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Abstract—With the growing pervasiveness of virtualization
technologies, carrier networks are shifting from simple packet
delivery platforms to multi-tenant integrated clouds offering fine-
grained resource management. The need for interoperability
among these autonomous cloud-based service providers has
created demand for versatile and extensible exchange points to
interconnect the future Internet. A novel SDX (Software Defined
Exchange) can address this challenge and help redefine the
Internet exchange by leveraging SDN. Current implementations
of SDXs have focused on traffic exchange between conventional IP
networks and have not been specifically intended for exchange
between multi-tenant environments and virtual networks; and
they have mostly relied on OpenFlow for network forwarding
and functionality. While OpenFlow is the de-facto solution for
fine-grained forwarding, it nevertheless provides limited net-
work functionality. In this paper we present HyperExchange, a
protocol-agnostic exchange fabric for peering of virtual networks.
HyperExchange is designed to provide exchange services between
autonomous Infrastructure Providers and their hosted Virtual
Networks. As a result, it specifically offers solutions for inter-
domain tenant authentication and authorization for network
control. By leveraging SDI as the core building architecture,
HyperExchange uses SDN to forward and steer traffic in a fine-
grained manner and yet relies on NFV to push all network
functionalities to standard servers as software-based functions.
This solution meets both scalability and extensibility requirements
for long-term use. We have deployed a prototype of the Hyper-
Exchange between SAVI and GENI testbeds to serve real world
exchange experiments.

Keywords—Internet Exchange Point, Software Defined Ex-
change, Network Virtualization, Software Defined Infrastructure

I. INTRODUCTION

A. Background

Current inter-domain networking has evolved based on a
standard structure: A group of Autonomous Systems (AS)
using IP as the internal network structure while relying on BGP
for inter-domain peering. This structure made inter-networking
possible in the first place, but afterwards it led to a notorious
ossification. The problem, more precisely, is rooted in two
major sources: First, the existing all-IP foundation of ASs
forces a fixed addressing scheme which is location-based and
assigned through standard address registries. Moreover, routing
based solely on destination IP prefixes results in a severe
control inflexibility in internal operation of ASs.

The other major challenge of the current Internet arises
where different ASs interconnect with each other at exchange

points. Use of BGP as the basis of inter-domain networking
has caused a set of unresolved issues[1] including:

• Difficult and painful troubleshooting and security
maintenance,

• Large convergence times,

• Anomalies caused by possible routing inconsistencies,

• Adversity of QoS policy expression and enforcement,

• Unoptimized end-to-end paths due to triangle inequal-
ity violations.

While these challenges can be traced back to the tech-
nology limitations in the early years of the Internet, recent
advancements in SDN and NFV have provided new capabili-
ties to motivate a reconsideration of inter-domain networking
beyond its conventional restrictions. Along these lines, two
major trends are ongoing in the research community and
industry. In one direction, Software Defined Exchanges (SDX)
[2] have been introduced to make Internet Exchange Points
(IXP) [3] more flexible and to facilitate inter-domain routing
while keeping ASs with the traditional all-IP structure. In the
other direction, several attempts has been made to redefine
the network foundation of autonomous carrier networks and
Internet Service Providers (ISPs) towards integrated and multi-
tenant clouds and datacenters offering programmable and fine-
grained virtual networks [4][5][6]. In this new model, the
traditional role of ISPs will be segregated into two roles:
Infrastructure Providers (InPs), who provide virtualizable net-
work infrastructure and Service Providers (i.e. tenants) who
use virtual networks to provide services for end-users [7].
SAVI [8] and GENI [9] testbeds are two real deployments of
such InPs. However, flexible peering of InPs and their hosted
VNs has remained a challenge.

B. Requirement Analysis

The above mentioned trends points towards realization of
anInternet of Virtual Networks (IVN). An ideal exchange point
for this IVN must provide the following capabilities:

Protocol Agnosticity: A central feature of any Virtual
Network Environment (VNE) is the customizability of network
protocol and logic [7]. As a result, the exchange point must
provide exchange services for different types of networks
independent of the protocol being used.

Extensibility and Flexibility of Peering: In order to
provide on-demand peering and traffic exchange services,
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exchange points must enable rich functionalities on network
traffic that can range from a simple modification of header
values to a complex stateful Deep Packet Inspection system.
OpenFlow [10] protocol is a proper solution for fine-grained
traffic forwarding. However, relying on a hardware switch
as the only packet processing pipeline will narrow down the
network functionalities of exchange point to a limited set of
header modifications. Thus, software-based packet processing
frameworks, such as P4 [11] or DPDK, are needed to over-
come OpenFlow limitations. To this end, the exchange point
architecture must include processing resources in addition to
pure networking resources.

Multi-tenancy: Policy enforcement to the exchange point
should not be limited to InP’s. Tenants of InP’s (i.e. owners of
VN’s) should have the ability to define their desired exchange
policies so that end-to-end orchestration over VN’s will be
possible. An important requirement to realize this feature is
a well-defined network flow space authorization at exchange
point that can isolate incoming or outgoing traffic of VN’s
against each other.

Scalability: Large scale IXPs can have over hundreds of
participants each of which can have hundreds of thousands
of prefixes [3]. Each of these participants may define different
policies for network flows, and the fact that these participating
networks can have multiple tenants, introduces scalability
requirements for both data and control planes.

C. Overview

To address the aforementioned trends, we have introduced
the concept of HyperExchange as an exchange fabric for InP’s
and their hosted VN’s. HyperExchange, in summary, provides
the following particular contributions:

• A formal model that redefines the conventional con-
cepts of network domain and sub-nets and a uniform
data-model for networks and their sub-nets. We have
extended the formal model to specify the pipeline of
HyperExchange formally (Section 2)

• An extensible design for data-plane pipeline that lever-
ages OpenFlow and custom VNF’s to provide arbitrary
packet processing capabilities. (Section 3)

• A control-plane design based on SDI model to provide
multi-tenancy and to enable tenants of InPs to enforce
network control policies on their own slice of traffic
(Section 4)

Our proposal for HyperExchange has gone beyond a paper
design. We have implemented and deployed a proof of concept
implementation between SAVI and GENI testbeds. Our efforts
towards prototyping HyperExchange and use-case experiments
is discussed in Section 5. In Section 6 we will review related
work and we will conclude our work and discuss the future
work in Section 7.

II. FORMAL SPECIFICATIONS

The network model at an exchange point specifies a clear
semantic to bind slices of traffic (incoming or outgoing) to
each participating network. This binding is central to define
any traffic management in the exchange point. Figure 2

Fig. 1. Conceptual representation of HyperExchange

Fig. 2. A conventional IXP peering three AS’s

demonstrates a sample IXP and three participating ASs. In
this case the IXP is modeled as a Layer 2 switching fabric
and each participating network is connected to the IXP via
a physical connection. Since all of the participating networks
are IP networks, the mapping between networks and traffic
at IXP is defined by source and destination IP addresses.
This model forms a simple two-dimensional flow space in
which source and destination IP addresses are dimensions.
Figure 3 represents the slice of traffic coming from AS1 and
going to AS2. While this model greatly simplifies the traffic
slicing in IXP, it enforces two main limitations for inter-
networking. First, only public IP networks can participate in an
exchange point and second, forwarding logic at IXP is mainly
defined by IP prefixes. Neither conventional IXPs nor current
implementations of SDXs have targeted exchange of traffic
between VNs with customized network protocols. Depending
on vendor specific features, some exchange points may offer

Fig. 3. Two-dimensional flow space of current exchange points
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limited support of non-IP protocols but no exchange point have
been introduced with a protocol-agnostic model that satisfies
VN peering requirements mentioned in the previous section.

A. Geometric Model

The network model of HyperExchange is built on a ge-
ometric model which is inspired by HSA (Header Space
Analysis)[12] with some modifications. The perspective in
HSA is a network with a set of switching boxes and their
interconnecting links; while HyperExchange model is defined
for traffic at a single point (exchange point) that interconnects
arbitrary InPs and VNs. As a result, topologies or protocols
of participating networks are not important and a network at
exchange point is specified by the set of packets that belongs
to it. In this model, each packet is considered as a point in a
geometric space. Using this formalism, a clear specification for
networks and subnets are provided. The model is then extended
to define InP and tenant control policies and the main pipeline
of HyperExchange.

1) Basic concepts: We Start with a brief introduction of
the basic spaces and concepts of our model.

Total Header Space: A header space of H with length
of L can be represented by {1, 0}L [12]. For example, the
header space of IP address header can be defined by {1, 0}32.
A header field can be any bit sequence in the packet including
the content. Consider the set of headers {h1, . . . hn} with
length of {L1, . . . Ln} as list of interested fields; the total
header space is the cross product of all header spaces defined
by this list:

IH = ×n
i=1{0, 1}

Li (1)

Port Space: A space represented by the total set of
interconnecting ports of exchange point. These ports can be
physical or logical ports. In order to preserve the generality
of the model, a packet drop can be modeled by sending the
packet to a logical port associated with drop.

IP = {P1, . . . , Pm} (2)

Flow Space: The flow space is the cross product of IH
and IP. Each packet in an exchange point belongs to two
networks: source and the destination. To solve this conflict,
we exclude incoming flow space and outgoing flow space at
exchange point. To distinguish these spaces, we use a single
bit binary vector. Thus the total flow space of HyperExchange
will be:

IF = IH× IP× {0, 1}1 (3)

Match Expression: A Boolean expression defined over
header values and/or port numbers. For those headers that have
source and destination values such as IP and MAC, the source
value will be matched in incoming space while the destination
value will be used to match in outgoing space. The same
principle is applied for incoming and outgoing port numbers.
Each match expression is associated with a region in the flow
space which is the basic building block of flows. A flow is
represented by “F” and formally is a subset of the flow space.

Filter Function: Given a set of packets, a Match Expres-
sion M, returns a subset of packets which constitutes the flow

defined by M. The behavior of the Filter Function for a single
packet is:

ΨM ({pkt}) =

{
{pkt} if M holds for pkt

φ otherwise;
(4)

The output of the Filter Function on the entire Flow Space is
the flow associated with M, that is the region defined by M in
IF.

FM = ΨM (IF) (5)

The next rules show how the Filter Function is expanded by
logical expressions on M. The formal proof of the following
rules follows from the definition of filter function and due to
the space limitation we simply state them.

ΨM1∧ M2
(F ) = ΨM1

(F ) ∩ΨM2
(F ) (6)

ΨM1∨ M2
(F ) = ΨM1

(F ) ∪ΨM2
(F ) (7)

ΨM1o ΨM1 (F) = ΨM1 (ΨM2 (F )) = ΨM1∧M2 (F ) (8)

Network Space: A region in IF that binds all packets
coming from or going to a participating network and is
represented by FN . The filter function ΨM (IF) = FN that
filters all packets in FN is called the binding function of N
and M is called the binder expression of N.

Subnet: Network N1 is a subnet of Network N2 if and
only if the space of N1 is a subset of the space of N2:

FN1
⊆ FN2

⇐⇒ N1 � N2 (9)

Note that “�” denotes subnet relation.

2) Control Policies and Pipeline: In HSA[12] any packet
traversal through networking boxes is modeled as transfor-
mation over the flow space. We use the same notion to
model control policies defined by InPs or VN owners at
HyperExchange. A policy in general can be a sequence of
OpenFlow actions or steering traffic through a custom VNFs.
An OpenFlow header modification transforms the packet in
IH while dropping the packet or sending it out of a port is
transformation in IP. Note that a packet drop is modeled by
assigning a logical port to the packet. Based on this notion
a control policy can be expressed as chain of transformation
functions in IF:

P (F ) = T1 (. . . Tn (F )) = T1o . . . o Tn (F ) (10)

This chain can include filter function as well to apply the
policy on a specific slice of traffic. Consider the traffic coming
from VN1 in InP1 and going VN2 in InP2 and consider M1.1,
M1, M2.2 and M2 as the binder expression of these networks
respectively; then the incoming pipeline can be modeled as
follows:

ρin = PV N1 o ΨM1.1 o PInP1 o ΨM1 (IF) (11)

And the final outgoing traffic will be:

ρout = PInP2 o ΨM2 o PV N2 o ΨM2.2 (ρin (F )) (12)
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3) Policy Authorization: Since a policy is modeled as a
transformation in flow space, a policy authorization indicates
the set of allowed transformations. It is assumed that all
networks without subnet relation are isolated:

FN1
6⊂ FN2

⇒ FN1
∩ FN2

= ∅ (13)

A transformation is allowed if it keeps the packet in the
same network space.

P (F ) :

{
FN → FN ⇒ Allowed

otherwise ⇒ Not Allowed
(14)

Transformation along network spaces can be allowed if the
principal of the policy has ownership over both networks.

This formal model helps us to present a precise and general
definition of VNs. It abstracts away the internal protocols and
topologies of participating networks and hence, it is the basis
of a pipeline design and can even be extended to include
ICNs and name-based routing. We also used the model to
drive a logic for authorization. The notion of binding helps
us to guarantee the isolation of policies and can be extended
to include custom ABAC authorization policies.

B. Network Specification Data Model

We have defined a data model for network specification at
exchange point based on the geometric model described. For
simplicity, one level of network hierarchy is considered in this
model. Thus, at the top level we have InP networks and at the
next level VNs can be defined as subnets of InPs. The data
model is JSON structured with following main values:
Network ID: A unique identifier for the network.
Network Domain: If this network is a VN, network ID of InP
will be specified as the domain. Network domain will not be
specified for InP networks.
Binder Expression: A match expression that filters all packets
of this network at exchange point. The binder is a list of lists
modeling the expression in form of “sum of product” (i.e. OR
of ANDs).
Metadata: A set of key values that describe additional at-
tributes of the network.

The representation of this data model for service provider
2 in Figure 1 is:

{ n e t i d : InP2 ,
ne t domain : None ,
b i n d e r :{{ p o r t : 2}} ,
m e t a d a t a : {}

}

Consider VN2 in the Figure 1 as private IP network with
address range of 192.168.0.0/16. Then network data structure
for this network will be:

{ n e t i d : VN2,
Net domain : InP2 ,
b i n d e r : {{ i p : ” 1 9 2 . 1 6 8 . 0 . 0 / 1 6 ” } }
m e t a d a t a : {}

}

Fig. 4. Main steps of the switching pipeline

III. DATA PLANE STRUCTURE

HyperExchange is architectured with a three-layer data
plane that is inspired by our SDI reference model. The bottom-
most layer is the hardware switching fabric connected to a
set of server racks on top. Each rack hosts a software switch
(i.e. OVS) and an OpenStack[13] agent on top of that. The
set of Open vSwitches forms the second layer of a data
plane which is the software switching fabric. These software
switches are mainly used to establish steering circuits through
Virtual Network Functions (VNF) and also as secondary flow
store for swapping flow tables with hardware switches. The
upper-most layer is the VNF-plane which is a set of Virtual
Machines (VMs) hosting standard (validated) software network
functions. VMs in each agent are connected to the OVS
through Virtual Ethernets (Veth pairs).

A. Traffic Switching Pipeline

A packet processing pipeline is designed to realize the
concept of formal model described in the previous section.
To address the exclusion of incoming and outgoing flow
spaces, the pipeline is designed with two separate phases.
Since the outgoing phase has technically the same steps (in
reverse direction) as the incoming phase, we only describe the
incoming phase and we refer to the incoming phase as the
pipeline.

The pipeline should enforce policies for InPs and their
tenants separately. A logical priority is considered for InPs over
their hosted VNs and the control policies of the provider should
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be applied on the traffic prior to applying tenant policies.
To make a clear separation between packets from different
participating networks (including provider network and tenant
network) our design has benefited from the multi-table feature
in OpenFlow 1.3. A separate flow table is used for each of the
participating networks.

Figure 4 demonstrates the overall life cycle of a packet in
the pipeline which has the following four main steps.

1) Traffic Binding to InP Networks: Packets coming to the
exchange point will be matched by the binder of InP networks
at the very first step. This is the technical realization of binder
function described in previous section, using OpenFlow match.
the binding process is actually done by matching all packets by
a flow-table containing binder flow-entries of all InP networks.
In case of match, the packet will be sent to the policy table
of the matched InP. A packet in this step must be bound to at
most one InP network (is const). If a packet does not match
to any InP network binder, it will be dropped.

2) InP Policy Enforcement: There is a dedicated flow table
per each service provider. Filters and actions defined by an InP
will be stored as flow entries in its dedicated policy table. It
is common that a packet does not match to any entry in the
policy table of InP; that means the InP has not defined any
policy. In this case, the packet will be sent directly to next
table in the pipeline line. This can simply be done by defining
flow entry with the least priority to match on all packets and
send them to the next table as the action.

3) Traffic Binding to VNs: VN network binding is similar
to InP binding. There is a separate tenant binding (i.e. a flow
table for tenant network binding) dedicated to each InP. There
is a flow table for tenant network binding per each service
provider. After enforcement of policies defined by associated
InP, packets will be matched by the VN binding table of the
same InP. Once the packet is matched to a VN in the InP, it
will be sent to the policy table of that VN.

4) Tenant Policy Enforcement: Similar to InP policy tables,
there is a dedicated table for each tenant of each InP. These
tables contain flow-entries associated with the policies defined
for each VN. In contrast with InP policy tables, a packet cannot
continue the pipeline without matching any entry in the VN
policy table and in that case the packet will be dropped.

B. Design Challenges

Here we mention and address two important challenges
of the design described above, in terms of scalability and
feasibility.

1) Virtual Flow Tables: The primary approach of dedicat-
ing a flow table for each InP network as well as each VN
network can cause a severe growth in the number of flow tables
needed. Due to the limited number of flow tables supported in
a real OpenFlow switch, this can cause an important scalability
problem for our design. To address this issue we introduced a
novel approach called Virtual Flow Table (VFT) with which
we can store multiple flow tables in a single real flow table.
Metadata in OpenFlow 1.3 is used to realize this. Each VFT is
assigned with a Virtual Table ID (VTID). In the primary case
once a packet matches to a network binder the packet will be
sent to the table associated with that network. In this case,

Fig. 5. Overall architecture of HyperExchange control-plane

once the packet is matched in the binding table VTID of the
designated network will be set as the Metadata and packet will
be sent to the next table which stores all tables of a group (for
example policy tables of all service provider networks). In this
table, all flow entries of a Virtual Table have metadata = VTID
as an additional match criterion. As an example, consider a
table containing all of the policies of all InPs. The policies of
each InP will be differentiated by an extra match criterion that
is VTID of that InP. By using this approach, the total number
of flow tables can be greatly decreased to a fixed number.

2) Circuit Switched VNFs: HyperExchange allows users
to steer traffic through Virtual Network Functions (VNF).
However, the steering mechanism is a challenge in this design.
OpenFlow logical ports can be used to establish a dedicated
circuit to each middlebox. This will allow packets to be
forwarded only based on incoming port in a service chain.
A logical port is a standard type of OpenFlow ports that can
be used to create logical links. The concept of logical ports
in OpenFlow protocol is neutral to the technology being used
to realize it. For example, VXLAN tunnels can be used to
establish logical links. If a user specifies VNF steering in the
control policy, the SDI manager (described in next section)
will create a dedicated logical port in the main switch and
stablish a tunnel between the logical port and the VM running
the VNF. This design abstracts away the topology details of
HyperExchange for users.

IV. CONTROL PLANE ARCHITECTURE

The control plane of HyperExchange is an extension of our
reference SDI manager design[14]. Figure 5 shows the overall
architecture of control plane which includes SDI-manager and
the modules added specifically for HyperExchange. The SDI-
manager has southbound APIs to the SDN controller (Ryu)
which controls Hardware and Software OpenFlow switches.
The other southbound API of SDI-manager is to the Cloud
controller (OpenStack). Through this API VMs will be pro-
visioned on demand to host requested VNFs based on user
policies.
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Fig. 6. Authorization process in the Reference Monitor Module

A. Main Modules

The control-plane of HyperExchange includes three main
modules and each provides its own associated northbound
APIs.

1) Network Specification Module: Any participating net-
work must be specified through this module. InP networks
will be defined statically and cannot be defined by user
requests through API, but tenants of predefined InPs can define
arbitrary VNs through the API. The API specification is the
JSON data-model described in section 2. Once a network is
defined, this module extracts attributes from the binder list of
the specified VN and sends an authorization request to the
Reference Monitor to authorize the VN. In case of successful
authorization, the network specification module creates binding
flow-entries from the specifies binder list and installs them to
the switch.

2) Policy Specification Module: The user defined policies
for network control will be received by Policy Manager (PM).
Upon receiving a policy, the PM module extracts policy
attributes and creates an authorization request to the Reference
Monitor. If the response is “permitted”, the policy will be
stored in database and the policy flow table in switch.

3) Reference Monitor: This module is the reference moni-
tor for authorizing network control policies at HyperExchange.
The authorization system relies on ownership information that
indicates the subset of authorized flow space of each user.
Since VNs from different InPs can participate in HyperEx-
change, a single static root of trust cannot be used to indicate
ownership information. To address this issue and provide more
dynamic and extensible authorization, we have designed an
Attribute Based Access Control (ABAC) system for Hyper-
Exchange. The overall architecture of this system is shown
in Figure 6. This architecture is inspired by XACML[15]
and includes three main points. Authorization Decision Point
(ADP) receives authorization requests from other control-
plane modules. It then retrieves Access Control Policies from
Policy Administration Point (PAP) and network ownership
information from Network Information Point (NIP). NIP can
get the ownership information of tenant VNs from their InP
through API on a secure channel.

B. Corner Issues

Here we mention and address two important corner issue
regarding the described design for control-plane.

1) Unified Identity: The authorization system of HyperEx-
change requires getting ownership information of a tenant VNs
from InPs. However, each of the InPs and the HyperExchange
itself have a local identity management system. A single
user can have an identity in each of these systems. Unifying
different identities of a single real user is a fundamental
challenge for authorization at HyperExchange. Our primary
solution for this problem is to use a centralized identity
provider for all of the participating InPs and exchange point.
In this case all of the service providers and the exchange point
will authenticate tenants through the central identity provider.
A single Shibboleth identity server can be used as the identity
provider for all parties. In the general, all of the participating
InPs may not be joined in the same identity provider. In case
of multiple identity providers, an identity peering mechanism
is needed which is neutral to the design of HyperExchange.

2) Network Resource Deallocation: A common feature of
multi-tenant environments is the high frequency of deallocation
and reallocation of the resources. An example of networking
resources can be a VLAN tag or a floating IP address. Since
HyperExchange relies on ownership information of networking
resources from InPs to authorize tenant policies at exchange
point, a resource deallocation in an InP can invalidate a
previously authorized tenant policy at exchange point. For
example, if Alice as a tenant allocates IP1 = 142.150.208.235
in SAVI as the InP, her policies over IP1 will be authorized
and enforced in flow tables of the exchange point. However,
once she releases IP1 in SAVI, her previously defined policies
that include IP1 are no longer valid at the exchange point. This
example shows that exchange point must be aware of resource
deallocation/reallocation in the participating InPs to make sure
that tenants policies are always valid. An ideal solution for
this challenge could be a notification of deallocation from the
InPs. However, not all of the participating InPs can provide
such capability. For those service providers, a timeout and
revalidation mechanism can be used for all of the specified
VNs.

V. PROTOTYPE AND USE-CASE EXPERIMENT

We have implemented a prototype of HyperExchange to
show the feasibility of our modeling and design. The prototype
is an extension of our SDI-manager reference model called
Janus written in Python. In the current implementation the
user can specify a VN using a network specification API.
The authorization module uses a private API to get VN
attributes and to authorize the specification. By this step, the
policy specification API is the primary structure of OpenFlow
flow-entries; however, we are working to implement a more
abstracted policy expression API to add to the system. Our
current implementation supports OpenFlow actions and traffic
steering through a single function as the policies described
by user and traffic steering through a chain of VMs is under
development. The authorization module uses remote APIs for
network specification requests but for policy flow entries, it
uses local specifications of network domains.
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We have deployed our prototype of HyperExchange be-
tween SAVI and GENI testbeds. Our prototype deployment
is built on a hardware switch between ORION and Internet2
networks, the underlying interconnection of SAVI and GENI
testbeds respectively. Each of the SAVI and GENI networks
are connected to the exchange point via a single dedicated
physical port.

A. Experiment Case: Peering of Layer2 Networks

By use of HyperExchange it is possible to setup layer-2
networks over multi-region clouds without encapsulation. A
generic virtual layer-2 network is key for any further innova-
tion in upper layers such as IP alternatives. Also it makes it
possible to simply define custom and private IP networks on a
Wide Area layer-2 Network. These features make inter-domain
layer-2 peering a beneficial usecase of HyperExchange. Layer2
networks in SAVI are established by end-to-end path stitching
on OpenFlow switches based on MAC addresses of endpoints.
On the other side GENI uses VLAN tags to create a layer-2
network between arbitrary set of VMs. Each of these InPs has
a different logic to realize a Layer2 network. Thus peering of
two virtual Layer2 networks on both sides as single end-to-
end layer-2 network is the challenge we addressed by use of
HyperExchange. Our flexible model for networks at exchange
point allows us to simply define and peer these networks in a
uniform manner. In our test case we had two VMs in SAVI
testbed connected in a Layer2 network in Toronto with the
following network data structure at exchange point:

{ n e t i d : SAVI L2 ,
Net domain : SAVI NET ,
b i n d e r : {{mac = f a : 1 6 : 3 e : 6 5 : ac : 5 2} ,

{mac = f a : 1 6 : 3 e : 5 d : 3 3 : db}}
m e t a d a t a : {}

}

In GENI side we defined a VLAN including a VM in
Chicago with the following network data structure at exchange
point:

{ n e t i d : GENI L2 ,
Net domain : GENI NET ,
b i n d e r : {{VLAN TAG = 7273}}
m e t a d a t a : {}

}

As can be seen, the network attributes of a Layer2 network
in GENI is not related to the number of nodes. However, in
SAVI as the number of nodes in a Layer2 network increases,
the network attributes to be authorized will also increase.
Figure 7 demonstrates the relation of number of nodes and the
time it takes at HyperExchange to query each InP to verify
network specifications. We have emulated authorization API
to GENI by users own credentials. However, an speaksfor API
is under development in GENI that can be used for remote
authorization on behalf of the user.

Figure 8 shows the comparison of cumulative distribution
of time over 10 trials for specification of the GENI side VN.
The overall time is the time of processing VN specification,
authorization through remote API and creation and installation
of binding flow-entries to the switch. In Figure 8 the black line

Fig. 7. Remote attribute authorization time based on the number of nodes
in VN

is the time excluding remote authorization time and the dotted
line is the entire time. The figure shows that a large amount of
time is spent on remote authorization. Thus our technique to
authorize only the network specification using remote API and
authorizing later policies by local and pre-authorized domains
can effectively reduce the policy installation time.

We defined the following policies to peer these VNs at
HyperExchange:

b ind ( SAVI L2 ) . incoming ( )
. modify ({” t y p e ” : ” SET VLAN” ,
” v a l u e ” : 7 2 7 3} )
. o u t p u t ( GENI L2 )

b ind ( GENI L2 ) . incoming ( )
. modify ({” t y p e ” : ” STRIP VLAN ”} )
. o u t p u t ( SAVI L2 )

As mentioned earlier, policy specification must be installed
as flow entries at this state of our implementation and the above
code is the pseudo representation of the peering policies. As
depicted in Figure 9, we have measured Round Trip Time from
a VM in Chicago to a VM in Toronto for the regular path over
the Internet and Layer2 directed path through exchange point.
Our experiment shows that HyperExchange flexibility helps
InP tenants to setup arbitrary end-to-end paths between VNs
over autonomous Infrastructures.

VI. DISCUSSION AND RELATED WORK

How does HyperExchange compare with existing Soft-
ware Defined Exchanges? Richter et al.[16] presented that
how a central route server can facilitate peering at IXPs. The
concept of Software Defined Exchanges (SDX) and use of
SDN for flexible inter-domain networking is introduced in[2].
The primary implementation of SDX [17] enables participating
autonomous systems to overwrite basic BGP route selection
at IXPs. The Cardigan project [18] was another primary
attempt to enhance inter-domain networking by use of SDN.
Based on the measurements provided in [19] none of these
primary implementations can address scalability requirement
of a large scale exchange point. Industrial Scale SDX (iSDX)
[19] is a more recent implementation of SDX based on Ryu
controller which has addressed the scalability issues of primary
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Fig. 8. Time analysis of network specification in HyperExchange (GENI
Side)

Fig. 9. RTT comparison of the regular path over the Internet vs the directed
path through the exchange point

implementations by use multi-table feature of higher version
of OpenFlow. All of these implementations have some features
in common. Only IP networks can exchange traffic in current
SDX architectures. Moreover, these implementations have not
targeted exchange between multitenant environments so there
no clear division between service provider networks and tenant
networks.

Why is it beneficial to peer Virtual Networks? Expand-
ing a Virtual Network over multiple Infrastructure Providers is
a requirement for future services; because of the geographical
distribution of the network (e.g. Akamai global CDN that
is expanded over many multiple ISPs) and cost optimization
strategies and federation (e.g. Apple iCloud that uses Amazon
EC2 in addition to their own data-centers). In these cases,
the network needs to be deployed in multiple InPs and it is
required to federate these InPs and their networks. In fact the
main motivation of this paper came out of a real problem
that is network federation of two research testbeds (SAVI
GENI). The only current solution is encapsulation over IP
(i.e. overlays) which inherits the ossification of the current
Internet and provides a narrow solution for specific use cases,
not a holistic approach for network federation of multiple SDI
domains.

How does control authorization in HyperExchange
compare with other network flow authorization frame-

works? Authorization of network control policies from tenants
of different service provider poses new challenges in the
design of exchange points. Even though the authorization of
network control is discussed in FLANC[20] and used in iSDX
implementation, a static root of trust is considered to have
all ownership information of networking resources and it is
not mentioned that how this information can dynamically be
gathered from participating service providers. Particularly, in a
Virtual Networking Environment, network domains of tenants
may change rapidly and the Reference Monitor of the exchange
point must be able to recollect these ownership information
as they change in participating Infrastructure Providers. Hy-
perExchange uses secure APIs to collect and update tenant
ownership information from participating InPs.

How is HyperExchange related to Virtual Network
Embeding? Virtual Network Embedding is concerned about
the mapping between virtual topology and physical topology
and is well studied in the literature [21][22][23]. In case where
multiple InPs are involved, an end-to-end VNE platform can
used to slice and map slices of VNs to each InP [24]. However,
these InPs can use different logic and technologies for net-
work virtualization. For instance, there are multiple protocols
available to create a virtual Layer-2 network including GRE,
VLAN, VXLAN and MPLS and each of them might be used
in one of the InPs. However, the nature of a Layer-2 network
is the same and the exchange point must be able to peer
Layer-2 networks independent of the underlying protocol. In
these cases the VNE platform can employ a HyperExchange
to enable traffic exchange between dissimilar InPs.

VII. CONCLUSION AND FUTURE WORK

We presented HyperExchange which enables traffic ex-
change between Infrastructure Providers and their hosted
Virtual Networks. We built a formal model for traffic clas-
sification at exchange point and extended it to design the
traffic switching pipeline of HyperExchange. Our formalism
allowed us to define a protocol-agnostic network model that
satisfies the feature of protocol customizabality of Virtual
Networking Environemnts. Based on the formal specifications,
we proposed an extensible architecture for the switching fabric
of the exchange point. Our prototype is still under extension
to provide multi-VM service changing. The policy API needs
more extension for further expressiveness. Our current design
for authorization system is inspired by XACML but does not
fully support its standards.

As a major research direction for the future, we are
interested to design an end-to-end orchestration platform based
on HyperExchange that can manage virtual networks deployed
over multiple cloud domains.
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