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Abstract—Citizens develop Wireless Mesh Networks (WMN)
in many areas as an alternative or their only way for local
interconnection and access to the Internet. This access is often
achieved through the use of several shared web proxy gateways.
These network infrastructures consist of heterogeneous technolo-
gies and combine diverse routing protocols. Network-aware state-
of-art proxy selection schemes for WMNs do not work in this
heterogeneous environment. We developed a client-side gateway
selection mechanism that optimizes the client-gateway selection,
agnostic to underlying infrastructure and protocols, requiring no
modification of proxies nor the underlying network. The choice is
sensitive to network congestion and proxy load, without requiring
a minimum number of participating nodes. Extended Vivaldi
network coordinates are used to estimate client-proxy network
performance. The load of each proxy is estimated passively by
collecting the Time-to-First-Byte of HTTP requests, and shared
across clients. Our proposal was evaluated experimentally with
clients and proxies deployed in guifi.net, the largest community
wireless network in the world. Our selection mechanism avoids
proxies with heavy load and slow internal network paths, with
overhead linear to the number of clients and proxies.

I. INTRODUCTION

The majority of the world’s population does not have
adequate, if at all, access to the Internet [1]. This implies
that the Internet cannot provide service to the general public,
reaching anyone without discrimination. Global access to the
Internet requires a dramatic reduction in the Internet access
costs, especially in geographic areas and populations with low
penetration [2]. Wireless Mesh Networks (WMNs) [3] allow
local communities to build their own network infrastructures,
known as Community Networks (CNs), providing affordable
inter-networking with the Internet and including isolated
rural communities worldwide [4]. Sharing resources, such as
infrastructure or Internet access, is encouraged at all levels [5],
[6] to lower the cost of network infrastructures and services.

Among many others, the guifi.net community network
exemplifies how communities can develop their own
network infrastructures as a commons [7], using several
interconnected WMNs. This results in a large-scale network
with heterogeneous network performance, which uses diverse
routing protocols in different network zones. Moreover,
guifi.net exemplifies how participants are sharing several
Internet gateways among them for web access, the most
popular traffic in CNs. This resource sharing is typically
implemented using web proxies, and at a smaller fraction, by

IP tunnels. Guifi.net’s registered users (12,500) can use any
of the 356 web proxies (May 2016). In addition, the network
links between nodes are contributed and managed by the
participants. Therefore, paths between nodes, such as client to
proxy may not be reliable [8] or guaranteed, especially when
compared to commercial offerings from centrally managed
ISPs. Access to the Internet through web proxy gateways
relies on users or organizations sharing the full or spare
capacity of their Internet connection with other guifi.net users.

As a consequence of the lack of regulation, and despite
being a critical service for the community, current proxy
gateway services are quite fragile, especially considering
large-scale usage [9]. Some proxies may be overloaded and,
therefore, offer degraded or unusable performance, while
others may remain underutilized. Users of overloaded proxies,
or those using congested links to reach their proxy, experience
degraded quality of experience (QoE) in web access. It is
interesting to note that the set of overloaded and underutilized
proxies varies according to the access patterns of the users.

In this paper we focus on the challenges to improve web
access experience in an heterogeneous large-scale inter-WMN
community, using a pool of shared web proxies. The challenge
is that client-nodes could select the right proxy according to
the network path performance and the status of available web
proxies. This is related with the net effect, which explores the
problem of a large population of C clients who can browse the
web taking advantage of the aggregated capacity of a pool of
P web proxies, with C � P, over a heterogeneous WMN in-
frastructure, at a fraction of the cost of C Internet connections.

To tackle this issue, we aim to improve the proxy system,
without making any changes that could be incompatible with
the existing environment. The solution should be: i) Incre-
mental and backwards-compatible since we should be able to
deploy it incrementally, so that it works well for both baseline
or enhanced clients. ii) Dynamic since users should switch
proxies wisely to maximize their QoE. This can be due to
changes in network topology, path load, or proxy performance.
iii) Decentralized therefore not requiring any central compo-
nent. iv) Routing-agnostic thus independent of the transport
and routing algorithms, or any specific network features.

The contributions of this paper are threefold. First, we
propose and evaluate a mechanism where clients use two
latency-based metrics to rank proxies and select the top ones in
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terms of QoE, or to switch to the next best proxy when perfor-
mance degrades (see Sec. VI). Second, we evaluate a network
performance metric based on the usage of the Vivaldi network
coordinates and for external nodes to the Vivaldi network (web
proxies), in a heterogeneous wireless network environment
(see Sec. IV). Third, we design and evaluate a web proxy
performance estimator based on Time-To-First-Byte (TTFB),
which is typically used to measure destination web servers
(see Sec. V). The proposed mechanism is client-side, as
described in the overview of our approach (see Sec. III). Our
evaluation confirms that our mechanism can avoid hotspots,
while maintaining a low overhead as proved in Sec. VII.

The metrics and the client selection mechanism were
instantiated in guifi.net using the Community-Lab.net [10]
infrastructure. In this mechanism, nodes are acting as clients
interacting with a set of guifi.net web proxies. Experimental
results show that our proposal is reliable and effective: our
method is able to provide good measures of client-proxy and
proxy-Internet latencies, following its variability. We found
out that our client selection mechanism is cost-effective in
finding proxies that result in good web performance and QoE
for users. Our results show improvements in the cost-benefit
of our proposal in comparison with other quick-to-measure
alternatives (such as Vivaldi-only and minimum hops). Our
mechanism also proved to be less costly in traffic and delay
than slower performance-oriented measures.

II. RELATED WORK

Our proxy selection problem is strongly related with
the topic of gateway selection in wireless mesh networks
which has been extensively studied in the past. The works
presented in [11], [12] fail to function in heterogeneous
environments since they present solutions that operate in
the mesh routing layer as they require modifications in the
infrastructure routers, inherently prohibitive in heterogeneous
environments. [13], [14] require additional software in the side
of the gateways. All the works mentioned, despite proposing
interesting solutions, they lack practical implementation or
testing in a real environment. An exception to the above,
and closer to our work is [15], where the clients cooperate
to probe the gateways and then use the results to select a
proxy. Furthermore, while conceptually [15] can function in
heterogeneous environments, in practice it needs modification
of the existing underlying routing protocols.

Concerning heterogeneous wireless mesh network
performance measurements, the majority of the solutions for
wireless mesh networks are based on active monitoring of
network metrics, such as path delay in [15], [16], estimated
link quality in [11], [13], link interference in [11], [13]
and path packet loss rate in [15]. All these approaches
would entail a high monitoring overhead, except [15], where
monitoring is done cooperatively to reduce the overhead.

As far as Internet gateway performance measurement is
concerned all the above proposals use active measurements
to evaluate its performance. More specifically [16] uses
a congestion delay function, [12] monitors the unused

Internet Connection (available capacity). [11], [13] require
the gateways to participate in the monitoring process by
measuring the queue length of their Internet interface,
while [15] is performing active probes. Contrary to these
approaches, our solution is totally passive, implying though
less accuracy in exchange of saving scarce network resources.

As presented later, we used the Vivaldi [17] network coor-
dinates system for estimating network performance. From an
abstract perspective, network coordinates are a virtual position-
ing system where nodes gather information about the network
to position themselves and other nodes in a coordinate space
and are used to estimate the inter-node latency. Vivaldi [17] is
a fully distributed network coordinates system that functions
based on the idea of placing nodes in a two-dimensional eu-
clidean space. The measured ping latency between the nodes is
used to position them in the euclidean space. In addition to the
probing, Vivaldi also uses spring-relaxation to nudge nodes in
the Euclidean space to minimize prediction errors. While there
have been proposals for updates of the Vivaldi algorithm the
original algorithm is performing fine compared to the improve-
ments [18]. Moreover, the state of the art of network coordi-
nates includes more sophisticated and more accurate systems,
which nevertheless are not fully distributed since they are
based on the idea of the external landmarks, like Pharos [19].

As it can be seen, while the performance measurement and
gateway selection in WMNs are had been studied in the past,
the existing approaches cannot be applied in a large-scale
heterogeneous environment, as in the presented scenario.

III. OVERVIEW

Our goal is to design a practical, non-optimal but best-
effort, scheme where clients (user nodes) can select a proxy
using network and proxy performance metrics that would not
require the modification of any network components and that
could function in a heterogeneous environment. To this end,
we implemented an estimation-based monitoring framework
for proxy selection, where clients cooperate sharing their
network and proxy performance estimations in order to
prioritize their list of known proxies. This allows clients to
be able to make an informed proxy selection decision. Unlike
other proposals, the framework does not try to find an optimal
client-proxy assignment, but helps clients avoid bad choices
(overloaded proxies, slow Internet connections or slow
internal network path) that would degrade significantly their
service experience. The non-optimality is the price we have to
pay in order to achieve a scalable and practical solution that
can be applied in real heterogeneous WMNs while retaining a
low overhead. The proposed framework is user-friendly. This
means that the users do not manage the proxy selection nor
switching. They just need to install our component in their
client nodes. It is also important to note that we do not cover
the orthogonal problem of proxy discovery in this work. We
assume the set of proxies are known beforehand by the clients.

The network performance estimator provides estimates of
the client-client and client-proxy network latency. It is based
on Vivaldi network coordinates [17] and extended in a similar
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way to [20] in order to estimate the round-trip latency of nodes
that are not part of the Vivaldi network – the proxies. All the
clients of the proxy selection system participate in the Vivaldi
network, exchanging a small amount of messages periodically,
which allows them to maintain an updated view of the latencies
across them. Moreover, each client periodically has to monitor
one of the proxies and share this information with the rest of
the clients. As we demonstrate in Section IV, these measure-
ments suffice to allow the clients to create a preference list,
which orders the proxies according to their network latency.

The proxy performance estimator provides estimates of
the load of the proxy, concerning the quality of the service
currently being provided. It is based on the widely used
practical assumption that the TTFB of an HTTP request can
reflect the service performance [21], [22]. In our framework,
each client passively calculates the TTFB of the HTTP replies
that he receives from his proxy. Then the client can use this
value to estimate the load of his proxy and share it with his
Vivaldi neighbors. Notice that cache does not help in this
case. There are many proxies with little or no space and
most of the requests are not cacheable, as we show in [9].
In addition, the mechanism is applicable to non-transparent
gateways such as NATs. Our proxy load estimator, based on
latency (TTFB), is at application layer, so it could perform
on any type of gateway that accept HTTP requests. As we
present in Section V, this mechanism allows clients to avoid
proxies with heavy load or high delay Internet connections.

System Model For the model description we assume a static
wireless network topology. We make no assumptions about the
quality of the network, and we allow dynamic link conditions
(a very slow link is indistinguishable from a very congested
link). Latency is our metric of load, for both links and proxies.

Let C denote the set of clients (user nodes), and P denote
the set of proxies. For every request that a client c ∈ C is
sending to a proxy p ∈ P , equation (1) shows the experienced
latency model.

tlat ≈ trequest_c_p + tproxy_p + tresponse_c_p (1)
trequest_c_p ≈ A ∗ tmesh_rtt_c_p (2)

tlat ≈ 2 ∗ tmesh_rtt_c_p + tproxy_p + tresponse_c_p (3)

Where trequest_c_p represents the time required by client c
to connect to proxy p and send the request. It is proportional
to the round-trip time between c and p, tmesh_rtt_c_p. The
tmesh_rtt_c_p latency, equation (2), depends on the network
conditions of the chosen path between client c and proxy
p. For the rest of this paper we assume that A equals to 2,
which corresponds to the client-proxy TCP handshake and the
HTTP request. The tproxy_p latency represents the total time
that proxy p needs to process the request until he initiates the
request to the remote server. This includes the time that the
request is waiting before starting to be served, which is a good
indicator of the load of proxy p, as it correlates directly with
the number of outstanding proxy requests yet to be served. We
assume that at a given point in time different clients experience
the same tproxy_p if they use proxy p, independently of who

is measuring it. In Section V we validated this assumption.
Finally, tresponse_c_p is the time that proxy p takes to complete
the HTTP request. This time depends on the load and capacity
of the proxy’s Internet connection and on the latency to access
and retrieve the content, related to the distance from the
content and content availability. From all the above, we deduce
that the request latency can be approximated by equation (3).

We argue that tmesh_rtt and tproxy can provide clients with
a good preference indicator allowing them to avoid loaded
proxies and proxies located in slow paths. Section IV describes
how we use Vivaldi to estimate tmesh_rtt, while Section V
elaborates on how TTFB can be used to estimate tproxy.

Experimental Environment In order to assess our
decisions, we experimented separately with each component
of our solution. Following the practical approach of our
work, we decided to perform our experiments in guifi.net,
under real heterogeneous wireless network conditions. For
the experiments, we were given access to 5 end-nodes across
different guifi.net networks and 3 proxies that are also being
used by guifi.net users. The nodes and the proxies are
distributed in various locations of Catalonia, Spain. Despite
the small scale of our experiments, we are still able to assess
the behavior of the presented components.

As explained in Section IV, proxies do not actively
participate in the measurements, they nevertheless, need to
respond to UDP pings, allowing clients to estimate their
round-trip latency. While for the results presented here we
used a UDP echo server in the proxies, obstacle which can
be practically overcome with tools such as Scriptroute [23].

IV. NETWORK PERFORMANCE ESTIMATION

In this section we describe and demonstrate how an
extended version of Vivaldi [17] can be used to estimate the
current performance of the network, expressed as a latency
metric, helping the clients to avoid overloaded paths.

Estimating Latency with Network Coordinates Each
client in our system participates in a Vivaldi network
coordinates system to estimate his round-trip latencies to the
other clients. Based on the clients’ network coordinates, we
implement the ideas described in [20], modifying them to
provide more accurate estimates and to estimate latencies
for external nodes to the Vivaldi network. We show that this
allows the clients to maintain an updated estimation about
their latency towards each proxy, but excluding proxies from
the Vivaldi network. Although Vivaldi was designed to predict
latency between hosts in the Internet (mostly wired), we show
that it can also be used to predict latencies in WMNs despite
the RTT variations caused by the wireless environment.

Vivaldi estimates RTT by sending ping between nodes.
Each Vivaldi node maintains a list of C+R neighbors: C that
are estimated to be the closest nodes, and R other random
nodes, located anywhere in the network. The algorithm works
in rounds, which are triggered every T seconds. In every
round, a node randomly selects a neighbor from the list, sends
N UDP pings to him, and asks him to send back its own pings
and its neighbors’ coordinates. The variables C and R can be
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tuned depending on the size of the network and the topology
in order to increase random/remote node discovery or to create
strong local clusters. The variable N affects the accuracy of
the prediction in exchange for the ping traffic overhead.

Using the client-client estimations we can satisfactorily
predict round-trip latency from a Vivaldi node to each proxy,
leaving the proxies unmodified since they do not actively
participate in the network coordinates system. In this extended
Vivaldi version, each Vivaldi node maintains coordinates that
represent C +R proxies, as described above. In every round,
a node performs N UDP pings to a proxy p, which is selected
in a similar manner than how the node selects its neighbors.
Then, the node updates the coordinates it maintains for p and
shares the measured latency with its selected neighbor for
this round. Then, the neighbor updates the coordinates that it
maintains for proxy p as described in [20].

Latency Estimation Evaluation For our evaluation, simi-
larly to [17], we define the error of a path as the absolute differ-
ence between the predicted RTT for the path (using the coordi-
nates for the two nodes located at the ends of the link) and the
actual RTT. The error of a node is defined as the median of the
path errors for paths involving that node. The error of the sys-
tem is defined as the median of the node errors for all nodes.

We experimented, using the described environment, in order
to characterize the behavior of the Vivaldi coordinates in an
heterogeneous large-scale wireless mesh network. First, we
performed an experiment where clients are using Vivaldi to
estimate the latencies between them and the extended version
of Vivaldi to estimate their RTT to the proxies. This way
we can understand the predictive potential of the selected
algorithms. It is worth reminding that our experiment was
executed in nodes that participate in a real network and
therefore were processing real network traffic and using shared
links. Figures 1 and 2 show the real and predicted latencies be-
tween clients throughout the experiment. The median latency
between the clients was 22.29 ms, while the predicted median
was 20.82 ms. The median latency between clients and proxies
was 9.8 ms while the corresponding predicted median was
9.36 ms. Figure 3 depicts the absolute prediction error of the
Vivaldi estimation between clients as well as the one between
clients and proxies. We observe that the error of the latency
prediction between clients and proxies is lowerThis can be
attributed to the smaller variation of the real latency between
clients and proxies, but also to our improvements related to
[20]. The empirical cumulative distribution function of the
absolute errors of the prediction, as seen in figure 4, shows
that the median absolute error of the predicted latency between
clients is 3.37 ms, while 80% of the experimentation time the
nodes had a median error of less than 5 ms. As far as client-
proxy Vivaldi latency prediction is concerned, the median ab-
solute prediction error is 1.07 ms, while 80% of the experimen-
tation time the nodes had a median error of less than 2.5 ms.

In our second experiment we tested the ability of the
Vivaldi’s extended version to adapt to network changes.
Figure 5 shows that there is some delay for Vivaldi to adapt
to latency changes between the clients, taking around 30

rounds to adjust its estimates to be over 200 ms. However,
as seen in figure 6, proxy estimates are much faster to adapt,
taking around 12 rounds to re-adjust the estimates.

We show that our system can, under real heterogeneous
mesh network conditions, estimate the round-trip times be-
tween clients as well as between clients and proxies with errors
smaller than 5 ms and 2.5 ms respectively. These low predic-
tion and triangulation errors (median relative error in the range
of 10%) are comparable to the original Vivaldi on the Internet.
Moreover, we observe that our estimation can eventually trace
serious anomalies in the latency of paths. Therefore, we argue
that these estimates are satisfactory in order to prioritize paths
from clients to proxies that present differences in latency
higher than 5 ms and avoid highly loaded paths.

Estimation Based on Other Metrics We decided to focus
on latency as the most relevant distance metric, considering
that the type of web access most essential to users is
comprised of typically small HTTP requests and replies (web
requests requesting updates to mailboxes, blogs and social
network sites, messaging apps, and notifications). In this
context, latency is the most relevant metric to consider in
order to assess quality-of-service as perceived by users.

Considering other web access patterns where larger content
dominates (non-essential, though popular), we can adapt
the Vivaldi network coordinates system to employ different
distance metrics, estimating minimum (or median) sustained
throughput (instead of latency) without significant additional
overhead. Existing approaches, such as Spruce [24], exploit
the probe gap model (PGM) to collect information about
time gaps over consecutive probe packets. This approach
precludes the need for large data transfer to infer throughput
that would seriously affect clients, proxies, hindering overall
system scalability. In the specific context of multimedia
streaming, related estimation and adaptation techniques for
video streaming over HTTP [25] could be used instead.

V. PROXY PERFORMANCE ESTIMATION

This section shows how TTFB can estimate the current
performance of the proxy, expressed as a latency metric,
allowing clients to rank choices, avoiding overloaded proxies
and proxies with Internet connection that exhibit high delays.

Estimating Proxy Load with TTFB TTFB has been
widely used in real deployments but also in recent Internet
measurement research [21], [22] to indicate the responsiveness
of a web service since it combines the TCP connection time
and the remote server processing time. Moreover, TTFB is
a useful web performance estimator because it is measured
passively on the client-side, leveraging information from the
already existing client traffic. Nevertheless, our scenario is
more complicated, since we aspire to utilize client-side TTFB
measurements to estimate the performance of the proxy
between the client and the requested content.

Assuming that tproxy_ttfb is the time the proxy needs to
receive the first byte of response from the server then tresponse
from equation (3) can also be expressed as equation (4).
Where ttransport_response is the time until the client has

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)380



Figure 1. Clients’ estimated latency can track
RTT behaviour but with various faulty spikes.

Figure 2. Clients/Proxies estimated latency
successfully tracks RTT behaviour.

Figure 3. Clients/Proxies estimated RTT error
is lower than Clients’ RTT error.

Figure 4. Clients/Proxies estimated RTT error
is asymptotically lower than Clients’ RTT error.

Figure 5. Predicted Clients’ RTT reflects the
changes in real RTT for clients but slowly

Figure 6. Predicted Clients/Proxies RTT adapts
fast to changes in real RTT

received the complete response. Both tproxy_ttfb and
ttransport_response depend on the available bandwidth of the
proxy Internet connection, and the delays in the path from the
proxy to the destination server, as well as the responsiveness
of the end-server. Additionally, ttransport_response depends
on the performance of the client-proxy path. Considering
equation (3), the TTFB as measured on the client-side can
be expressed as equation (5).

tresponse_c_p ≈ tproxy_ttfb + ttransport_response (4)
tttfb_c_p ≈ 2 ∗ tmesh_rtt_c_p + tproxy_p + tproxy_ttfb (5)

tproxy_p ≈ tttfb_c_p − 2 ∗ tmesh_rtt_c_p (6)

tproxy_ttfb differs depending on the proxy, the remote server
and the requested content. The analysis of the variability of
different tproxy_ttfb latencies, related to how well the proxies
are connected to specific remote servers, lies beyond the scope
of this work. Therefore, in our current work we choose not to
study tproxy_ttfb and assume it is stationary for each proxy,
representing the delays in the proxy’s Internet connection.
Nevertheless, as part of our future work we plan to investigate
whether and how it is possible to create an estimation model,
where each client will be able to use his current and previous
HTTP connections to various remote servers in order to iden-
tify how this metric affects the measured TTFB. For the rest of
this work we assume that all the clients are trying to access the
same content that is always available, located in remote servers
in similar distance from all the proxies and all the proxies have
the same Internet connection bandwidth capacity.

Therefore, based on equations (3) and (5), the latency
incurred by the proxy could be expressed as equation (6).

tproxy_p can provide an estimation of the proxy performance,
calculated by equation (6) with the measured TTFB on the
client-side and the network. However, the TTFB measurements
can be very noisy (sometimes packets are significantly delayed
due the proxy or network load, or proxies may complete a
request quickly despite heavy load). To minimize the effect of
noise on our estimation, we define the extended TTFB, where
the obtained tproxy_p values are filtered with an exponential
moving average which can be tuned by a parameter α. When
α is too high, the effect of noise in the measurements leaks
into the filtered value, while when α is too low, the filtered
values adapt slower to the measured real values, smoothing
the peaks and valleys. Moreover, since the TTFB of HTTP
requests is measured periodically, we must handle delays
that are higher than the measurement period. Therefore, we
introduced a penalty scheme to extended TTFB, assuming
that the request will eventually be completed. Our scheme is
based on the simple idea that the TTFB value will be at least
as high as the time that the client waited for it. Thus, if a
client has not received the first byte for longer than the last
tproxy_p value then the estimated value keeps increasing in
every measurement period until it is received.

Clients periodically exchange the calculated tproxy_p, thus
reducing the need for probing, as the value indicates how good
a proxy is at serving requests for any client. These messages
are forwarded through the Vivaldi network. Currently, we as-
sume that the client is performing HTTP requests sequentially.
However, this is not a realistic assumption, since in a typical
scenario a browser generates multiple parallel HTTP requests
targeting different servers. As part of our future work we plan
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Figure 7. Estimators can assimilate proxy load
metrics behaviour (α = 0.05)

Figure 8. PCA: Extended estimator (α = 0.05)
can track high proxy load

Figure 9. Responsiveness of estimators to In-
ternet connection delays (α = 0.05)

to investigate how to choose or combine measures from mul-
tiple HTTP transfers to estimate a TTFB value for each proxy.

Proxy Load Estimation Evaluation In our first experiment
we evaluate the relation between the tproxy_p and the proxy
load. The proxy load is represented by various variables
monitored on the proxy, including the CPU and the number
of incoming and outgoing packets per second in the internal
and the external interfaces. Figure 7 allows the comparison
between the normalized median of the proxy variables
compared to the estimation and the extended estimation of
tproxy_p. The proxy is loaded with external requests 150
seconds after the beginning of the experiment and tproxy_p
starts presenting high peaks while the extended estimator
presents a more clear relation to the load behavior. Figure 8
presents another perspective of the relation between the
proxy load and the extended estimator, including the plot of
the Principal Component Analysis which demonstrates that
the higher the load values are the higher the values of the
extended estimator. As a result, we can argue that our extended
estimator is behaving similarly to the proxy load, and therefore
we can claim it can be used to detect heavily loaded servers.

The goal of our second experiment was to evaluate how
our estimator responds to proxies having Internet connections
with significant delays. Hence, we introduce artificial network
delay in the external network interface of the proxy. As seen in
figure 9, both the simple and the extended estimator success-
fully measure the introduced delay. Nevertheless, the extended
estimator appears to need more time to return to the normal
levels, as expected. Therefore, we verify that our estimators
are responsive to the proxies’ Internet connection delays.

Sharing Estimations Across Clients Despite the fact that
our estimators behave similarly with the proxy load, we need
to verify that the estimator measured from client c for proxy p
can be useful for other clients as well. To investigate this issue,
we performed an experiment where one single proxy was used
that was serving all the nodes. Figure 10 represents the Spear-
man’s rank correlation coefficient [26] between the extended
estimators of the different clients throughout the experiment.
Spearman’s rank correlation coefficient targets to identify
correlations that can be expressed by a monotonic function,
thus resulting in high values, as we observe in our result, when
both of the compared sets ascend or descend similarly.

The described proxy performance estimator is not an

Figure 10. Strong correlation (Spearman’s rank) between the clients’ Ex-
tended TTFB estimators (α=0.05)

accurate estimator in terms of absolute values, but has a
behavior similar to the proxy load, enabling the client to rank
choices and avoid saturated proxies. Moreover, the extended
estimator calculated by one client behaves similarly throughout
the different clients and can, thus, be disseminated across them
reducing the overhead and allowing clients to have updated
information concerning proxies they are not currently using.

VI. PROXY SELECTION

After describing our approach for measuring the
performance of the network and the proxies, in this
section we describe how clients are able to select proxies
informed by the presented metrics. Moreover, we present an
experiment where clients, adopting our solution, manage to
avoid overloaded proxies, very slow internal paths and very
slow Internet connections, whereas if a minimum hop or
minimum delay selection approach was to be adopted, the
clients would not be able to avoid service deterioration.

On top of our performance estimation tools we built
an application-level proxy selection platform. Each client
maintains a proxy selection table, similarly to a routing table,
where each line corresponds to a known proxy and contains
the estimated distance, as described in section IV, the extended
estimation of the proxy latency, as described in section V and
the number of hops to that proxy. Based on this information
various proxy selection strategies can be implemented.
Nevertheless, the implementations need to take into account
the described sensitivity of the provided estimators.

We used the provided estimators to implement a proxy
selection strategy suitable to their rationale, aiming to avoid
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saturated proxies, proxies with saturated Internet connection as
well as proxies behind saturated paths. Therefore, the selection
strategy orders the proxies according to the sum of the network
latency estimation and the proxy latency estimation, selecting
the lowest value. Our implementation avoids unnecessary
oscillations by defining a minimum threshold which should be
overcome in order to change the selected proxy. Additionally,
we implemented a recovery mechanism for situations where a
proxy is not being used by any client for a significant amount
of time, therefore his current performance estimation value
is unknown. In order to prevent all the clients from querying
the proxy at the same time, the clients maintain a personalized
timeout that depends on a global recovery time, the locally last
known measurement of the proxy and their personal network
distance to that proxy. If the timeout is reached without
receiving any updates, the client is actively probing the proxy
to learn its know TTFB value. This way, we manage to make
clients that are close to the proxy in charge of querying it and
then propagate the information to the other nodes.

To evaluate our minimum load selection strategy, following
an approach similar to [15], we implemented two simple
proxy selection strategies based on the minimum hop metric
and the minimum network delay metric, that were used to
compare to the minimum load solution. Under the minimum
hop strategy each client selects the closest proxy in terms of
hops while in the minimum network delay strategy the clients
select the proxy that has the smallest Vivaldi latency estimator.

The objective of the evaluation experiment was to describe
how the different strategies of the clients deal with the
disruptions of the provided service. The clients use the
proxies selected by the routing strategies to repeatedly
download files of 1 Mb from the same remote server
choosing every 10 seconds, our Vivaldi period, a new proxy
if necessary. The value of 1Mb was chosen because in normal
conditions a client needs less than the period of 10 seconds to
download the file, therefore we can evaluate more accurately
the selection alterations. We adopt as evaluation metric the
download time experienced by the clients. The experiment
lasted 1600 seconds and was repeated for each strategy.
Between 50 and 350 seconds we introduce a high amount
of requests in one of the proxies. Between 550 and 850
seconds we simulate in one of the proxies an external Internet
connection with high delays. Between 1050 and 1350 seconds
we simulate a slow network path in one of the proxies.

Figure 11 depicts the median clients’ download time per
strategy. We observe that our strategy leads the clients to expe-
rience a very small amount of download time peaks, especially
compared to the static min_hops solution. The y axis of the
plot is limited to 2 seconds in order to allow easier comparison,
nevertheless the overall distribution of the values can be seen
in figure 12. As depicted, min_hop and min_delay present
higher average values compared to min_load (0.76s,0.71s
and 0.48s respectively). Most importantly, related to avoiding
overloaded options, min_hop and min_delay have many
more and significantly higher peaks compared to min_load
(maximum 6.33s,4.89s and 1.23 respectively). This is even

more apparent for min_hop, that is a static strategy. min_load
manages to minimize the number of peaks, confirming our
argument that it succeeds to avoid the loaded options. The
manner in which min_load is avoiding the loaded options is
also shown in figure 13, where we observe that clients avoid
proxy_3 when loaded by requests (150-350 seconds), as well
as proxy_2 in the ranges of 550-650 seconds and 1050-1350
seconds where we simulate the network path delay and Internet
connection delay respectively. It is also worth pointing out that
in the performed experiment min_delay and min_hop do not
appear to be affected by some of the obstacles introduced, but
this is a result of the specific experiment conditions (network
latencies and distances) and not of their ability to avoid it.

The results we presented in this section verify how the
performance estimators presented in the previous sections can
be used by clients to rank and make informed choices from
a large set of proxy Internet gateways, avoiding proxies that
would deteriorate their user experience.

VII. OVERHEAD AND SCALABILITY ANALYSIS

The two performance estimation components of our system
function in parallel. Thus, the total overhead is :

overhead = overheadvivaldi + overheadttfb (7)

According to the challenges that Vivaldi [17] faces by
design, a network coordinates system should produce a min-
imal amount of overhead traffic when probing. The overhead
network traffic generated by Vivaldi is, in bytes per second:

overheadvivaldi = (2 ∗ pingsize ∗ pingfreq + data) ∗ n (8)

datavivaldi = (np ∗ 160 + nn ∗ 160 + 10)/roundperiod (9)
pingfreq = roundpings/roundperiod (10)

In the formulas above, n represents the number of nodes in
the Vivaldi system and nn and pn are the maximum number
of known neighbors and proxies, respectively. We can see that
the overhead of Vivaldi increases linearly with the amount of
participants. Vivaldi works in rounds: in every round (which
occurs every few seconds) each node sends a few pings to
each one of its neighbors. In our deployment we use 8 pings
per round, with a round starting every 10 seconds. Moreover,
in our case it corresponds to one neighbor plus one proxy,
and the maximum number of neighbors and proxies is 8. That
equates to 436 bytes per second per client, which is acceptable
even in a wireless mesh network environment. For example,
assuming all the 30,000 nodes of guifi.net were clients, the
overhead would be approximately 1.5 MB/s, distributed all
over the network, which sums up to be 1.6% of the average
daily incoming Internet traffic [7] (data from 2015).

The TTFB metrics are passively collected for the proxy
currently selected by the client, and then shared between the
nodes of the system. Nevertheless, we may ping a proxy if
we have not had any metrics for a certain time period as
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Figure 11. Median client download time for
1Mb per strategy

Figure 12. Improvement of median user down-
load time using min_load

Figure 13. Clients avoid bad choices using
min_load strategy

described in Section VI. The network overhead of the proxy
TTFB protocol (in bytes per second) is:

overheadttfb = O(proxies) ∗ payload/timeout (11)
payload = payloadrequest + payloadresponse (12)

timeout = m1 ∗ proxydistance +m2 ∗ num_closer + b (13)

Whenever a client overcomes the personalized timeout in the
proxy information, we query it. If we set the m factor too low,
the information will not have time to propagate and many
nodes will query the proxy. However, if we set the m factor
too high, it may take a long time until a node is finally queried.

Due to the randomly selected neighbors, let us make the
assumption that any node may be connected to any other
node. Let us assume that a single node pings the proxy. Then,
in the next round (assuming a synchronous model), any of the
other N − 1 nodes may query this knowledgeable node with
probability 1/(N − 1), pulling the desired proxy information.

The number of nodes learning the desired information at a
given round can be modeled through a binomial distribution
with p = k/N , where k is the number of nodes that possess
such information. The expected value is k – we expect k
nodes learning the information at each round. This means that
we expect all nodes, in average, to learn the information after
log2(N) rounds. For the 30, 000 nodes currently registered in
guifi.net, that equates to 15 rounds. Moreover, it is important
to notice that equation (11) assumes that m and b parameters
are correctly tuned so that the proxy is contacted by a very
low number of nodes with high probability.

Scalability Assessment The scalability of our approach
stems from four main factors. First, the low client and
proxy overhead which was already addressed in this section.
Second, the lack of need for centralized coordination, evident
in our approach, having no central coordinator in charge of
global decisions. Therefore there are no participants whose
processing, state or message load would grow boundless as
the number of clients and proxies increase. Third factor is
bounded storage and traffic, where state size and message
count exchanged by each client increase logarithmically
with the number of participants. Additionally, the gossip-like
propagation of the estimators ensures fast propagation under
increasing number of nodes. The fourth factor is the good
convergence of the estimators, where the Vivaldi network es-

timator is proven to converge in large scale scale networks for
the selected parameters. The global convergence of selection
is not trivial. We are considering probabilistic strategies from
a time perspective as well as individual selection choices
that would provide stable aggregate results without further
overhead as the system scales, given the decentralized nature
of our solution that avoids the overhead of global coordination.

VIII. CONCLUSIONS

Communities of citizens develop network infrastructures co-
operatively, based on heterogeneous Wireless Mesh Networks.
They can achieve global Internet or Web access using a pool
of web proxy gateways shared across many participants in
the local community network. This affordable Internet access
method requires a simple but effective mechanism to arbitrate
the client-proxy selection, ensuring a good quality of service
and avoiding degradation in the user experience. This paper
introduces reliable and inexpensive latency-based metrics
capable of predicting and triangulating performance indicators.
It also presents a client-side proxy selection mechanism that
combines these metrics to make good choices in terms of QoE
or performance, taking into account the contribution of the
local network, proxy gateways and their Internet connection.
This mechanism avoids heavy loaded proxies, proxies with
slow Internet connection and slow internal network paths. The
overhead is linear to the number of the clients and proxies.

Future work will explore the sensitivity of proxy delay-
based metrics to diverse HTTP traffic. We will utilize multiple
HTTP requests to improve proxy performance estimation and
use TTFB traffic instead of the additional UDP pings for
the client-proxy measures in our extended Vivaldi coordinate
system. We also aspire to extend the system to account for
bandwidth-demanding usage, like video streaming and large
file downloads, where latency requirements are less relevant.
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