Overcoming the Memory Limits of Network
Devices in SDN-enabled Data Centers

Antonio Marsico, Roberto Doriguzzi-Corin and Domenico Siracusa
CREATE-NET - Fondazione Bruno Kessler, Trento, Italy
Email: {amarsico, rdoriguzzi, dsiracusa}@fbk.eu

Abstract—In extremely connected and dynamic environments,
such as data centers, SDN network devices can be exploited to
simplify the management of network provisioning. However, they
leverage on TCAMs to implement the flow tables, i.e., on size-
limited memories that can be quickly filled up when fine-grained
traffic control is required, eventually preventing the installation
of new forwarding rules. In this work, we demonstrate how this
issue can be mitigated by means of a novel flow rule swapping
mechanism. Specifically, we first show the negative effects of a full
TCAM on a video streaming service provided by an SDN-enabled
data center. Then, we show that our swapping mechanism helps
in overcoming the inability to properly access a media content
available in the data center, by temporarily moving the least
matched flow rules from the TCAM to a larger memory outside
the SDN device.

I. INTRODUCTION

Many data centers rely on distributed architectures to im-
prove the availability and the reliability of the services they
offer to the customers. This architecture is fully exploited
by cloud-based applications, which are composed of many
instances spread in different locations of a data center. For in-
stance, cloud-based applications for on-demand video stream-
ing are typically composed of a User Interface (UI), such as a
web page, and a collection of video contents, possibly hosted
in different hardware or software appliances. Such applications
may require many intra-datacenter connections to maintain
the communication between the different application instances,
e.g., for data synchronization.

In SDN-enabled networks, the control logic is moved to an
external controller that talks to the datapath over the network
itself. The controller decides how the packets are forwarded
by installing/manipulating the forwarding rules in the flow
tables of the switches via control interfaces. Flow tables are
usually saved in a high performance memory called Ternary
Content Addressable Memory (TCAM). Since such memories
are very expensive and power hungry, vendors tend to install
TCAMs with very limited capacity which can quickly get full,
especially in environments like SDN-based data centers.

When a network device runs out of memory, it starts refus-
ing the installation of new forwarding rules. Eventually, the
buffer of the network device, which holds the packets waiting
for forwarding instructions, becomes full and starts dropping
the buffered packets. This will lead to a degradation of the
user’s quality of the experience in terms of low throughput
(see also [1]) and high delays when accessing the online
service provided by the data center, such as on-demand video
streaming.

978-3-901882-89-0 @2017 IFIP

897

To mitigate the effects of limited memory of network
devices, we have proposed a novel flow rule memory swapping
mechanism [1]. The memory swapping is a function of a
more generic component for SDN controllers called Memory
Management System (MMS).

The MMS [2] aims at optimizing the TCAM memory
utilization by providing two different functionalities: (i) the
memory deallocation and (ii) the memory swapping. The
memory deallocation automatically deletes the flow entries in-
stalled in the TCAM by Software-Defined Networking (SDN)
applications that are no longer running/active. The memory
swapping mitigates network performance degradations caused
by the network devices operating in full memory condition,
by temporarily moving the least frequently matched flow
entries to a slower —but larger— memory. This SDN component
is currently developed for the ONOS controller [3] and is
available for testing as open an source project [4].

In our demonstration we present the memory swapping and
we show how it improves the performance of a data center in
case of TCAM memory overflows in SDN-enabled switches.
The proposed demonstration shows how a video streaming
service, whose contents are distributed on several servers in
the data center, can easily saturate the memory of a Top of
Rack (ToR) switch, preventing the customers to access the
media contents. We show how the MMS solves this issues.

II. DEMONSTRATION

To show the effectiveness of our memory swapping mech-
anism, we propose a network scenario where a SDN-enabled
data center hosts a distributed on-demand media streaming
application. We demonstrate how an insufficient capacity of
the TCAM memory of SDN devices can affect the availability
of the media content for the customers. In particular, we show
how a full TCAM memory prevents part of the customers to
access the media content and, then, we demonstrate how the
problem can be solved by enabling the MMS in the SDN
controller to optimize the usage of the TCAM memory.

The MMS moves the least used forwarding rules from the
TCAM to an external databased maintained by the MMS
itself. The newly available TCAM memory space can be
then used by the controller to handle the customers’ requests.
This process is called memory swap out and, in this specific
demo scenario, involves the rules pro-actively installed by
the controller to allow the intra-datacenter communication,
as such rules are rarely matched. We also show that such a

Controller

ONOS
MMS
= =
. - ———
. _—D 4 I
A|IC\ Rack // ToR Content Server 1
/

|

I
Switch 4‘ Content Server 2| |
I

——i Content Server 3 :
. |

: |

I

I

I

)

—|Content Server N]

Edge
Router

i

-’
%

a—
Customer 2

s

-
N

-

=
@D Rack
Rack

SDN-enabled Data Center

a———
Customer M

Fig. 1. Demonstration Scenario.

server-to-server connectivity is not broken. Instead, the MMS
automatically re-installs the swapped-out rules into the TCAM
memory of the switches when they are required (e.g., during
the synchronization of the media content between the servers).

A. Demo setup

As represented in Fig. 1, we demonstrate the relevance of
the memory swapping by implementing a SDN-enabled data
center where the ToR switches are controlled by an SDN con-
troller. Specifically, the right-hand side of the figure illustrates
the internal architecture of one of the data center racks.

The network topology, emulated with Mininet [5], includes
a ToR switch controlled by the ONOS controller, a pre-
configured edge router that connects M customers to the data
center, and NN content servers which host the media content.
The values of M and N determine the occupancy of the ToR
memory: (i) N x (N — 1) flow rules with infinite timeout are
pro-actively installed by the controller to implement a peer-
to-peer synchronization system between the content servers
(i.e., full connectivity). (ii) 2 x M flow rules are needed for
the customers’ traffic (bi-directional communication), thus, the
controller reactively installs 2 new rules every time a new
customer accesses the data center. Such rules are installed with
finite idle timeout, so that they are automatically evicted from
the ToR switch memory once the customer disconnects. We
also customize the size of the emulated TCAM of the ToR
switch by setting the flow table size of the Open vSwitch [6]
instance created in Mininet.

During the demonstration, we will vary the values of M and
N and the memory size of the emulated ToR switch.

B. Demo workflow

The demonstration is divided in four different steps. As

mentioned above, each step can be repeated with different
flow table sizes and by varying the number of customers and
content servers to demonstrate the effectiveness of the memory
swapping mechanism in different conditions.
We start with a flow table of size 2 x (M —1)+ N x (N —1)
flow rules (i.e., we intentionally limit the memory of the ToR
switch so that it can serve up to M — 1 customers, beyond the
N content servers of the rack), then we repeatedly change the
ratio between M, N and the memory size:

1. M-I customers are streaming video contents from the data
center. In this situation, the flow table of the ToR switch
is full, and when Alice tries to access the streaming
service, her connection is refused as the controller cannot
install any new forwarding rule. In this situation, Alice’s
connection is delayed until one of the other customers
disconnects.

2. We enable the MMS in the ONOS controller. The MMS
detects the memory full condition and activates the
swapping mechanism. The least used rules are swapped
out from the ToR switch to a database hosted in the
controller and managed by the MMS. During our demo,
we will show that the swapped-out rules are the ones that
implement the connectivity among the content servers, as
they are rarely used compared to the ones matching the
customers’ traffic.

3. We start a synchronization process between Content
Server 1 and Content Server 2 to show how the MMS
automatically restores the forwarding rules that have been
previously swapped out to allow Alice to access the media
contents available in the data center. In this case, the
MMS only restores the rules needed for bi-directional
connectivity between Servers 1 and 2, while the others
remain in the external database.

4. Finally, we vary the size of the flow table and the values
of N and M. When we repeat steps 1-3, we will see the
relevance of the MMS increasing when the ratio between
the number of connected hosts (customers and servers)
and the flow table size increases.

III. CONCLUSIONS

This work exhibits the properties of the memory swapping
mechanism of the MMS, a component for SDN controllers
that optimizes the usage of network devices’ memory. The
experimental setup shows how the swapping mechanism can
prevent delays for the users when accessing an online video
service, hosted in a data center adopting SDN switches with
inadequate memory capacity.

ACKNOWLEDGMENTS

This work has been partially sponsored by the EU FP7
project NetIDE, grant agreement 619543.

REFERENCES

[1] A.Marsico, R. Doriguzzi-Corin, and D. Siracusa, “An Effective Swapping
Mechanism to Overcome the Memory Limitation of SDN Devices,” fo
appear in IEEE/IFIP IM 2017.

[2] R. Doriguzzi-Corin, D. Siracusa, E. Salvadori, and A. Schwabe, “Em-
powering Network Operating Systems with Memory Management Tech-
niques,” in IEEE/IFIP NOMS, 2016.

[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, “ONOS:
Towards an Open, Distributed SDN OS,” in ACM HotSDN, 2014.

[4] “MMS source code.” [Online]. Available: https://github.com/fp7-
netide/Tools/tree/master/memory-management-system

[5S] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible Network Experiments Using Container-based Emulation,”
in ACM CoNEXT, 2012.

[6] The Open vSwitch Project. [Online]. Available: http://openvswitch.org/

898 2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Demonstration Session Paper

