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Abstract—The current developments in smart devices, wear-
able gadgets and IoT (Internet-of-Things) are triggering a variety
of novel use cases and services. Once the technology matures, a
wide range of services is expected to be provided at the edge of the
network in coordination with the cloud computing infrastructure.
These services will be highly dynamic meaning that they can be
served from edge computing facilities and from central cloud
servers being transferred back and forth. Also, considering the
mobility of the users and the varying demand, those services
might need to be live migrated between nearby edge servers
on-the-fly. This setup creates an environment that needs to be
transparent to the end users. The current legacy networking
paradigm, however, allow services to be reached by IP and port
addresses, not by their content. Alternatively, in the service-
centric approach the services themselves are handled independent
of their location and the focus shifts to ”what” instead of ”where”.
Due to the complexities involved, it is not a straightforward task
to establish service-centricity at the edge scenarios. As a remedy,
this paper proposes a service-centric approach at the edge servers
using orchestration capabilities offered by the Software-Defined
Networking (SDN) technology. To demonstrate how SDN can
help to alleviate the problem, an emulation environment is used
in which northbound applications are implemented in order to
setup the service-centric structure. The effect of service-centric
approach is shown with the load balancing experiments where
the performance of the proposed system is evaluated for various
use cases.

Index Terms—Software-defined networking, service-centric
networks, information-centric networks, edge computing,
cloudlet

I. INTRODUCTION

The emergence of specialized gadgets such as smart glasses,

smart watches and interconnected home appliances changes

the landscape dramatically not only from the end-user per-

spective but also from the technical characteristics of the way

network processes information. An estimation states that 97

million wearable devices generated 15 petabytes of traffic

per month in 2015 [1]. As a result of this trend, a novel

computation infrastructure called edge computing with mobile

users and geographically distributed resources is emerging

through which novel use cases become feasible.

The promising solution of edge computing consists of

deploying computational resources closer to the end users

which lowers the service access latency. Low latency is critical

for the smooth user experience for most of the envisioned

edge computing scenarios. There are different proposals for

bringing the computational power closer to the edge such as

Fog Computing [2], cloudlets [3] and Mobile-Edge Computing

[4]. All these proposals are based on similar principles and

have the same objectives in general but differ according to the

way they are streamlined for certain usage scenarios. Many

application areas for these technologies have been discussed

in the literature such as augmented reality, connected vehicles,

body area networks (BAN), smart grid, and solving the net-

work problems such as congestion [5]–[9]. The Mobile-Edge

Computing is maintained by the cellular network operators

and the target is their subscribed users. To maintain clarity

throughout the text, cloudlets are chosen as the reference edge

computing technology to present ideas and implementations in

this work since it is an older proposal than Fog Computing

[3]. It is worth noting that the notions developed can equally

be well applied to the other edge computing approaches.

As the edge computing becomes more and more integrated

into our daily lives, the number of services available via

cloudlets will dramatically increase. In that case, not only

the sheer volume but also the dynamicity introduced by the

mobility of the users and variability of the demand need

to be tackled. Each edge server node has only a limited

computation power even when compared with a small-size

enterprise datacenter. Due to the dynamicity and multiplicity of

the service requests, the composition of the services available

from the cloudlets will also be dynamic. In this context, a

service request generated by a mobile user may not necessarily

reside on the closest cloudlet and can in fact be located in

a multitude of locations. For instance, the requested service

may not be readily available at any cloudlet nearby and

can in fact be started to be served from a distant cloud

while being transferred to the cloudlet to be further served

from there. Similarly, due to the mobility of the user, the

service can be handed-off to a neighboring cloudlet while

being executed using live migration techniques. Under these

highly dynamic conditions imposed over edge services, it

becomes a necessity to devise novel methods to discover

and instantaneously track the services offered by edge servers

while they are consumed by end users. However, the current

978-3-901882-89-0 @2017 IFIP 344



legacy networking paradigm becomes infeasible to achieve

this aim as its design incorporates strict dependence of the

services to their network locations. In contrast, our service-

centric approach gets its motivation from this vision where

the mobile and intermittent behavior of the services themselves

becomes transparent to the end-user who simply wants to have

access to the computational capacity that is known to exist

somewhere at the edge.

This study proposes a service-centric edge computing solu-

tion that is enabled by Software-Defined Networking (SDN).

SDN decouples the data plane from the control plane and

provides network programming capabilities via the northbound

interface [10]. Our proposal employs the capabilities offered

by SDN and its de-facto standard OpenFlow to orchestrate the

edge services transparently to the end-user. A service being

addressable by its identifier rather than its network location

is becoming a necessity and it is envisioned that the future

networking protocol stack will incorporate inherent support

for the service-centric approach [11]. However, as of today

no such support is present in the legacy TCP/IP stack. As

a remedy, our method enables service-centricity without any

modification to the existing protocol stack by exploiting the

TCP port number and rarely used IP header field called DSCP.

As a further contribution, our work assumes the realistic

view that the mobile end-users exploit the resources of the

cloudlet via computation offloading that can occur at the

method/function resolution. Here, the mobile device executes

some part of the code natively, while for some other part, it

sends RPC/RMI like requests to the cloudlet to get it executed

[12]. We coin the term ”sub-service” to refer such RPC-like

requests and use it extensively throughout our work. The term

sub-service is important as it models the actual interaction

granularity between the end devices and the cloudlet, which

in turn enables to obtain realistic performance results. In our

work, we do not only incorporate ”sub-service” as a service

request modality but also make it completely service-centric.

The remainder of this paper is organized as follows. Section

II presents the related works. Section III introduces how to

manage edge servers with SDN for service-centric networks.

Section IV provides the details about the proposed system

implementation. Section V presents the experiment design

and performance evaluation with a discussion. Section VI

concludes the paper with future directions.

II. RELATED WORKS

Cloudlets defined as a computer system with high capacity

resources and accessible by mobile end-users in the geo-

graphical vicinity for the services provided [3]. Besides, they

enable a caching mechanism for providing a faster access

to the data for requests [13]. Fog Computing [2], which is

introduced by Cisco, is a suitable technology for the real-time

requirements as a natural result of geographically distributed

resources at the edge. On the other hand, ETSI (European

Telecommunications Standards Institute) and other telecom-

munication organizations collaborated together and developed

a paradigm called Mobile-Edge Computing (MEC) [4]. The

vision of MEC is well aligned with the previously mentioned

cloudlets and defined as a server deployed at the edge for

providing specific services for mobile users and dissolving the

congestion problem at the backbone of the cellular networks

[14].

A mode of interaction offered between cloudlets and end-

user devices is the ”code offloading”. MAUI is an example

that aims to achieve efficient energy consumption by using

code portability to create a replica of smart phone application

and deploy it on a remote infrastructure [12]. It can estimate

costs of each method so that it identifies the methods that may

be executed remotely.

The terms information-centric networking (ICN) [15] and

content-centric networking (CCN) [16] become more popular

in the literature for addressing the problem of traditional IP-

address or location-centric model. Although they share the

same objectives and architectural features, there are some

differences between them such as name resolution, routing,

caching and Named Data Objects (NDO) granularity [17].

On the other hand, service-centric networks (SCN) differs

from ICN through supporting service requests in addition to

the content requests. Service migration, emergence of novel

services, client mobility and dynamic environment are not

aligned well with the current TCP/IP protocol stack so that

SCN is proposed to support effective service management

[18]. It is discussed that content-centric schemes should be

generalized towards a service-centric architecture because the

Future Internet is envisioned as a supporting mechanism for

services such as file storage/retrieval, audio/video streaming

and location-based services [11].

There are solutions presented for supporting the ICN struc-

ture with the help of SDN concepts and Salsano et al. provide

both a long term solution for ICN without considering the

current limitations in SDN and a short term solution to

experiment the combination of ICN and SDN [19]. Since

the SDN has still missing points to fully support the ICN

environment, the long term solutions discuss several choices

for the packet format.

Named Data Networking (NDN) [20] is a popular ICN ar-

chitecture based on CCN. A study proposed by van Adrichem

et al. integrates SDN into NDN for leveraging an application-

specific forwarding mechanism [21]. In order to distinguish the

traffic generated by ICN from traditional IP traffic, this study

introduces a layer to OpenFlow and implements a specific

communication channel and controller module that cooperates

with the existing OpenFlow communication channel.

MOCHA [22] is a multi-tier architecture that is composed of

mobile devices, cloudlets and cloud servers in order to enable

the efficient process of big data. The authors also focus on

the task partitioning, fixed and greedy approaches, where the

identical sub-tasks can be performed by one or more servers.

There are also solutions for combining the ICN and SDN

by utilizing the existing features. One of them is proposed to

integrate an ICN solution to the OpenFlow networks which

maps the content name carried in IP options into a tag

transported in TCP and UDP port fields that can be used as

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 345



a matching field by the OpenFlow [23]. A similar approach

is presented with a proposal which is named ContentFlow

that enables the use of OpenFlow within an ICN structure by

achieving the content mapping and routing over the traditional

IP architecture [24]. The objective is achieved by defining the

content through the combination of destination/source ports

and IPv4 addresses because OpenFlow provides a flow-based

forwarding mechanism, not a content-based approach.

Serval is a proposal for SCN which aims to provide a solu-

tion for providing services with multiple servers to the mobile

users [18]. Their motivation is that the traditional network

structure does not fit to the dynamic service environment.

In order to mitigate this challenge, they propose the Serval

architecture with a Service Access Layer above the network

layer. This new layer provides name-based routing, decoupling

of control and data planes, and other service-level operations.

It is observed that the recent proposals for integrating ICN

or CCN with SDN introduce a modification for enabling the

primitive functionalities and flawless cooperation. On the other

hand, there are some proposals that integrates both technolo-

gies by exploiting the existing features and resources in order

to provide compatibility with the current infrastructure. The

main objectives of the solution proposed by our study are not

modifying the TCP/IP stack and using the available protocols.

Moreover, only a small set of studies in the literature focus on

decomposing a service into components. These studies gener-

ally assume that the components are identical, instead of divid-

ing the whole service into dissimilar fragments and analyzing

them separately. On the other hand, since OpenFlow provides

a message system for retrieving the flow-related statistics from

the underlying infrastructure, most of the relevant operations

consider the network resources. However, the controller and

northbound applications additionally need to be aware of the

CPU utilizations of the servers. The load balancing operations

for considering either network or computation resources and

comparison of them may be essential for overcoming the

resource allocation problem.

III. EDGE SERVICE MANAGEMENT AND SDN

Our work envisions interactions with the edge servers with a

sub-service granularity while maintaining service-centricness.

The edge services are considered as a composition of sub-

services. The main reason for decomposing a service to its

sub-procedures is to provide a fine granularity environment

for the users since a gadget may execute some of the sub-

services locally and offload the remaining part of the task to

a remote computation resource [12].

To provide more insight, consider the scenario where a

security staff with a wearable smart glass at an airport entrance

gate is expected to recognize the authorized airport personnel

and passengers by executing the face recognition procedures.

While some part of the procedures can be run natively on the

device itself, to enable real-time performance some necessary

sub-services can be requested from a cloudlet or multitude of

cloudlets deployed in the vicinity. A sample face recognition

service being composed of many sub-services distributed over

the end-user’s gadget and some cloudlets is depicted in Figure

1. It is shown that a subset of procedures are deployed on the

first cloudlet and another subset (there can be common or

distinct sub-services) are deployed on the second cloudlet and

all of the sub-services are provided by the last cloudlet. In most

of the cases, it is expected that the sub-services can be served

from multitude of locations in order to increase the general

performance of the system. This sample is an illustration

for presenting the insight of the sub-service resolution and

providing an example case for the sub-service deployment over

cloudlets.

Fig. 1. Distribution of sub-services to the mobile device and

cloudlets

Offering services at the level of sub-services allows the

system designers to reflect the underlying code-offloading

mechanisms into the networking level. Similar commercial

attempts exist such as Amazon Lambda which allows users

to deploy and execute a portion of a code on the Amazon

computational resources [25].

The sub-services may be deployed over distinct cloudlets or

multiple cloudlets may provide the same sub-service, so that

each mobile user can request a sub-service from a less loaded

cloudlet to further decrease the service delay.

In order to come up with an effective scheme that addresses

both service-centricness and sub-service level messaging, SDN

and OpenFlow capabilities are exploited. OpenFlow Extensible

Match (OXM) [26] mechanism allows to use any of the 40 dif-

ferent fields for matching with the flow rules in the flow table

of switches. The flexibility present in the OXM is not present

in the legacy TCP/IP stack, however. As a remedy, to address

sub-services in the TCP/IP domain before interacting with the

SDN domain, DSCP (Differentiated services code point) field

of the IP header is used. To address services to which the

sub-services belong, TCP port numbers are used. Historically,

6-bit DSCP and 2-bit ECN (Explicit Congestion Notification)

replaced the 8-bit Type of Service (ToS) field in order to
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support QoS requirements and mitigate the congestion. ECN

has an important role in the current network structure for

congestion control but DSCP is still not being used commonly.

The DSCP field is designed by IETF for the differentiated

services. This behavior is per-hop and implemented locally

in each router. When we consider the OpenFlow-enabled

switches, they will not have such implementations in the near

future since they are kept as simple as possible. Therefore, in

this work the DSCP field is used with sub-service addressing

to achieve the desired service management qualities for edge

services.

The communication between the software-based controller

and forwarding devices are provided through a protocol such

as OpenFlow [26] which is capable of modifying the flow

tables of the data plane devices. On the other hand, the

controller communicates with customized applications through

a northbound API and inter-operate to collaboratively define

the network behavior.

IV. IMPLEMENTATION OF SDN-BASED SERVICE-CENTRIC

STRUCTURE

The proposed system focuses on enabling the service-centric

approach at the edge of the network. Therefore, the main

objectives are achieving the communication between hosts

using a sub-service resolution instead of the current IP address-

based design and satisfying the QoS requirements of the end-

users such as low service delay. The SDN as an enabling

management layer can realize these objectives through a

software-based controller and northbound applications where

each one define a different feature for the whole system.

The general framework of the proposed system has the

following components:

• Users and applications that demand different sub-services

• Data plane with OpenFlow-enabled network devices

• Cloudlets which are accessible through a LAN connection

• SDN controller

• Northbound applications for load balancing and service

orchestration

• Global service locator

This section introduces the implementation of the system

elements and how the framework operates when end-users

generate interest packets for sub-services without having any

prior knowledge about the location of the services, or IP

addresses of the servers.

A. System Operation

The implemented system works with sequential steps when

a request is generated by the user at the edge. The main

operations of the system are presented in Figure 2.

When the end-user generates a request for a sub-service in

Step 1, by providing the destination port number and its DSCP

value, the OpenFlow-enabled switch buffers this packet and

forwards a replica of this packet to the controller in Step 2

if there is not any match within its flow table. The generated

request needs to have a destination IP address but since the

user application does not have any prior knowledge about the

Fig. 2. The processes for forwarding the service request to

the cloudlet

service location, it initially inserts a generic IP address defined

by the system into the packet header which is then modified

by the first switch within the network to be forwarded to the

destined server.

The service orchestrator application receives this packet in

Step 3 and interacts with the service locator in Step 4 to obtain

the network location of the cloudlet that serves the sub-service

in question - i.e. the sub-service indicated by the DSCP value.

The locator queries its database with the specified destination

port number and DSCP value and creates a list of IP addresses

in Steps 5 and 6.

In general, the orchestrator takes the list of IP addresses

and forwards it to the load balancer. These steps are merged

as a single step in 7. Load balancer northbound application

then internally decides on the destination server as explained

in Section IV-C2 and sends that server’s IP address to the

controller in Step 8.

The controller installs a flow rule in Step 9 with a timeout

value. In OpenFlow, there are two different timeout values

implemented. First of them is called the ”idle timeout” which

states that if no flow arrives that matches a specific rule within
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that timeout period, the flow rule is removed automatically.

The other one is the ”hard timeout” which causes to remove

the flow rule after the timeout period, irrespective of the num-

ber of the matched flows. These parameters have a significant

effect on the performance of the proposed solution.

The newly inserted flow rules indicate that any further re-

quest for a sub-service with the corresponding port number and

DSCP value should be forwarded to the server by modifying

the IP header field and inserting the destined cloudlet’s IP

address. After installing the flow rule, it sends an OpenFlow

message (OFPT PACKET OUT) to the switch in order to

forward the buffered request packet to the cloudlet after the

same modifications in the header. Lastly, at Step 10, the

incoming request is forwarded to cloudlet that provide the sub-

service requested by the end-user. Besides, any cloudlet can

make a sub-service registration at any time when it begins to

provide that sub-service.

B. The Service Locator

As illustrated in Figure 2, the service locator keeps track of

the services, sub-services and their locations by introducing a

mapping mechanism within its database. The database tuples

are recorded through the service registration process initiated

by cloudlets. When a cloudlet begins to provide a sub-service

to the clients, it needs to inform the service locator to create

a new record by specifying its own identity and the service

information with corresponding field values. When there is

an incoming request for a locating a sub-service, the locator

queries the database with the given TCP port number and

DSCP field, and gets the list of IP addresses that provide the

requested sub-service.

C. SDN Control Mechanism with Northbound Applications

OpenFlow-enabled switches (hardware or software-based)

and cloudlets are off-the-shelf devices. The main contribution

of our proposed solution is the customized control layer that is

composed of the SDN controller and two different northbound

applications. These applications operate collaboratively with

each other and the controller for enabling the service-centricity

and balancing the load among cloudlets.

The first northbound application is responsible for deter-

mining the possible destinations for an incoming sub-service

request. Whenever an unmatched interest packet arrives to

the switch, it is forwarded to the controller for a decision

process. This northbound application operates in coordination

with the service locator for determining the set of IP addresses

that are available to execute the requested sub-service. In

addition to this, it needs to be in communication with the other

northbound application that is responsible for balancing the

load among this set of cloudlets. The northbound applications

require coherent interaction with each other for enabling the

service-centricity and balancing the load for decreasing the

service delay further.

1) Service Orchestration: When a sub-service request ar-

rives to the OpenFlow-enabled switch with a specific destina-

tion port number and the DSCP field, the switch forwards

any request that is unmatched with its flow rules to the

controller. The controller handles this event by delegating

it to the Service Orchestration northbound application. The

Service Orchestration extracts the packet header fields, and

generates a query to the service locator in order to find the

set of cloudlets that provide the requested sub-service. After

an internal query, the Service Locator provides the list of

corresponding IP addresses to the Service Orchestrator.

Although the load on the cloudlets plays an important

role in the performance of the framework, the load on the

controller has also a significant impact. Therefore, tasks that

require a considerable amount of processing are assigned to

a northbound application instead of the controller itself. For

this reason, the orchestrator helps locating the services and

reducing the burden on the controller to prevent a possible

performance bottleneck.

2) Load Balancing: The load balancing application oper-

ates in coordination with the service orchestrator. Once the

service orchestrator receives the list of cloudlets that provide

the requested sub-service from the locator, it assigns the task

of deciding on the most feasible cloudlet to the load balancing

northbound application. After the load balancing application

decides on the server, it informs the SDN controller by sending

the IP address of the cloudlet and the controller installs

required flow rules.

There are four different methods implemented as distinct

northbound applications for balancing the load among the

cloudlets. The first one is by collecting the instantaneous CPU

load from the cloudlets. Only the recent CPU loads are stored

by the load balancer and it can find the least loaded one

within an IP address set that is provided by the service locator.

When the balancer receives the set of IP addresses, it assigns

weights to these servers inversely proportional to their CPU

loads. Therefore, if multiple requests arrive to the controller

at the same instant, the requests are assigned to the servers

according to these weights otherwise for each round a single

cloudlet becomes heavily loaded.

The other method uses the already existing mechanisms in

SDN where load balancing is done based on port statistics.

The load balancing algorithm can collect statistics from the

switches using OpenFlow messages and find the least loaded

cloudlet in a specific instant by keeping the recent statistics.

The third load balancing application is implemented by fol-

lowing the Round Robin algorithm which is applied at the sub-

service level. Apart from the three load balancing applications

discussed, one last application used in the experiments assigns

sub-service requests to cloudlets in random order.

V. PERFORMANCE EVALUATION AND LOAD BALANCING

This section presents the experimental setup and the perfor-

mance evaluation of the proposed infrastructure under various

load.

The proposed system is implemented over the Mininet

evaluation environment which is configured on a computer

with Intel i5-3210M 2.5 GHz CPU and 4GB main memory.

Ryu is chosen as the SDN controller because of its support
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for the OpenFlow versions that includes OXM mechanism.

The system is implemented in compliance with OpenFlow

v1.3 specification. Within the Mininet environment, the most

recent version of OpenvSwitch (v2.5) is used for the network

forwarding devices at the data layer.

In the initial phase of the experiments, the service-centric

behavior of the proposal is demonstrated. For the second part,

experiments are conducted for evaluating the performance of

different load balancing northbound applications in order to

minimize the service delay. Each experiment is repeated for

5 times and an average of 100000 sub-service requests are

included for each run.

A. Enabling the Service-Centric Approach for the Cloudlets

The first objective of the framework is to enable the

end-users requesting a sub-service without depending on the

network location - i.e. the IP address. Therefore, the initial

experiment setup is conducted in order to present this behavior

of the implemented system.

TABLE I. The sub-service deployments for the initial experi-

ment.

Cloudlet Service Sub-service IP Address

Cloudlet 1 Port: 50006 DSCP: 4 10.0.0.1

Cloudlet 2 Port: 50006 DSCP: 8 10.0.0.2

Cloudlet 3 Port: 50006 DSCP: 12 10.0.0.3

A single service experiment is designed where the service

is defined with 50006 port number and its 3 sub-services are

deployed over 3 different cloudlets. The sub-service deploy-

ments and scenario are summarized in Table I. According to

the scenario, a single client that have access to the cloudlets

requests all of these sub-services sequentially to accomplish

the whole service.

The peaks shown in Figure 3 correspond to the exact times

when the sub-service request arrives to the corresponding

cloudlet so that the CPU load increases to execute the sub-

service. The client application generates a request packet

with the corresponding destination port number and DSCP

value without any knowledge about the destination IP address.

Therefore, it embeds a generic IP address defined by the

system which is then modified by the OpenvSwitch on the

path with the destined server’s real IP address. As observed

by analyzing the peaks in the graph, the sub-service requests

are forwarded to the accurate cloudlets that satisfy the sub-

service demand. In other words, the increase in the CPU load

of a server is an indicator of a request for a sub-service has

recently arrived and it is being completed at that time.

At the beginning, the cloudlets’ CPU loads are close to

0, until the user application generates the initial request.

According to the implementation, it is expected to execute the

first task at Cloudlet 1 since it is only served by there. Between

15th and 30th seconds, the first sub-service request (DSCP

4) is forwarded to Cloudlet 1 by the SDN controller and it

is executed within that period. Then the client application
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Fig. 3. Demonstration of the service-centric behavior at the

corresponding cloudlets

generates a request for the second sub-service (DSCP 8) which

is executed by Cloudlet 2 between 40th and 60th seconds.

Lastly, the application generates the latest sub-service (DSCP

12) request which is provided by Cloudlet 3 and the request

is forwarded to the corresponding server as observed.

As depicted, the system can resolve the locations of the

sub-services that are requested by the user application and

forward them accordingly. Thus, the service-centricness is

enabled through the usage of port numbers and DSCP values.

B. Minimizing Service Delay with Load Balancing

In order to enable load balancing among the cloudlets, a

sub-service needs to be distributed over at least two servers.

Doing so, a request can be forwarded to the cloudlet with some

criteria depending on the type of northbound application for

minimizing the service delay. It is worth noting that the delay

for each sub-service is considered as the ”service delay” since

a client can request sub-services independent from each other.

In the experiment setup, varying number of mobile clients

are assumed to request sub-services from five different

cloudlets that are located in the vicinity. The network and

computation resources for the cloudlets are identical to each

other. As the computation delay is the dominant factor here,

the network delay is negligible. The service that is identified

with port number 50006 has 10 different sub-services with

DSCP values 4, 8, 12, 16, 20, 24, 28, 32, 36 and 40. The

distribution of these sub-services and the experiment setup

are shown in Figure 4. There are 40 distinct request types

defined with different combinations of these 10 sub-services

as shown in Eq. 1 and Eq. 2 where SS stands for the set

of sub-services and each Requesti represents a request type

consisting of a subset of SS. For evaluating the performance

under different user behavior, each client requests services by

randomly selecting one of these subsets. After all sub-services

within that subset is completed, the client creates a Requesti
randomly again and request them sequentially. It is important

to mention that each sub-service is unique and the amount
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Fig. 4. The experiment setup for the performance evaluation

of the framework

of generated computation load on the cloudlets is distinctive.

None of them are IO-intensive sub-services so that the load

on the CPU is only caused by the related computations.

SS = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40} (1)

Requesti ⊆ SS where ∀i, 1 ≤ i ≤ 40 (2)

As stated in Section IV, there are four different load bal-

ancing methods that are implemented and can be compared

to analyze their effect on the service delays. The first of

them is based on the CPU loads of the cloudlets, the second

of them is Round Robin at sub-service resolution, the third

of them is based on OpenFlow statistics request message
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Fig. 5. The effect of load balancing applications with

different number of clients on service delay

(OFP PORT MULTIPART REQUEST) sent to the switches

which reply back with the port statistics (OFP PORT STATS)

including the number of packets or bytes sent over a port. The

last one is assigning requests to the cloudlets randomly.

Figure 5 depicts the effect of user traffic on service delay.

In this setting, flow rules have 5 second idle timeout and

northbound application collects CPU or port information for

every 1 second. For less than 20 clients, all of the methods

provide approximately the same service delay while CPU load

provides the least. However, as the number of clients increases,

port load balancing, Round Robin and random assignment

result in higher service delays where the CPU load balancing

still provides the lowest service delay and it is not affected

much with the increasing number of clients. It is observed

that the methods except CPU load balancing shows the similar

behavior with the various number of clients. Since each sub-

service generates different amount of load on the cloudlets,

the load balancing approach that considers the computational

resource performs the best among all. It is able to track all the

changes of cloudlet utilization, thus assigning the sub-service

to the least-loaded cloudlet results in the lowest service delay.

In other words, lower CPU usage leads to the instant execution

of a sub-service request. On the other hand, balancing the

load according to the port load collection results in the worst

performance. The main reason for this situation is that the

number of bytes or number of packets forwarded by a single

port is identical for all of the sub-services. Thus, it does

not reflect the main ongoing operations within the network.

However, it performs even worse than the random sub-service

assignment. Collecting the port statistics through OpenFlow

messages generates an extra load on the switch and within

the network but random assignment and Round Robin do not

cause such an overhead. For achieving the most accurate and

complete results, both network and computation resources can

be considered together.

The frequency of the CPU load statistics collection from the

servers and similarly the port load collection from the switches

have an effect on the performance of these methods. To reveal

this effect, the same environment is utilized with 40 clients

where flow rules are installed with 5 seconds idle timeout.

The effect of the time period between each load collection and

balancing the load according to the recent values are shown in

6a and 6b. The minimum period of load collection is 1 second

for both methods. Figure 6a shows that as the time period

between two successive load collection increases considering

the CPU cycles, the service delay increases because flow rules

are installed according to the latest CPU load information of

the cloudlets and as the period increases, it does not reflect

the recent situation of the loads on the servers. The same

information can be inferred for the port load collection in

Figure 6b by sending and receiving OpenFlow messages. As

the time period is increased for two consecutive OpenFlow

statistics request messages, it tends to increase the service

delay. Although the smaller period results in higher numbers

of OpenFlow messages within the network that can cause

congestion at specific points or increase the load on the
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Fig. 6. The effects of load collection periods and idle timeout on service delay

switches, it does not become the dominant factor that refers

to a large service delay. Hence, it is extracted that the time

period of load collection by both servers and switches have

an important effect on the performance of the framework.

Another system parameter is related to the flow rules

installed by the controller. Since the best performance is

provided by the CPU load balancing, the effect of the idle

timeout is observed on this method. The number of clients

is fixed to 40 and the load collection period is configured as

1 second. The effect of changing the idle timeout for CPU

load balancing is presented in Figure 6c. As the idle timeout

increases from 1 (minimum idle timeout) to 30, it increases the

service delay but increasing idle timeout further does not affect

the service delay. The reason for initial increase in the service

delay is caused by matching with the old flow rules installed

by the controller. Therefore, as the flow rule idle timeout

increases, the number of matching packets also increases. The

system is highly dynamic and the loads on the cloudlets change

instantly. Therefore, forwarding the requests according to an

older flow rule does not reflect the recent condition of the

cloudlets. After idle timeout reaches to 30 seconds, the service

delay does not increase further because the average inter-

arrival time between two consecutive requests is not higher

than 30 seconds. Thus, the flow rules are never timed-out

and the same rules are matched from the beginning. Actually

this behavior heavily depends on the traffic characteristics and

the user behavior. As the inter-arrival time changes, the point

where the service delay becomes stable may change but the

minimum service delay is achieved with the minimum idle

timeout in every case. In general, it can be said that increasing

the flow rule idle timeout also increases the service delay until

a certain point then the service delay does not change with the

increasing timeout value. As a result, this parameter is one of

the key indicators of the system that affect the performance

but it needs to be optimized according to the user behavior.

VI. CONCLUSION

The emergence of new smart devices, wearable gadgets and

popularity of IoT devices empower the novel use cases and

scenarios which were not feasible before. For this reason, it is

envisioned that the Future Internet will be service-centric with

a focus on the service itself instead of the location. Since there

are different QoS requirements and most of the services are not

delay-tolerant, it is inevitable to bring the remote computation

resources to the edge.

This study proposes a framework that utilizes SDN as an

orchestrator of service-centric behavior at the edge of the

network. The characteristics of SDN makes it one of the best

candidates that facilitate service-centric structure for cloudlets

and orchestrate the heterogeneous environment where services

and users are geographically distributed.

Fully supporting the service-centric structure and providing

compatibility between technologies require disruptive changes

to the TCP/IP networking stack. Alternatively, this study

proposes a solution that utilizes the current potential of SDN

to leverage the service-centric approach for cloudlets.

The northbound applications and supportive mechanisms are

implemented and experiments are conducted. Four different

load balancing methodologies are implemented in order to sat-

isfy the QoS requirements for latency-intolerant applications

through decreasing the service delay as much as possible. The

effects of the several system parameters on the performance

are also analyzed.

This promising solution without modifying the existing pro-

tocol stack will pave the road for a more extensive framework

in the future. However, it is expected that new protocols may

appear in the near future for the variety of the mobile station.
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