera-
ture, there are some works related to Mobile-CDNs. In [6], the
authors motivate the deployment of CDN serving point nodes
to enhance the delivery of progressive video streaming services
in mobile network. They analyze the benefits of employing
an Mobile CDN system for MNO on guaranteing user QoE.
In [7], the authors show the benefits of deploying CDN serving
points for mobile content delivery in terms of transmission cost
saving. In [8], the authors integrate CDN mechanisms into
mobile platforms by exploring storage capacities of mobile
devices. They address the content replication problem in this
scenario. In particular, leveraging the storage capacities of
BSs facilitates the implementation of CDN in mobile network
as the recent efforts at ETSI MEC and NFV go into this
direction. In [9], the authors study the implementation of CDN
mechanisms by deploying storage capacities on BSs. They
show BS cooperation on caching content can enhance the
mobile CDN performance in terms of enhancing hit-ratio and
reducing transmission cost. However, jointly determining con-
tent placement and user redirection has not received enough
attention for mobile CDN.

Distributed in-network caching is becoming increasingly
important to improve user Quality of Experience for content
distribution in mobile networks. To facilitate the distributed
storage of content, network coding is a useful tool to allow
users to fetch coded blocks from multiple sources in order to
finally decode the original content. In [10], the authors theoret-
ically and practically demonstrate that coding can improve the
throughput of network loads for content distribution in wireless
networks. In [11], the authors investigate the storage allocation
problem with network coding for proactive storage at storage-
enable BSs in cellular network. In our work, we also consider
to improve the caching diversity and content availability by
applying network coding in the content placement phase.

Two classes of literature are highly related to our study.
The first one is content caching systems in mobile networks.
These works typically try to determine what to replicate on
BS caches. In [11], the authors design algorithms to allocate
storage capacity for one content in mobile network with
cache-enabled BSs. They show that the complexity of the
content placement problem is NP-Hard. In [12], the authors
propose several caching policies for BS caching system in
order to reduce the traffic throughput on the mobile gateway
and backhaul links. In [13], the authors implement caches on
small cells to mitigate traffic pressure on backhaul links. They
study the optimum content placement problem to minimize
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the file downloading time. In [14], the authors investigate
content replacement strategy on BS cache. The problem is
modeled by a Markov decision process, and a distributed
content placement algorithm is proposed. In [15], the authors
propose a distributed content placement algorithm based on
belief propagation to reduce the average content download
delay in a mobile network with BS caches. However, these
work do not consider BSs cooperations for caching contents
and replying user requests.

The second class of literature is about the collaborative
content placement problem which has been extensively studied
in the traditional wired CDN systems. Typically, these works
tackle the joint content placement and user request redirection
within the range of CDN systems. Specifically, the joint
content placement and user request redirection problem is
known as NP-Hard. In [16], the authors consider the two
problems separately at different time scales to reduce the
problem complexity. In [4], the authors jointly address content
placement and user redirection, subject to storage capacity
and link bandwidth. However, the complexity of the problem
prevents a fast efficient solution. The authors utilize the
exponential potential function method to find sub-optimal
solutions. In [5], the joint problem is studied in a hierarchical
tree structure. The problem is solved optimally in a certain
simplified scenario. In [17], cache replacement algorithm is
designed through dynamic programming upon the assumption
of a-priori knowledge of network parameters. In [18], the
joint optimization problem is formulated to minimize content
access delay in a general CDN architecture, and two heuristic
algorithms are proposed.

These studies devise the joint content placement and request
redirection schemes based on statistical network parameters,
such as content popularity and user demand. However, these
parameters are impractical to evaluate and collect on time.
Moreover, the distribution of these parameters can vary, es-
pecially in the highly dynamic mobile network environment.
For instance, user mobility leads to frequent change of user
demands on BSs. To overcome these limitations, we devote
ourselves to design online algorithms without requiring any
a-priori knowledge on network parameters, which are more
suitable for practical implementation in the dynamic mobile
network environment.

There are works designing online algorithm for mobile
network collaborative caching [3,19]. In [19], the authors
propose an online algorithm for the collaborative caching prob-
lem in multiple coordinated BSs without requiring knowledge
about content popularity. However, their request scheduling
machnism is solely based on content availability on BSs.
In [3], the joint content placement and scheduling problem is
studied in the context of wireless network. The authors design
on-line algorithms by analyzing user request queues on each
BS. However, the BSs workload and congestion level cannot
be directly reflected by user requests queues. In fact, none of
the above two works seeks to find joint content placement and
user request redirection scheme for balancing traffic load and
avoiding network congestion.
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III. SYSTEM MODEL

We consider a Mobile-CDN system, where storage is im-
plemented on mobile network BS. There are N BSs in the
system. We denote BS by n;, where i € [1,---, N]. BS n;
is equipped with a storage of size S;. The system operates in
discrete time with time slot index ¢ € {0,1,2,---}. Network
parameters are time varying, however they are supposed to
be unchanged during one time slot. Further, in the current
time slot, the values of the parameters for future time slots
are unknown. That is, we do not have a-priori knowledge on
future network configurations and states.

The BSs cooperate in replying user content requests. Typi-
cally, we do not consider a centralized remote content server
or content vault in the system. Thus, if the content required by
a user is not stored in the local cache, the user requests will
be redirected to other BSs. BSs can transmit data among them
through the mobile network backhaul links. For example, in
the Cloud-RAN (Cloud-Radio Access Network) architecture,
BSs are regarded as interconnected through a central proces-
sor, thus inter-BS transmission is facilitated. We denote the
transmission cost of one chunk from BS n; to BS n; at time
tas ¢;j(t), forie[l,--- ,N]and j € [1,---,NJ.

A. Content Placement and Request Redirection

The MNO aims to replicate a group of content on the BS
storages. A content is a generic piece of information. For
simplicity, we assume that all content have the same size (for
example, a content can represent a video chunk in a VoD
application). We denote each content by k € [1,---, K].
In order to ease the distributed storage of contents and to
allow users to recover the content from multiple BSs caches,
network coding is applied in the content placement phase.
Content is coded into blocks and cached distributedly. Then,
it is sufficient for the users to receive a certain number of
blocks to decode the original content. We define the content
placement decision variable 2% (¢), which represents the ratio
of cached coded blocks over the number of blocks to decode
the original content on BS mn, for content k at time slot
t. Obviously, 0 < x¥(t) < 1,Vi, k,t. The storage capacity

constraint requires each BS storage n; to satisfy:

Soab(t) < S, Vit 1)
k

In BS cooperation, when the locally stored blocks are
not sufficient to decode the original content, the system
should decide where the user request should be redirected.
A request redirection decision variable is defined as yfj(t),
which represents the percentage of blocks that should be
transmitted from BS n; to BS n; at time ¢ for content k. Thus,
0 < yfj(t) < 1,Vi, 4, k,t. User redirection should comply
with the content availability on BSs. Moreover, users should

receive sufficient blocks to decode the original content. Thus,
the following two constraints are imposed:

yi(t) < @f(t), Vi gkt
Soyht) +af(t) =1, ikt
-

(C2)
(C3)

Constraint (C2) restricts on the amount of content that could
be supplied by each BS. Constraint (C3) means each BS
should receive enough content to decode the original content.
Please note that to make the problem feasible, a lower bound
on storage capacity is that the aggregate storage capacity
should be sufficient to at least store one copy of the coded
blocks of all content.

B. Transmission Queue Stability

Each BS maintains a transmission queue, containing all data
that should be sent to other BSs. Suppose the BS n;’s uplink
capacity on backhaul link at time ¢ is denoted as B;(t). Thus,
B;(t) shows the transmission capacity of BS n; to other BSs,
and it represents the serving rate of the transmission queue
on BS n;. Then, the arriving rate for queue on BS n; is the
aggregate of user requests redirected to the BS: 3, >~ yfj(t)
The states of the queues show the traffic load on the BSs, thus
should be considered for the decision of request redirection.

The queue backlog associated to BS n; at time ¢ is denoted
as Q;(t), which evolves as follows:

Qi(t +1) = max((Q(t) — Bi(t)), 0] + > > wli(). (1)
ko

The queue Q;(t) is defined as strongly stable if the follow-
ing condition holds [20]:

L 771
Th_{%o T ; E{[Q:(t)[} < cc.

The strong stability enforces bounded queue backlogs, thus
this property avoids network congestions. Further, a multi-
queue network is strongly stable if all the individual queues are
strongly stable, which means that the N transmission queues
are all bounded. For a queue to be stable, the average arriving
rate should be no higher than the average serving rate. In the
current paper, we suppose the overall system serving capacity
is overprovisioned to transmit all user requests, thus stability
is affected by user request redirection schemes.

IV. PROBLEM FORMULATION AND TRANSFORMATION

A. The Stochastic Optimization Problem

The MNO is concerned with the transmission cost incurred
by user request redirection. The transmission cost at time slot
t is calculated as:

c(t) =D dF(t)esi(t)yki(b)
k 7 J

The number of user requests issued on BS n; for content k at
time slot ¢ is denoted as d¥(t). Then, the problem is formulated
as a stochastic optimization problem that minimizes the long
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The long-term stochastic problem formulation

min = lim — E{c(t PD
{zf(t)},{yf;-(w} T—oo T Z tel
st Y @) < S, ikt (C1)
k
yii(t) < af(t), Vij k.t (C2)
yi(t) +ai(t) > 1, Vikt (C3)
J
0<ah(t) <1, Vikt (C4)
0 <wyij(t), Vi gkt (C5)
yi(t) =0, Vi k,t (C6)
Q:(t) is strongly stable, Vi. (€N

term time average transmission cost, subjects to storage capac-
ity, content integrity and network stability constraints (shown
below).

B. Problem Transformation

We utilize the Lyapunov drift-plus-penalty method to solve
the above stochastic optimization problem (P1) [20]. This
method transforms the original problem into a series of static
optimization problems, which minimize the drift-plus-penalty
term in each time slot. In the following, we detail the process
of this transformation, and discuss the rationale behind this
method.

Let Q(¢t) = {Q;(t)} be the vector of queue backlogs for
time ¢. Then, we define the quadratic Lyapunov function for
t as:

DEESWe0

The quadratic Lyapunov function has the property of balancing
traffic loads among BSs. Since it is calculated as the sum of
the square of all queue backlogs, when it is large, at least one
BS endures heavy traffic load. As a result, pushing Lyapunov
function into a lower value ensures network stability, while at
the same time achieves load balancing.

Without loss of generality, all queues are assumed to be
empty when ¢ = 0 such that L(Q(0)) = 0. Define the one
slot conditional Lyapunov drift A(Q(t)) as:

AQ(t) £ E{L(Q(t + 1)) — L(Q(1)1Q(1)}-

The Lyapunov drift-plus-penalty method seeks to minimize
the drift-plus-penalty term A(Q(t)) + VE{c(¢)|Q(t)} at each
time slot, such that the queue backlogs are continuously
pushed towards a lower congestion state, whereas at the same
time approaching to the optimization goal. We first show the
upper bound of the drift term as:

- L(Q®))IQ(1)}

t) = ZE{L(Q(t +1))
<B- Z Qi(t)Bi(t)
+ED S Qi0)> >y}

7 k J

where B is a positive constant such that

Bz E{ZZZ% Q3+ 5 232

Thus, the upper bound on the drift-plus-penalty term is
derived as:

A(Q(1)+VE{c(t)|Q(t }<B—ZQ- )Bi(t)
+E{ZQ ZZ%IQ
+V]E{Zzzdk cji (D (1) Q(H)}-

Here, V' is a tuneable positive parameter. Minimizing the
drift-plus-penalty term in each time slot can ensure the net-
work stability while at the same time optimize the long
term optimization problem. By employing the concept of
opportunistically minimizing an expectation, the right hand
side of the drift-plus-penalty term is minimized by greedily
minimizing:

2.2.2.@

Thus, the original problem (P1) can be solved equivalently
by solving the following optimization problem (P2) at each
time slot (we omit the term ¢ for notation simplification):

) + Vb (t)ei; (1) ki (2)

min (P2)

S Y Y@ Vil
i Yij P
s.t.  (C1), (C2), (C3), (C4), (C5) and (C6).

From this problem transformation, we can observe that
user redirection decisions are made based on the backlog
information of transmission queues. To solve Problem (P2),
large queue backlog leads to less redirected user requests to
ensure network stability. Moreover, the problem only depends
on the current network parameters and queue state information
(QSI), which permits the design of online algorithms.

Problem (P2) is formulated as a Linear Program (LP) which
can be solved by a standard optimizer such as IBM ILOG
CPLEX. However, the complexity of the problem prevents a
fast computation of optimum solution. In the next section,
we present our algorithm which efficiently solves the content
placement and user request redirection problems.
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V. ONLINE ALGORITHM

In this section, we first present an efficient solution of
Problem (P2). Then, we introduce our semi-distributed on-
line algorithm, which jointly decides content placement and
request redirection based on QSI updates. Then, we discuss
its practical implementation relevance.

Problem (P2) is hard to solve. However, to timely reflect
network traffic condition, time slot duration is required to
be relatively short in our work. Thus, we aim to find an
efficient way to solve the Problem (P2). In order to reduce
the complexity of problem (P2), we first relax constraint (C3)
by using Lagrangian relaxation. The corresponding Lagrangian
function is given by:

L{zf} {ylh A ZZZ — M)yk
ey
PR ko
where wf; = Q; + Vdic;;, and X = {\F} is the Lagrange

multipliers matrix for constraint (C3). Thus, the Lagrangian
dual function is defined as:

min

g(A) =
») {5} vk}

L({xf )yl 1 ).
And the dual problem is optimizing the dual function subject
to the dual variables:
A
max  g(A)
s.t. A >=0.

(P3)

We further decompose Problem (P3) and separate it into a
content placement subproblem and a user request redirection
subproblem. These two problems can be efficiently solved.
A. Content Placement Subproblem

The content placement subproblem involves the content
placement variable {x*}. It is formulated as:

max E E)\kk
0<z<1

Za: <S; Vik.

(P4)

This problem formulation is a typical Linear Knapsack
Problem (LKP), which can be optimally solved by each BS
in polynomial time by knowing the value of multipliers {\¥}.
By solving this problem, each BS obtains the optimum content
placement J’f* for a given A.

B. User Request Redirection Subproblem

Then, the user request redirection subproblem is expressed

as follows:
Z Z Z

min
o<yl <zk*

7,]— i

Y5 =0

— Xy (P5)

Algorithm 1 Joint Content Placement and Request Redirection
Algorithm for each time slot

1: Initialization:

2: At each time slot, each BS sends its QSI to the CC.

3: Based on the network parameter observed in the current
time slot, CC computes w”, Vi, j, k.

4: The CC generates random initial A¥(s = 0) and dissemi-
nates to BSs.

5: while not converge and s < Sy;4x do

6:  BS part: for each BS n;

7. Upon receiving Mk (s), solves (P4).

8  Sends z¥", Vk to CC.

9:  CC part:

10:  Upon receiving {z¥"}, solves (P5) and obtains {yfj*}

11:  Based on {z¥"} and {yfj*} updates {\¥(s = s+ 1)}

according to Eq. (2).

12:  Disseminates {\¥(s = s+ 1)} to BSs.

13: end while

14: According to the final {2}, each BS updates its stored
content.

15: According to the final {yfj*}, CC coordinates user re-
quests redirection.

16: All BSs update QSI according to Eq. (1).

By observing the Problem (P5), given the values of {\¥}
and {2¥"}, we find that the optimal solutions of y¥," have the
following structure:

o Ifi=j, yt" =o.

o If i # jand wh — AF >0, y£7 = 0.

o If i jand wh — A¥ <0, yF" =2k,

In this way, we separately solve the original dual Prob-
lem (P3) by a sub-optimum solution for content placement and
user request redirection. The dual variables {\¥} are updated
based on the subgradient method:

M(s+1) = () +a(l =Y yh (A (s) —2f ()Y
J

2
where s stands for the iteration number, « is the step size,
yfz*()\f(s)) and 25" (\¥(s)) are the solutions of the content
placement decrsron variables and user request redirection
variables for a given A, and []Jr is the nonnegative orthogonal
projection.

C. Semi-Distributed OJCPRR Algorithm

The above solution can be implemented through a semi-
distributed online algorithm (as detailed in Algorithm 1). We
name this algorithm as OJCPRR which stands for On-line
Joint Content Placement and Request Redirection algorithm.
For practical implementation, a central coordinator (CC) is
required for performing computation and orchestrating infor-
mation exchanges. The algorithm is executed periodically on
both the CC part and BS part for each time slot based on the
value of the current network parameters and BS QSIs.
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In the initialization phase of each time slot, each BS first
sends its current QSI and other parameter information to
the CC. Based on these information, the CC computes the
value of wfj and generates random initial A\¥(s = 0), then it
disseminates these information to all BSs.

Upon receiving \¥(s) from the CC, each BS solves the
Problem (P4) to find z*" for the current A\¥ value, and
sends it back to the CC. Based on {z¥"}, the CC solves
the Problem (P5) and obtains {yg*} Then, the CC updates
Af(s + 1) and disseminates the new X values to BSs. This
process iterates until the computation converges or a maximum
iteration number Sy; 4 x is reached.

The final {z}"} and {yf;"} values determine the content
placement and user request redirection for the current time
slot. Finally, each BS updates its transmission queue state
according to Eq. (1), and the algorithm goes into the next
time slot.

VI. EVALUATIONS

We build a simulation platform to evaluate the performance
of our proposed online joint content placement and request
redirection algorithm OJCPRR. We evaluate two sets of sim-
ulations: an illustrative small scale simulation and a real trace
based large scale simulation.

A. Small Scale Simulation

In the small scale simulation, we emulated a network with 3
BSs running over 1, 000 time slots. The aim of this simulation
is to investigate and illustrate the queue-aware feature of the
algorithm OJCPRR in detail. The BS backhaul uplink capacity
{B;(t)} is independent identically distributed over time slots.
We assume that {B;(t)} follows Gaussian distribution with
equals 550 MBps and o2 equals 50 for all BSs. These values
are set to make sure that the aggregate serving rate of the
system 1is sufficient to transmit all user requested content to
avoid inherent unstable system.

The system aims to replicate 5 contents with each set to
200 MB. The storage size of each BS is set to 500 MB, thus
one BS cannot store all content, and 2.5 contents should be
fetched from other BSs by user requests redirection. According
to this setting, the average transmission capacity of the system
is sufficient for content transmission (7.5 content for each time
slot). For each time slot, each BS serves 50 users. These users
issue content requests according to a Zipf’s content popularity
distribution.

Further, we deliberately differentiate the transmission cost
between BSs. The cost between BS1 and BS2 is set to 1,
whereas the cost from BS3 to the other two BSs is set to 2.
By doing so, we aim to investigate in detail the algorithm’s
performance on reacting to different transmission costs. Fi-
nally, we set the V parameter value used in the Lyapunov
drift-plus-penalty term to 1.

The queue-aware nature is the main characteristics of our
OJCPRR algorithm. Thus, we compare our algorithm to the
traditional off-line cost-driven queue-unaware one, which de-
cides content placement and request redirection solely based

on the cost setting of the network [5]. Particularly, in each
time slot, the traditional algorithm tries to solve the following
problem:

min

Jnin c(t) =D dF(t)esi(t)yki(t)
i Vi ki
st. (C1) to (C6).

The optimum solution of this problem is obtained by the
IBM ILOG CPLEX optimizer. Thus, this algorithm is queue-
unaware that leads to instable system and arouse network
congestion.

We first discuss the transmission cost of OJCPRR. Actually,
the time average transmission cost obtained by our algorithm
is 12.48, whereas the time average transmission cost obtained
by the cost-driven queue-unaware algorithm is 10.66, which
is lower than OJCPRR. That is because the queue-unaware
algorithm tries to minimize transmission cost in each time slot.
For OJCPRR, to avoid network congestion, user requests can
be redirected to BS with higher transmission cost but shorter
queue, which leads to higher transmission cost.

Then, we demonstrate the ability of the OJCPRR algorithm
for stabilizing queues. In Fig. 1, we show the queue backlog
variation of BS1 over all time slots obtained by the OJCPRR
algorithm, whereas in Fig. 2, we show the result obtained
by the queue-unaware algorithm of BS1. For OJCPRR, the
backlog of the transmission queue for BS1 is strictly bounded
(always below 800 MB), which implies strong stability for
the transmission queue on BS1 and no network congestion
occurred. However, for the queue-unaware algorithm BS1 ex-
periences instable queue. The queue backlog steadily increases
into over 130,000 MB. This shows the advantages of our
OJCPRR algorithm on avoiding congestion.

Then, we also compare the queue backlogs of the OJCPRR
algorithm to that of the queue-unaware algorithm in Table. I.
We first observe that for BS1 and BS2 OJCPRR obtains much
lower average queue backlogs than the queue-unaware one,
whereas for BS3 OJCPRR has higher queue backlog than
that of the latter. The cost-driven queue-unaware algorithm
avoids redirecting to BS3, regardless of the high congestion
level of BS1 and BS2. For OJCPRR, more user requests are
redirected to BS3, although this brings higher transmission
cost, the queue backlogs are bounded for all the three BSs.

Finally, we look into details of the queue backlogs of the
three BSs for the OJCPRR algorithm. In Fig. 3, we show the
queue backlogs information for all the three BSs by the box-
and-whisker plot, where the medium, the upper/lower quartile
and the upper/lower whisker are shown. The average queue
backlogs information for the three BSs is shown in Table. I
and is not shown in the figure. Firstly, BS3 endures lower
queue backlogs than the other two BSs. That is because BS3
is set to have higher transmission cost for sending content
to the other two BSs. Consequently, for BS1 and BS2 it is
better to redirect user requests to each other to lower down
transmission cost, which brings higher backlog for these two
BSs. Furthermore, BS1 and BS2 shares similar backlogs. This
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Fig. 1: Queue backlogs of BS1 of the queue-aware OJCPRR
algorithm
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Fig. 3: Queue backlogs of BSs for the small scale simulation

TABLE I: Average queue backlogs (MB)

BS1 BS2 BS3
OJCPRR 164.9 169.5 934
queue-unaware || 66087.6 | 71432.7 | 0.08

shows the advantages of our user request redirection algorithm
on balancing traffic loads.

B. Large Scale Simulation

We also conduct a set of real-trace based large scale
simulations. We utilize the real mobile network user activity
traces on the date of 2014/07/16 in the city Rennes (France) as
our simulation scenario. The top 60 populated BSs are chosen
as the storage enabled BSs. The mobile users served by these
BSs generate content request according to the Zipf’s content
popularity distribution. The transmission cost between BSs are
uniformly distributed between 1 and 2. We vary the number
of serving content from 5 to 10 to represent different level
of workload. The other simulation settings (such as the BS

1.3

Queue backlog of BS1 (MB)
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Fig. 2: Queue backlogs of BS1 for the queue-unaware algo-
rithm
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Fig. 4: Average queue backlogs for the large scale simulation

backhaul uplink capacity {B;(t)}, etc.) remains the same as
in the small scale simulation.

For the large scale simulation, the BS average queue
backlogs of different number of serving content is shown in
Fig. 4. As the provisioning of the serving capacity of the
system remain unchanged, when the number of serving content
increases, the congestion level of the system also increases.
When the system transmits 5 contents, the average queue
backlogs is 197 MB, whereas for 10 contents, the average
queue backlog is increased to 12,577 MB. Actually, for the
serving traffic load exceeding the transmission capacity of
the system, the queues are instable even with the congestion
avoidance OJCPRR algorithm.

VII. CONCLUSIONS

In this paper, we investigated the joint optimization problem
for content placement and user request redirection in the BS-
based mobile CDN system. We utilize the Lyapunov method to
solve a long-term stochastic optimization problem and design
on-line algorithms which could be practically implemented.
Comparing to the traditional queue-unaware algorithm, our
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solution avoids traffic congestion and balances work loads.
The current work has some limitations. For future work, as
shown in the large scale simulation, the average system serving
rate should be large enough to be able to transmit all user
requests. To prevent such inherent instable case, in the next
steps, we would like to introduce the content server with
large transmission capacity but higher transmission cost, and
investigate the performance of the algorithm in this scenario.
Moreover, the current algorithm solves a sub-optimum solution
for the joint optimization problem in each time slot. In the
future, we aim to design efficient algorithm with provable
bounds.
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