Implementation of Self-Managing Applications on
Cloud Using Overlay Networks

Nasim Beigi-Mohammadi, Hamzeh Khazaei, Mark Shtern, Cornel Barna and Marin Litoiu
Adaptive Systems Research Lab, York University Toronto, Ontario, Canada
Email: {nbm, hkh, mark, cornel, mlitoiu} @yorku.ca

Abstract—In this paper, we present an architecture and im-
plementation for self-managing cloud application using overlay
networks and software defined networking (SDN). Through real
world experiments on Amazon EC2 and Smart Applications
on Virtual Infrastructure (SAVI) cloud, we demonstrate how
our management mechanism autonomously maintains SLAs of
application scenarios without provisioning extra resources.

Index Terms—Adaptive applications, SDN, Overlay networks.

I. INTRODUCTION

Software Defined Networks(SDN) and advancements in net-
work virtualization create new opportunities for self-adaptive
applications to take advantage of network programmability
for achieving adaptation goals. In our previous work [1], we
presented an adaptive service management for cloud applica-
tions using overlay networks where the application autonomic
manager monitors the response time of application scenarios
and then takes adaptation actions. If the response time of
some scenarios is too high, it uses a hill climbing algorithm
with greedy selection criteria to find scenarios for which
to dynamically reduce the bandwidth. This way, autonomic
manager reduces the contention for using application resources
which helps to improve the response time of scenarios in need.
In this paper, we present the architecture and implementation
of our solution presented in [1].

II. ARCHITECTURE

Figure 1 illustrates the architecture of our adaptive service
management mechanism on hybrid cloud. The main compo-
nents of our solution are as follows:

o Application: we consider an application that consists of
different scenarios where a scenario uses a chain of
services within application topology in a service-oriented
architecture.

o Autonomic manager: manages the application with re-
gards to application requirements at run-time. It follows
a Monitor-Analyze-Plan-Execute(MAPE) loop to achieve
application objectives. Basically, the autonomic manager
first monitors the response time of application scenarios
and checks if the SLA for the response time of any
scenario is violated. If yes, it first tries to fix the prob-
lem by using bandwidth adaptation. To do so, using a
hill climbing heuristics with a greedy criterion, it finds
scenarios whose response time is below certain threshold
with respect to their SLAs. Among all the candidates,

978-3-901882-89-0 @2017 IFIP

871

Autonomic Manager

Plan Analyze
Change Bandwidth

Exceute / Knowledge % - vonitor

Add/Remove]

Instances
Amazon

SDN Controller
Tomqat Web Server MySQL

ORI SAVI
@2’ _ rlay Network
I
%
@

Apache Load

Figure 1: An overlay network that spans over private and public
cloud connects application components. The bandwidth rate of any
link is programmed on the fly.

it reduces the bandwidth of the flows belonging to a
scenario that has the highest throughput. If no candidate
scenario is found, the autonomic manager scales out
the application to meet SLAs. Basically, the autonomic
manager is responsible to dynamically instantiate and
configure the application nodes and links automatically.
It performs these tasks with the following steps:

1) It instantiates the application nodes based on appli-
cation topology;

2) It then creates an overlay network that connects
application nodes over cloud provider(s) network
and configures the nodes accordingly;

3) After application cluster is ready, autonomic man-
ager iteratively monitors the response time of vari-
ous scenarios, analyzes and plans actions when the
need arises.

e SDN controller: programs network flows within the ap-
plication overlay network based on policies dictated by
the autonomic manager.

o Proxy: to monitor the response times, arrival rates, and
throughput of application, autonomic manager makes use
of a proxy node to timestamp the requests and responses.
The response time will be calculated from the moment the
proxy receives the request from the client until the proxy
receives the response from the application. Also, in our
current architecture, the autonomic manager differentiates
various scenarios by using the proxy node described in
the next section.

III. IMPLEMENTATION

The implementation of the main components of our solution
is as follows:

Application: we use a three tier e-commerce application
consisting of different scenarios including browse, buy,
pay and auto-bundle. A user sends a request to use any
of the offered scenarios, waits for the response, thinks for
sometime and then sends the next request. User’s request
for using any of these scenarios uses a chain of services
within application cluster.

Autonomic manager: we have implemented an autonomic
manager based on MAPE loop in Java. XML files are
used to describe the application topology including the
name of instance images, size, availability zones etc. The
autonomic manager uses SNMP and CloudWatch probes
on nodes on SAVI and Amazon respectively to moni-
tor application specific metrics. The autonomic manger
builds the application cluster dynamically using the topol-
ogy XML files. Images of application nodes are Ubuntu
14.04 with Open Virtual Switch (OVS) ! installed. Hence,
once the application nodes are instantiated, the autonomic
manager connects to each node and creates a virtual
tunneling endpoint as well as an interface and assigns an
IP to that interface. Then, based on application topology,
it builds VXLAN 2 links to connect nodes to a VM that
acts as a switch within the application cluster. The result
will be an application cluster that is built on an overlay
network on top of networks of SAVI and Amazon.
SDN controller: we have implemented a multi-thread
control application in Python on top of Ryu®. One
thread is responsible to respond to requests coming from
switches and the other continuously listens for commands
arriving from the autonomic manager to apply specified
bandwidth rates to interfaces. We use RabbitMQ for
communication between autonomic manager and SDN
controller.

Proxy: as our solution works on dynamically adjusting
bandwidth of scenario flows, we have implemented a
method to distinguish flows based on scenarios and then
apply the appropriate bandwidth rate on them. Using
regular expressions, we have implemented a Java ap-
plication on proxy that categorizes requests based on
scenarios, once requests arrive (i.e., the customer-facing
node is the proxy node). Then, since all application
flows share common resources, we have implemented
the proxy application such that each scenario request
will be forwarded to a specific interface. Now that every
scenario has its own interface, we can have the SDN
controller control the bandwidth rate of that interface
according to the adaptation goals. SDN controller uses
traffic policy features of OVS to dynamically configure
the bandwidth of each scenario. Such categorization and

Thttp://openvswitch.org
Zhttps://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-00
3http://osrg.github.io/ryu

872

600

500

300 |

200

response time (ms)

100

request /s

0 50 100

Response Time (Browse)

(a) Arrival rate and response time of scenario Browse.
shaded area (Orange)

600

150 200

Arrival Rate (Browse)

shows SLA violation.

500 |-

300 |-

bandwidth (KBps)

200 |-

100 |-

0 L

L
A
8
s
bandwidth (KBps)

0 50 100

Pay (G1) =—

Auto (G2) ===+

Browse (G2) «--+++-

150 200

Browse (G3)

Buy (G3)

(b) Bandwidth rates of different scenarios

Figure 2: The management mechanism successfully maintains ap-
plication response time SLAs by adjusting the bandwidth rate of

scenarios [1].

The first

bandwidth management can happen between any two
nodes of the application so that resource contention can
be controlled in a fine granular manner. In [1], we present

in details the features on the proxy.

Figure 2 shows sample results from our implementation on

hybrid cloud.

Table I: Experiment spec on SAVI and Amazon. VMs on SAVI are

OpenStack small size.

| Components | # VMs | Flavor | Software

App Cluster 4 Load balancer | Apache Load

(Amazon) (c3.xlarge), web | Balancer, eStore
server (m3.large), | Tomcat Web
database App, MySQL
(m3.medium)

Proxy (SAVI) 1 Small Custom Java app

Virtual Gateway 1 Small [OA

(SAVI)

SDN Controller 1 Small Ryu Custom

(SAVI) Controller App

Clients (SAVI) 4 Small Python Scripts

In this paper, we presented the architecture and implementa-

IV. CONCLUSION

tion details of our work [1] on SAVI and Amazon cloud. We
demonstrate that our autonomous solution helps application
maintain their SLA by smartly managing bandwidth between
application scenarios while avoiding provisioning extra re-
sources for as long as possible.

REFERENCES

[1] N. Beigi-Mohammadi, H. Khazaei, M. Shtern, C. Barna, and M. Litoiu,

“Adaptive service management for cloud applications using overlay
networks,” in To appear in 15th IFIP/IEEE International Symposium on
Integrated Network Management (IM), 2017.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Demonstration Session Paper

