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Abstract—In this work we propose a new algorithm,
Delta-r-GRASP, for solving the allocation of Roadside Units
(RSUs) in a Vehicular Network. Our goal is to find the minimum
set of RSUs to meet a Deployment ∆ρ1

ρ2 . The Deployment ∆ρ1
ρ2

is a metric for specifying minimum communication guarantees
from the infrastructure supporting the Vehicular Network. We
compare our algorithm with a baseline algorithm, Delta-r.
Moreover, we compare our results with the optimal value
achieved by solver CPLEX. Our results demonstrate that our
approach requires up to 85% fewer RSUs to achieve the same
deployment efficiency, and our results differ no more than 15%
from the optimal values.

I. INTRODUCTION

The study on Vehicular Networks [1] (VANETs) constitutes
a significant research segment and has been received a
remarkable attention in the last years. We attributed such
importance to the fact that VANETs - a particular type of
mobile network, designed to the domain of vehicles and
pedestrians - play a central role in Intelligent Transportation
Systems (ITS). The first reason for the development of these
networks was the traffic safety [2]. However, there are other
VANETs applications such as: (i) video delivery [3]; (ii)
monitoring of vehicles [4]; (iii) monitoring road conditions
[5]; (iv) mobile infotainment [6]; (v) collaborative driving [7];
and so forth.

In a Vehicular Network, the communication may happen
in two major ways: (i) Vehicle-to-Vehicle (V2V) [8] and
(ii) Vehicle-to-Infrastructure (V2I) [3]. Figure 1 represents a
Vehicular Network.

In V2V network, the communication occurs without any
support infrastructure (pure ad hoc) and the communication
is performed from vehicle to vehicle. In V2I network, the
communication occurs through connections between vehicles
and communication units, called Roadside Units (RSUs).
The RSUs are fixed infrastructure positioned along pathways.
Figure 2 represents a general V2I communication. Although
V2V network does not need a support infrastructure, the
communication can become inefficient in sparse areas, rural
zones and low peak hours due to the lack of vehicles [8].
Although a V2I network can improve the general efficiency
of a Vehicular Network, the main drawback of this network is
the cost to install RSUs, turning the decision of RSUs number
and location a challenge to network providers [9]–[13]. In

Figure 1: Vehicular Network

this work, we try to provide an efficient strategy to one
of the recurring problems in Vehicles-to-Infrastructure (V2I)
networks: Where to install the RSUs to minimize the number
of RSUs and also ensure a minimum Quality of Service (QoS)
to the general population?

To answer this question, we must choose a metric to
measure the QoS in Vehicular Networks. In 2015, Silva and
Meira [3] proposed a new metric to measure the QoS in
Vehicular Networks called Delta Network. In this metric, the
QoS is measured using two different perspectives:

1) the individual user (ρ1): wants to stay more time
connected as possible or, at least, staying connected for
a sufficient time to receive the desired information;

2) the traffic authorities (ρ2): want that, at least, a fraction
of the vehicles receives the desired information.

The individual user perception is entirely dependent upon
the application. For traffic and time monitoring, the vehicle
can receive information from time to time. On the other
hand, for music and video streaming, the vehicle must
receive a more ”continuous” communication. In other words,
Delta Network is based on two measurements:(i) connectivity
duration; and, (ii) percentage of vehicles presenting such
connectivity duration.

In this work, we propose a new algorithm for solving
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Figure 2: V2I Network

the allocation of RSUs to guarantee a Delta Network. Our
algorithm, called Delta-r-GRASP, is based on the GRASP
metaheuristic [14]. We choose this metaheuristic because it has
been used successfully with other combinatorial optimization
problems. Our goal is to find the minimum set of urban cells
U where ρ2 percent of the vehicles are ρ1 percent of its travel
time connected. The algorithm uses, as the procedure to build
the Restricted Candidate List (RCL), a variation of Delta-r
algorithm proposed by Sarubbi and Silva [15]. Besides, we
compare our solution to the optimal value achieved by solver
CPLEX.

Our results demonstrate that:
• Our algorithm can reduce the number of RSUs by more

than 80% when compared to Delta-r algorithm;
• In all tested instances that we know the optimal value, our

algorithm solution is no more than 15% from the optimal
value;

• The use of a local search procedure in a greedy algorithm
as Delta-r can reduce the number of RSUs up to 72%.

This work is organized as follows: Section II explains
the used metric. Section III presents a selection of related
work. Section IV formalizes the Deployment ∆ρ1

ρ2 . Section V
presents our proposal to represent complex road network.
Section VI presents our baseline algorithm. Section VII
presents our proposed solution. Section VIII presents our
experiments. Section IX concludes our work.

II. THE DEPLOYMENT ∆ρ1
ρ2

The concept of Deployment ∆ρ1
ρ2 was initially proposed in

Silva and Meira [3]. In this metric, the QoS is measured by two
parameters (ρ1, ρ2). The first one, ρ1, is a connection duration
factor denoting how long each vehicle must stay connected
to belong to the solution. The parameter ρ1 is relative to the
total travel time of each vehicle. For instance, if the network
provider wants each vehicle to remain connected to the RSUs
during 20% of its trip, ρ1 must be set to 0.2. The second one,
ρ2, denotes the percentage of vehicles (from the total number
of vehicles) must experience the connectivity defined by ρ1.
Thus, a ∆ρ1

ρ2 -Deployment must guarantee that ρ2 percent of
the number of vehicles must be connected during (at least) ρ1

percent of its trip. For instance, a deployment is ∆0.2
0.3 if 30%

of the vehicles are connected to 20% of its trip duration.
In such manner, depending upon the required application,

the network provider can choose different values for ρ1 and
ρ2 parameters. Thus, the ∆ρ1

ρ2 -Deployment can find the best
locations to install the RSUs to achieve the expected QoS
minimizing the number of RSUs. Besides, we must remember
that the ∆ρ1

ρ2 -Deployment is only a metric. It does not specify
how the QoS is achieved because it is technology-independent.
According to Silva and Meira [3], ”the metric does not care for
what kind of access technology (Wi-Fi, 4G, Bluetooth, etc.)
is used to perform the communication”.

Figure 3 illustrates the ∆ρ1
ρ2 metric. Differently from

classical approaches, the metric is not represented by a single
value. Instead, Delta is represented as a curve in a 2D plan.
The x-axis indicates ρ1, while the y-axis indicates ρ2. In fact,
Delta is the relation between ρ1 and ρ2.
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Figure 3: Delta is a curve that rules the combinations of ρ1 and ρ2.

It is important to note the Deployment ∆ρ1
ρ2 can be used

with V2I and also V2V communication. The seminal work of
Silva and Meira [3] also shows the importance to use a hybrid
network with V2I and V2V. The hybrid communication can
reduce the number of RSUs to achieved the same quality of
service because the communication between vehicles helps in
the overall solution. However, in this work, we will deal just
with the V2I communication. Our objective is to measure the
efficiency of the proposed algorithm and compare with other
articles that use just the V2I network.

III. RELATED WORK

For infrastructure deployment, Alpha Coverage [16]
minimizes the number of Roadside Units ensuring that each
path of length α from a road network must have at least one
RSU. The contact probability is also considered: Zheng et al.
[17] present the evaluation of a deployment strategy through
the contact opportunity measuring the fraction of distance (or
time) that a vehicle is in contact with the infrastructure. Lee
and Kim [18] propose a greedy heuristic to place the roadside
units aiming to improve vehicles connectivity while reducing
disconnections. The heuristic counts the number of reached
vehicles at each intersection considering the transmission
range of the roadside units. Trullols et al. [19] formulates
the allocation of roadside units as a Maximum Coverage
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Problem [20]. Nekoui et al. [21] propose the definition
of an infrastructure for Vehicular Networks based on the
conventional definition of the transport capacity.

Barrachina et al. [12] present three RSUs deployment
policies: (i) the Minimum Cost, that considers just the cost to
install the RSUs. This strategy prioritizes locations that already
have Internet access leaving that some areas remain isolated.
(ii) the Uniform Mesh, that consist on distributing RSUs
uniformly on the map. This strategy reduces the probability of
having shadow areas in the map but not taking into account
the real flow of vehicles traveling around the city. (iii) the
D-RSU deployment, where “RSUs are placed using an inverse
proportion to the expected density”. The authors consider that
vehicles can use V2V communication, and the RSUs are more
important in low-density areas.

Barrachina et al. [22] present an architecture to estimate
traffic density that combines V2V and V2I communication.
They use a roadmap topology features from real cities and
uses a ns-simulator to estimate the traffic. Kchiche and
Kamoun [13] use a centrality and equidistant-based (uniform)
deployment to optimize the delay and ensure a regular and
stable service in a V2I and V2V network. The use of
existing network infrastructures is also investigated: Marfia
et al. [23] propose the use of open Access Points. Tonguz
and Viriyasitavat [24] propose the utilization of vehicles as
roadside units by using a biologically inspired network.

Optimization models for the deployment are also presented.
Cruces et al. [25] introduce a mixed-integer quadratic
programming based on optimum roadside units deployment
scheme to provide Internet access services for the maximum
road traffic volumes with a limited number of roadside units.
Aslam et al. [26] present an Integer Programing Formulation
(IPF) for choosing the best place to allocate RSUs. Sarubbi
and Silva [15] present an Integer Programing Formulation for
the Deployment ∆ρ1

ρ2 but the authors do not present any result
using the proposed model.

For the specific Deployment ∆ρ1
ρ2 only three works present

algorithms for this problem. The first one was Silva and
Meira [3] that present the Delta-g algorithm. The Delta-g
algorithm uses the following strategy: it selects urban cells
using a greedy choice based on the absolute contact time
provided by each urban cell when covered by a roadside
unit. For each urban cell, Delta-g computes the sum of times
of all uncovered vehicles that cross each urban cell and
iteratively selects the urban cell that presents the highest sum.
Silva and Meira [3] compare the Delta-g algorithm with DL
algorithm proposed in Trullols et al. [19]. DL algorithm works
as follows: while the share of ρ2 covered vehicles is not
achieved, the heuristic iteratively selects the densest urban
cell still not having a roadside unit. The selected urban cell
is added to the solution set, and DL recomputes the number
of ρ1-covered vehicles. After, Sarubbi and Silva [15] present
a greedy relative contact time approach called Delta-r and
compare with DL algorithm [19] and Delta-g algorithm [3]. As
showed in Sarubbi and Silva [15] work, the Delta-r algorithm
seems to be a better option when compared with Delta-g and

DL algorithms. More recently, Sarubbi et al. [27] present a
genetic algorithm for this problem with good results. The
authors use a variation of Delta-r algorithm to create the initial
population. However, they present solutions only for three
pairs of ρ1 and ρ2.

IV. PROBLEM DEFINITION - DEPLOYMENT ∆ρ1
ρ2

A Deployment is ∆ρ1
ρ2 whenever ρ2 percent of all vehicles

must be connected to roadside units during ρ1 percent of the
trip. Formally:

[Deployment ∆ρ1
ρ2 ] Let R represent a road network, and V =

{v1, v2, . . . , vn} represent the set of vehicles traveling R. Let
the collection T = {U1, U2, . . . , Un} represent the trajectory
for each vehicle v ∈ V . Thus, each vk ∈ V is assigned a
trajectory Uk ∈ T . Each U ∈ T represent a set of urban
cells Uk = {uk1 , uk2 , . . . , ukm} crossed by vehicle vk during the
trip. Let C ⊂ V hold vehicles vk experiencing percentage of
connection ≥ ρ1 ∀ u ∈ Uk. A deployment is considered ∆ρ1

ρ2

whenever |C||V | ≥ ρ2.
This problem can also be defined by a linear integer

formulation. Suppose the set of vehicles V where V =
{1, 2, ..., k} and the set of urban cells U where is possible
to put a roadside unit where U = {0, 1, ..., u}.

We have the following set of binary variables: au is equal to
one if the urban cell u is chosen to belong to the solution and
is zero otherwise; vk is equal to one if the vehicle k belongs
to the solution and zero otherwise. We also have the parameter
tuk that represents the time the vehicle k remained in urban
cell u and tvk that represents the total travel time of vehicle
k.

The mathematical model is given by:

min
∑
u∈U

au (1)

∑
u∈U

(tuk/tvk)au ≥ ρ1vk ∀k ∈ V (2)∑
k∈V

vk ≥ ρ2 |V | (3)

au ∈ {0, 1} ∀u ∈ U (4)
vk ∈ {0, 1} ∀k ∈ V (5)

Objective function (1) consists of minimizing the number
of roadside units. Constraints (2) guarantee that a vehicle is
chosen to belong to the solution only if it is connected ρ1% of
its travel time. Constraint (3) ensure that a minimum number
of the vehicles is chosen to belong to the solution. Constraints
(4) and (5) are the integrality constraints.

Delta Deployment can be considered NP-hard because it
can be reduced to the Set Cover Problem (SCP) [28]. In the
SCP we have different sets, (e.g. A, B, C) and each set has
several elements. The principal goal is to find the minimum
number of sets to cover all elements contained in the sets. The
Delta Deployment can seem like a generalization of the SCP
which the sets represent the urban cells and the elements of
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each set are the vehicles that cross the particular urban cell.
Then, if ρ1 is greater than zero and rho2 is equal to 100%,
then Delta Deployment becomes the Set Cover Problem [28].

V. REPRESENTING ROAD NETWORKS

In this work, instead of using the original road network, we
partitioned the urban area into a set of adjacent same size cells
(i.e., grid model) and, once the city or region is partitioned,
we abandon the original road network. This strategy was also
used in Sarubbi and Silva [15] and Sarubbi et al. [27] The
major advantages of this approach are: (i) the possibility to
be more/less accuracy just increasing/decreasing the number
of grid cells inside the region; (ii) the opportunity to reduce
the computational efforts reducing the number of possible
locations to install RSUs; and, (iii) the complexity of the
solution that is not depending upon the flow and works in
the same manner for big and small regions.

Figure 4: Distinct Grid Setups.

Figure 4(a) shows a real road network (Ouro Branco city,
Brazil). Figures 4(b) to 4(d) show how such road network may
be modeled by grid setups from 20×20 up to 80×80.

VI. BASELINE ALGORITHM

In this section, we present our baseline algorithm, called
Delta-r, to solve the Deployment ∆ρ1

ρ2 . Delta-r was proposed by
Sarubbi and Silva [15] and was compared with DL algorithm
[19] and Delta-g algorithm [3], presenting better results when
compared with both previous algorithms.

Delta-r receives as input the matrix M describing the
density of vehicles along the entire partitioned road network,
the set V of vehicles, the collection T of trajectories, and the
QoS parameters (ρ1, ρ2). The algorithm uses the following
strategy: it selects urban cells using a greedy choice based
on the relative contact time provided by each urban cell
when covered by a roadside unit. For each urban cell, Delta-r
calculates the percentage contribution obtained by deploying
a roadside unit covering the given urban cell. The percentage
contribution is based on the total trip time of each vehicle.
For instance, if a vehicle k travels during 60 seconds and
crosses the urban cell u during 30 seconds the score of the

given urban cell associated with this particular vehicle is 0.5
representing the value 50%. In order to obtain the score of
each urban cell, the algorithm simply counts the percentage
contribution of all vehicles that not reached the ρ1 criterion
and crossing that urban cell. The algorithm iteratively selects
the urban cell presenting the highest sum until ρ2% of all
vehicles are covered. The algorithm 1 presents a pseudo-code
of the Delta-r algorithm proposed by Sarubbi and Silva [15].

Algorithm 1: Delta-r
Data: M,V, T, ρ1, ρ2
Solution ← ∅;
while |C||V | < ρ2 do

ϕ← Cell Max Relative Time(M,V − C);
Solution← ϕ;
M ←M − ϕ;
C ← Connect(M,V, T, Solution, ρ1);

end
return Solution;

VII. PROPOSED ALGORITHM

In this section, the new proposed strategy to solve
the Deployment ∆ρ1

ρ2 , Delta-r-GRASP, is presented. The
Delta-r-GRASP algorithm is based on the well-known Greedy
Randomized Adaptive Search Procedure (GRASP) [14]. This
algorithm is a multi-start metaheuristic that consists of two
phases: (i) Construction Phase; (ii) Local Search Phase. Both
phases are repeated for each iteration.

The Construction Phase consists of a randomized greedy
function building up an initial solution. The solution is then
used in the Local Search. The final result is simply the best
solution found over all iterations. Algorithm 2 present the
general Delta-r-GRASP algorithm.

Algorithm 2: Delta-r-GRASP
Data: M,V, T, ρ1, ρ2, α,Max Iterations
for it← 1 to Max Iterations do

Construction Phase(M,T, V, α, ρ1, ρ2);
Local Search(M,T, V, ρ1, ρ2);

end

A. Construction Phase

At the Construction Phase, a randomized greedy technique
provides feasible solutions. Each feasible solution is iteratively
constructed, one element at a time. However, instead of always
selecting the best solution, a Restricted Candidate List (RCL)
of good elements is built, and one element (not necessarily
the top candidate) is randomly selected. Algorithm 3 presents
the proposed Construction Phase algorithm.

We use, as a Build RCL Procedure, a variation of the
Delta-r algorithm [15]. However, instead of choosing the urban
cell with maximum relative contact time, as the original
Delta-r algorithm, we create a list of urban cells with the
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Algorithm 3: Construction Phase
Data: M,T, V, α, ρ1, ρ2
Solution ← ∅;
while |C||V | < ρ2 do

Build RCL(M,T, V, α, ρ1);
Selected Cell ← Random Element(RCL);
Solution ← Solution ∪ Selected Cell;

end
return Solution;

best relative contact time and randomly select one element
of the list. An RCL parameter α that can vary from 0.0
to 1.0, determines the level of greediness or randomness at
the Construction Phase. When α = 0.0, the Construction
Phase becomes the original Delta-r algorithm, a simple greedy
algorithm. Otherwise, when α = 1.0, the Construction Phase
becomes totally random. If the RCL is built with many
elements, then many different solutions will be produced,
according to chosen α value. The Algorithm(4) presents a
pseudo-code from the Build RCL Procedure.

Algorithm 4: Build RCL
Data: M,T, V, α
RCL ← ∅;
CellMin ← Select Cell Min Rel Contact Time();
CellMax ← Select Cell Max Rel Contact Time();
Min ← Select Relative Contact Time(CellMin);
Max ← Select Relative Contact Time(CellMax);
foreach Remaning UrbanCell u do

if Relative Contact Time(u)
≤ [Max− α(Max−Min)] then

RCL ← RCL ∪ u;
end

end
return RCL;

The selection process of candidate elements is determined
by the rank of all items, according to their greedy function
values. A good element is so designed because it belongs to
the set of well-ranked elements.

The Build RCL Procedure works as follows: first, the RCL
list is set to empty. Then we compute the Maximal and
Minimal relative contact time. For each remaining urban cell,
we verify if the relative contact time of this cell is less than
Max−α(Max−Min). If the condition is true, we add this
urban cell to the RCL list.

B. Local Search Phase

After receiving the RSUs locations chosen by the
Construction Phase, the Local Search algorithm finds a local
optimum according to a chosen neighborhood. The Local
Search algorithm works iteratively, replacing the current
solution for a better one belonging to the neighborhood of

the current solution. The Local Search Phase ends when it is
not possible to find a better solution.

The local search procedure involves fundamental questions
of the project, among which stands out the definition of the
neighborhood and the search strategy in the vicinity. Regarding
Deployment ∆ρ1

ρ2 , the solution set is determined as a set of cells
in which communication units will be positioned in agreement
with the parameters ρ1 and ρ2 established. The neighborhood
of that solution, in turn, consists of sets of cells which differ in
a communication unit to meet the same parameters determined
by ∆ρ1

ρ2 .
The strategy defined for the local search originated from the

perception that it is possible, from the solution set generated by
the construction phase, to remove one or more RSUs, so that
the criteria defined by Deployment ∆ρ1

ρ2 are still guaranteed.
Two situations allow removing an RSU:

1) All vehicles covered by the current RSU are sufficiently
served by other RSUs, keeping the condition set by the
parameter ρ1.

2) The current RSU does not cover some vehicles.
However, it is possible that even with less covered
vehicles the condition set by parameter ρ2 is not
violated.

The Figure 5 present an example of three RSUs (A, B,
and C) that are communicating with twelve vehicles. After
removing the RSU B that is communicating with five vehicles,
the remaining RSUs (A and C) maintains communication
with eleven vehicles because four of the five vehicles are
communicating with others RSUs. Formally, we can remove
the RSU B if one of the following conditions is met:

1) (A ∪B ∪ C)− (A ∪ C) = ∅;
2) |(A ∪B ∪ C)− (A ∪ C)| ≤ |(A ∪B ∪ C)| − ρ2 |V |;

(a) Before Local Search (b) After Local Search

Figure 5: This Figure shows 3 RSUs (A, B and C) represented by the big
circles and some vehicles representing by the small circles. If, for instance,
a small circle k is within the big circle B means that the vehicle k is
communicating with RSU B.

VIII. EXPERIMENTS

In this section, we present experiments comparing Delta-r,
Delta-r-GRASP and the ILP presented in section IV using
solver CPLEX. Experiments are based on the realistic mobility
trace (http://kolntrace.project.citi-lab.fr/)of Cologne, Germany.
The trace is composed of 7,200s of traffic from 75,515
vehicles. All experiments are performed using the SUMO
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(Sumo Simulator: http://sumo-sim.org) simulator and a set of
tools designed by our team. SUMO runs the Cologne scenario
and outputs the location of each vehicle (our mobility trace
T ) over time. The Partition Program reads the mobility trace,
computes the bounding box of the mobility trace, partitions the
Cologne into a grid of ψ×ψ urban cells, and then translates the
mobility trace from Cartesian coordinates to Grid coordinates.
For all experiments we use ψ = 100, resulting in about
covered area of 260m× 260m for each urban cell.

We present two sets of experiments. In the first one, we
compare Delta-r algorithm proposed by Sarubbi and Silva [15]
and Delta-r-GRASP algorithm with solver CPLEX. In the first
set, we use an instance with 100 vehicles. Our goal is to
measure how far is the solution achieved by Delta-r-GRASP
algorithm from the optimal value. In the second one, we
compare Delta-r-GRASP with the baseline Delta-r algorithm
using an instance with 75,515 vehicles. Our objective is to
measure the gain of Delta-r algorithm for an instance that is
not possible to find the optimal value using solver CPLEX.

A. Solving the 100 vehicles instance

In this section, we compare the number of RSUs found
by Delta-r algorithm with the optimal value achieved by
solver CPLEX using the realistic mobility trace of Cologne,
Germany. Since finding the solution using the mathematical
model presented in Section IV has exponential complexity, we
are not able to find the optimal value when we use the entire
Colognes mobility trace (composed of 75,515 vehicles). Then,
in this section, we present a study considering just the 100 first
vehicles of the mobility trace.

For all instances, we run Delta-r-GRASP algorithm
11 times for seven different α values. We use α =
{0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and present the results for
the set with 11 solutions with the minimal number of RSUs.
For all experiment the Max Iterations parameter was set to
5000.

Table I presents some results for 25 pairs of ρ1 and ρ2.
The field DR presents the number of RSUs found by our
baseline algorithm - Delta-r. The field DR-LS presents the
number of RSUs found when we run the proposed local
search after simple Delta-r algorithm. In other words, DR-LS
algorithm is the Delta-r-GRASP algorithm with α = 0 and
Max Iterations = 1. Our objective is to measure the
influence of the proposed Local Search at the final solution.
To better represent the performance and the robustness of our
algorithm Delta-r-GRASP, we present the best solution (q0.00),
the worst solution (q1.00), and the median solution (q0.50)
amongst the 11 solutions used for each instance.

The Figure 6 presents the gain, in percentage, between
CPLEX, DR-LS, and Delta-r-GRASP algorithms compared
with Delta-r algorithm for 3 different ρ1: (a) ρ1 = 0.1;(b)
ρ1 = 0.5; (c) ρ1 = 0.9. As we can note in Figure 6,
we have gains up to 81% and, the use of a simple local
search procedure can represent gains up to 72%. Besides, our
proposed Delta-r-GRASP algorithm is, at some times, very
close to the optimal solution.

Table I: Delta-r-GRASP Results - 100 Vehicles Instance

ρ1 ρ2 DR DR-LS Opt DR-GRASP
q0.00 q0.50 q1.00

0.1 0.1 5 4 3 3 3 3
0.1 0.2 9 8 7 7 8 8
0.1 0.3 14 13 12 12 12 13
0.1 0.4 20 20 17 17 18 19
0.1 0.5 28 26 21 23 25 26
0.3 0.1 18 12 10 10 11 12
0.3 0.2 33 26 20 22 23 23
0.3 0.3 56 36 32 33 36 39
0.3 0.4 71 53 45 49 50 51
0.3 0.5 88 70 58 64 67 68
0.5 0.1 44 20 16 16 18 19
0.5 0.2 92 49 38 41 43 44
0.5 0.3 128 72 62 68 71 72
0.5 0.4 159 109 86 97 100 102
0.5 0.5 190 132 112 128 130 131
0.7 0.1 93 31 27 28 30 31
0.7 0.2 155 73 64 72 73 77
0.7 0.3 234 126 105 115 116 118
0.7 0.4 292 173 149 161 165 167
0.7 0.5 355 229 198 219 224 229
0.9 0.1 252 70 47 49 53 55
0.9 0.2 392 136 111 115 117 117
0.9 0.3 490 234 180 193 196 199
0.9 0.4 578 323 251 278 289 291
0.9 0.5 658 394 335 376 378 381

The Figure 7 presents the relative distance between the
solution found by algorithm Delta-r-GRASP and the optimal
value. As we can note in Figure 7, in all tested instances,
our solution is less than 15% distance from the optimal one.
Besides, in 6 out 25 tested instances, our algorithm finds the
optimal value.

B. Solving the entire Cologne mobility trace

In the previous section, we compare our algorithm solution
with Delta-r and with solver CPLEX, using an instance with
100 vehicles. As we can note in Table I our algorithm
can find up to 80% fewer RSUs than Delta-r algorithm in
order to achieve the same QoS. Besides, we show that for
all tested instances, our solution differs no more than 15%
from the optimal value. In this section, we will compare our
algorithm with the entire Cologne mobility trace (composed
of 75,515 vehicles). Our goal is to measure the influence of
the Delta-r-GRASP algorithm for a bigger instance. As solver
CPLEX is not able to find the optimal values for this instance,
we will just compare the Delta-r-GRASP algorithm with the
baseline Delta-r.

We also present the results for 25 different pairs of
ρ1 and ρ2, and, for all instances, we run Delta-r-GRASP
algorithm 11 times for four different α values. We use α =
{0.02, 0.05, 0.1, 0.2} and present the results for the set with
11 solutions with the minimal number of RSUs. Due to the
number of vehicles, we set the Max Iterations parameter
to 500.

Figure 8 presents the absolute number of RSUs saved
by Delta-r-GRASP algorithm comparing with the baseline
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Figure 6: This Figure shows the gain, in percentage, between the number of RSUs computed by CPLEX (green dashed line), DR-LS (blue dashed line)
and Delta-r-GRASP (red dashed line) algorithms for five different combinations of ρ2 and three different ρ1 using a 100 vehicles trace and comparing with
Delta-r algorithm.
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Figure 7: This Figure shows the distance, in percentage, between the number
of RSUs computed by CPLEX (optimal value) and Delta-r-GRASP algorithms
for different combinations of ρ1 and ρ2 using a 100 vehicles trace. The x-axis
represents several values of ρ2 while the y-axis represents the relative gain for
distinct ρ1 values when we compare CPLEX and Delta-r-GRASP algorithms.
If our algorithm found the optimal value the respective bar does not appear.

algorithm Delta-r. In all tested instances, our approach finds
less RSUs compared with Delta-r algorithm. For ρ1 = 0.9 we
saved up to 152 RSUs compared with Delta-r.
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Figure 8: This Figure shows the absolute difference, in log scale, between
the number of RSUs computed by Delta-r and Delta-r-GRASP algorithms for
different combinations of ρ1 and ρ2 for the entire Cologne trace. The x-axis
represents several values of ρ2 while the y-axis represents the absolute gain
for distinct ρ1 values when we compare both algorithms.

Figure 9 presents the relative number of RSUs saved

by Delta-r-GRASP algorithm comparing with the baseline
algorithm Delta-r. For instance, when ρ1 = 0.9 we saved up
to 35% of RSUs compared with Delta-r algorithm solution.
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Figure 9: This Figure shows the relative difference, in percentage, between
the number of RSUs computed by Delta-r and Delta-r-GRASP algorithms for
different combinations of ρ1 and ρ2 for the entire Cologne trace. The x-axis
represents several values of ρ2 while the y-axis represents the absolute gain
for distinct ρ1 values when we compare both algorithms.

IX. FINAL REMARKS

In this work, we proposed the Delta-r-GRASP algorithm
for allocating the roadside infrastructure supporting vehicular
networks using the Delta Deployment [3] metric. Although
other works presented an Integer Linear Programming
Formulation for this problem, this is the first work that
presented exact results and compared them with a heuristic
result. Besides, we showed that our results are differed no
more than 15% from the optimal value for all tested instances.
However, the main contribution of this work was the proposed
algorithm (Delta-r-GRASP) that obtained results with gains
up to 80% when compared with baseline Delta-r algorithm
proposed by Sarubbi and Silva [15].

As a future work, we intend to present even
better approximate algorithms using other local search
neighborhoods and other techniques as Variable Neighborhood
Search (VNS) or Variable Neighborhood Descend (VND)
metaheuristics.
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