
FlowVisor Vulnerability Analysis

Ying Qian
Department of Computer Science

East China Normal University
Shanghai, China

yqian@cs.ecnu.edu.cn

Wanqing You, Kai Qian,
Department of Computer Science

Kennedaw State University
Marietta, GA, USA

{wyou, kqian}@kennesaw.edu

Abstract—This paper explored possible vulnerabilities in
FlowVisor, SDN virtualized tool, and analyzed the potential
isolation issue between multiple virtual slices by FlowVisor. We
discovered a security vulnerability of interference between
virtual slices in SDN, which leaves holes for potential malicious
attacks. We proposed an event handling mechanism to be
implemented in FlowVisor to avoid flow space overlapping.

Keywords—OpenFlow; virtualization; security

I. INTRODUCTION
FlowVisor is an OpenFlow virtualization controller, based

on Java, which plays a role of transparent proxy between
OpenFlow switches and multiple OpenFlow controllers. With
FlowVisor, we can create multiple isolated virtual logical
networks (''slices'') with different addressing and flow
forwarding mechanisms on same physical infrastructure where
same network resources such as OpenFlow switches/ports can
be shared by different controllers in different slices. Slices can
be defined in layer 1-4 by any combination. The layer model is
the same as the definition in network. When sliced by switch
ports, the policy is implemented in layer 1. When the Ethernet
address or type are specified, slicing is implemented in layer 2,
while src/dst IP address or type are enforced in layer 3. src/dst
TCP/UDP port or ICMP code/type are used in layer 4.
FlowVisor has responsibility to enforce isolation policy within
each slice so that one slice should not control packet traffic
flow from any other slices.

However, threats exist if the slicing policy is not
implemented appropriately. In Sherwood’s work [1],
FlowVisor as a network virtualization layer has been discussed
in detail. Victor explored three potential security issues related
to header fields of flow spaces [2], which was based on a
VLAN slicing policy; other threats can involve multiple flow
spaces to cause forwarding loops or black hole in network [3].

This paper was investigating vulnerabilities of FlowVisor’s
isolation mechanisms in a virtualized SDN environment. We
explored the vulnerabilities on the port based slice definition.
We identified the configurations, which may result in a
security hole and allow a malicious controller interfere other
slices and break isolation principle for network virtualization.

II. INTERFERENCE SCENARIO
We discover an interference scenario in FlowVisor, which

caused by flow space overlapping. For example, we have two

FlowVisor slices (slice1 and slice2), shown in the Fig. 1. Each
slice is managed by a separate controller (C1 or C2) to control
all the traffic in its slice.

We illustrate the interference scenario where two flow
spaces added by administrator intersect with each other in the
match fields, which could cause C1 intervening the traffic of
C2. In this case, the matching fields specified by flow space 1
include that in flow space 2.

Suppose two Flowspace rules exist in flowvisor:

Rule1: dpid1 x=1, y=2, priority=10, Slice:slice1=…,
Action1

Rule2: dpid1 x=1, y=2, z=3, priority=10, Slice:slice2=…,
Action2

where x, y and z are three different matching fields.

Fig. 1. Overlap of Flow spaces.

When a host (H1) intends to send a packet to another host
(H2), it looks for corresponding matching rule in switch’s flow
table to find the direction for the packet. When no rule is
matched, a Package_In event is thrown from switch to
controller to ask what to do. Since we have FlowVisor sitting
between switch and controller, the request from switch reaches
at FlowVisor first, and then FlowVisor forwards the request to
its controlling controller. After controller makes the decision to
deal with the request, a Packet_Out event is thrown to

978-3-901882-89-0 @2017 IFIP 867

FlowVisor and a new rule in generated and inserted into the
switch.

The red labels from 1 to 5 in Fig. 1 indicate five steps
happening when a new Packet_In message with x=1, y=2, z=4
comes.

1. A Packet_In message with x=1, y=2, z=4 comes.

2. No matching rules found. The message is forwarded to
C1 by FlowVisor to ask how to deal with this packet.

3. Controller C1 makes the decision to add new rule.

4. A new rule, with match fields specifying “x=1, y=2, z=*,
Slice:slice1=…”, is inserted into the switch’s flow table.

5. A new flow with x=1, y=2, z=3 comes, which should
belong to slice2. The packet will take the actions specified by
the newly added rule (x=1, y=2, z=*, Slice:slice1=…). It
means slice1 controls the traffic of slice2. This is one of the
possible interferences that could happen if flow space
configuration is not implemented appropriately.

III. THREATS AND RECOMMENDATIONS
The scenario discussed above illustrates some of the

potential vulnerabilities when FlowVisor is introduced into
OpenFlow. FlowVisor is implemented to achieve network
virtualization in SDN, so that production networks and testing
networks work perfectly without interference. However,
FlowViosr itself provides a tempting target for hackers,
because FlowVisor acts both as a controller and a slicer in
SDN. If it is brought down, the whole network is
compromised. When referring to network security, CIA, which
stands for confidentiality, integrity and availability, should be
addressed. The prevention and detection of this issue is vital in
order to achieve a secure SDN network.

We recommend a new strategy that an additional event
handling mechanism should be added into FlowVisor. The
basic idea is to create a new_insert event to handle the case of
adding a new flow space. When a new flow space is
configured, a new_insert event takes place; then the new_insert
event handler should take care of this kind of event. When
receiving the event, the event handler will check whether there
is overlap of flow spaces.

The possible strategy to check the overlap of flow spaces
mentioned above is shown as Fig. 2. It means every time when
a new flow space is added, the script below will be triggered to
go through the existing flow space list and each flow space in
the list will be compared with the new flow space. If there is an
overlap, it is the network administrator’s duty to make decision
either rewriting the existing flow space or giving up the new
flow space.

IV. IMPLEMENTATION
We implement and test flow space overlapping scenario in

this section. We use Mininet as the network simulation tool to
build a virtual OpenFlow network, and interact with it via
command line interface or APIs. We implement diamond

topology in our test, and it is sliced based on switch’s ports into
an upper slice and a lower slice with two switches shared by
different slices. After the slicing policy is done by “fvctl”
commands, we can “pingall” to test the reachability between
all pairs of hosts. After the slicing policy of this
experimentation is done, only hosts in the same slice are
reachable from one to another.

Now we start to add flow spaces to create flow space
overlapping. In our case, the newly added flow spaces are
discussed in previous section. As result, first controller C1
would take care of the requests that should have been
responded by controller C2. Therefore we demonstrate that the
security vulnerability exists.

Fig. 2. Function for checking flow space overlap.

V. CONCLUSION AND FUTURE WORKS
In the paper, we explored the slicing policy in details, and

found the potential interference vulnerability while
implementing FlowVisor in SDN network. We proposed an
event handling mechanism in FlowVisor to avoid flow space
overlapping. In the future, we will dedicate to employing the
strategy we proposed. Moreover, we will try to implement
other slicing policy based on VLAN ID and other slicing
mechanism and try to explore more potential vulnerabilities to
make SND network more secure.

REFERENCES
[1] R. Sherwood, G. Gibb, K. K. Yap, G. Appenzeller, M. Casado, N.

Mckeown, and G. Parulkar, “FlowVisor: A Network Virtualization
Layer”, Techinical Report, 2009.

[2] V. T. Costa, L. H. M. K. Costa, “Vulnerability Study of FlowVisor-
based Virtualized Network Environments”, Techinical Report, 2013.

[3] A. Khurshid, X. Zou, W. X. Zhou, M. Caesar, and P. B. Godfrey,
“Veriflow: Verifying network-wide invariants in real time”, 10th
USENIX Symposium on Networked Systems Design and
Implementation, Lombard, Illinois, USA, April, 2013.

//function used to check if there is a flow space overlap
//Input: array of flow spaces

//Output: if there will be flow spaces overlap, give a prompt to
administrator asking for decision: rewrite or quit.

function checkOverlap (Array <FlowSpace> flows, FlowSpace
newFlow)
START:
foreach flow in flows:

 if (newFlow ∩ flow ≠Φ):

 prompt: rewrite or quit
 break;
 end if
end foreach
END

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Demonstration Session Paper868

