
Model-Driven Analytics in SDN Networks

Mouli Chandramouli

Cisco Systems, Bangalore, India

moulchan@cisco.com

Alexander Clemm1

ludwig@clemm.org

Abstract— Analytics of network telemetry data is useful for

addressing many important network operational problems.
While Big Data techniques have been pushing scale boundaries
for processing data ever further, in many cases the real
bottleneck for analytics is the acquisition, i.e. the ability to
generate and export the data on which analytics depends. To
address this issue, we have earlier introduced DNA, a framework
for Distributed Network Analytics that pushes analytics
processing into the network and dynamically sets up data sources
as needed. One of the challenges of such a framework concerns
providing users with simple ways to articulate network analytics
queries and instruct the network which data to generate and
provide. We have addressed this issue using a model-driven
approach that is presented in this paper. Using YANG as a way
to model network analytics tasks, our system lets users articulate
network analytics tasks at a very high level of abstraction that is
subsequently broken down by the framework into lower-level
analytics tasks which are deployed across the network. 1

Keywords—Network Analytics, Service Assurance, SDN, YANG

I. INTRODUCTION

Network devices generate a rich set of telemetry data, such
as flow records, MIB data (such as interface counters), service-
level measurements, and system event (syslog) records.
Network telemetry data facilitates many operational tasks,
from monitoring networks and services for anomalies, trends,
and changes, to diagnosing subtle causes for intermittent faults
and performance degradations. It therefore comes as no
surprise that network service providers have significant interest
in acquiring and analyzing network telemetry data to obtain
near-time visibility of the network health.

A common approach to network analytics involves
centralized, possibly cloud-based systems. With this approach,
data is collected from the network in a central place and
subsequently analyzed. Networks and networking services can
easily involve tens of thousands of devices, resulting in
substantial amounts of data. Much of the focus has been
accordingly on scaling the processing of that data, leading to
the development of systems and algorithms commonly
associated with “Big Data” such MapReduce, Hadoop, Hive,
or Pig.

There are several hidden assumptions with a centralized
network analytics approach. Most importantly, its effectiveness
depends on the ability of the network to provide the required
raw data in the first place. However, this can turn out to be a

1 Alexander Clemm is with Huawei Technologies, Santa Clara, California/USA.

However, the paper is based on efforts while he was still at Cisco

formidable task, as generating and exporting that data is
resource-intensive and subject to bandwidth constraints. The
factor that dominates performance and scale lies in many cases
in the generation and export of the required data records, not
analytics processing itself. A practical bottleneck lies
furthermore in the ongoing system management tasks that are
involved with setting up networking devices for analytics tasks
as needed and keeping up with dynamic network changes.

To address those challenges, we have introduced a novel
framework for distributed analysis of network telemetry data,
Distributed Network Analytics (DNA) [5]. DNA consists of
DNA Agent, an embedded analytics application that is
deployed with networking devices, and DNA Controller, a
Software Defined Networking (SDN) control application
[12][9] that orchestrates analytics tasks across the network.
Contrary to traditional analytics solutions that bring data to the
processing, DNA brings processing to the data and in the
process also takes care of system management tasks such as
dynamically managing telemetry sources as needed.

One aspect that needs to be addressed for a network
analytics framework like DNA, or for any network analytics
application, concerns the articulation of network analytics
queries. Our requirements included the ability to let users
articulate new analytics queries in simple fashion that can be
accomplished by a network administrator without requiring
analytics code development skills. It also included the need to
deal with heterogeneity of network devices. Different devices
may expose the same data in different ways, for example
involving different show commands or MIB or YANG objects.
Some data may be supported by one device but not another,
such as service level measurements To the user, network
device heterogeneity differences should be hidden as much as
possible and allow the user to articulate network analytics tasks
holistically across the network, instead of needing to deal with
the network one device or one type of device at a time. This
means that users need to be able to apply operations across the
network which are understood and supported by as many
devices as possible, ideally all of them. Short of that, users
would have to revert to manage networks one device at a time.
Alternatively, SDN controllers would need to degenerate into
legacy network management systems that require development
of device-specific adapters for each device, resulting in
systems that are unwieldy, slow, and costly to sustain.

We addressed these requirements by making analytics tasks
model-driven. Categories of analytics tasks are modeled as
analytics templates that can be customized by users. The
translation of templates to actual analytics processing is

978-3-901882-89-0 @2017 IFIP 668

maintained in a set of bindings, specifically maplet bindings
that define the translation for processing to be performed in the
device. The prerequisites that a system needs to support in
support of a query are specified through capabilities. Like a
policy, the same capability may be rendered differently by
different devices to shield users and controller from device
differences. In our system, analytics templates, template
bindings, and capabilities can all be specified via data models,
in addition to the data itself that is being subjected to analytics.

We chose YANG [3] as data modeling language to
facilitate analytics configuration through Netconf [8] or
Restconf [2] and ease of integration with SDN frameworks. At
the same time, data that is subjected to analysis does not
necessarily have itself to be described via YANG but can be
incorporated by proper references. In fact, the vast majority of
data sources supported by DNA concern non-YANG defined
data, such as MIB objects of information elements in flow
records.

In this paper, we will present our model-driven approach to
distributed network analytics in greater detail. Section 2 will
provide some additional background on DNA. Section 3 gives
an overview of the analytics data model and its various
components. Section 4 describes the YANG data tree that is
basis for our implementation. Section 5 gives an outlook and
provides conclusions. Please note that this paper should not be
construed as providing any indication regarding product
direction and no such inferences should be made.

II. BACKGROUND

A. YANG and Netconf
YANG is a standards-based, extensible data modeling

language to model network device configuration and

operational data. That data provides contents used by Netconf

operations, remote procedure calls (RPCs), and server event

notifications. Among the goals of YANG are a highly

readable data model that supports the definition of data

hierarchies, facilitates the validation of configuration data

before it is applied, and promotes model reuse. The data that is

described by a YANG model data model is conceptually

contained in a data store and can be instantiated as XML or

JSON.

YANG was originally defined as the basis to provide

interoperable data in conjunction with Netconf. However,

more recently YANG has been used also as the basis for

model-driven controller architectures and SDKs that generate

APIs from model definitions, notably in the case of Open

Daylight [11], an open source SDN controller platform of the

Linux Foundation.

B. Distributed Network Analytics - DNA
Distributed Network Analytics is a distributed solution

framework that provides a network analytics on the basis of
network telemetry data, such as flow records, device statistics
represented via MIB objects, or IPSLA service level
measurements [4]. DNA is specifically targeted at operational
use cases that have near-real time characteristics, such as
monitoring a network for changes, trends, and anomalies.

The DNA architecture consists of two components, as
depicted in Figure 1:

� A DNA Controller, an SDN application running on top
of an SDN Controller Framework such as Open
Daylight, that orchestrates network analytics tasks
across the network, collates the results reported from
DNA Agents, and provides a single point of entry for
users of the Network Analytics Service.

� A DNA Agent, an embedded application running on
each network element, configures underlying telemetry
data sources and performs analytics on the resulting
telemetry data streams.

The DNA solution is at its core a network-embedded
management application [7] and offers important advantages
over centralized analytics solutions. Not only is the amount of
required off-box processing reduced, but CPU and bandwidth
within the network are conserved as well: additional cycles for
analytics performed in the device are offset by the avoidance of
cycles that would otherwise be required to generate, format,
and transmit data that is not required for the actual task at hand.
Likewise, management of analytics tasks themselves is greatly
facilitated. Perhaps most importantly of all, DNA Agent
configures the data sources as needed. This allows to
dynamically adapt what data is generated when it is needed for
a specific analytics task, which is important because in many
cases there are practical limits to the amount of telemetry data
that a device can generate, for example with regards to service
level measurements involving synthetic traffic or very high
sampling rates of interface statistics.

Figure 1: DNA Architecture

III. ANALYTICS MODEL OVERVIEW

In this section, a data model for model-driven analytics in
DNA is presented. Our analytics data model applies at two
levels, network controller and network device. At the network
controller level, the model serves as the basis of interaction
between the network analytics service provided by the
controller and the end user for articulating the analytic queries.
At the network device level, the model serves as the basis of

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 669

interactions between controller and device. As a result, there
are actually two models – a network analytics model, and a
device analytics model. Because a network analytics task is
ultimately broken down into a set of device analytics tasks, the
models are clearly interrelated, but they are not the same and
need to address different requirements.

We first provide a summary of the requirements that the
model had to address. Subsequently we provide an overview
of the model components and explain how the requirements are
addressed by the model.

A. Model Requirements
DNA needs to meet a number of important requirements,

which the data model has to facilitate. Most importantly, it has
to allow to apply analytics to different sources and types of
network telemetry data. This includes data that is defined in
YANG itself and exposed (for example) via a Netconf or
Restconf server. However, it also needs to cover data that is
available only via different formats and interfaces, including
MIB objects, CLI show command output, Netflow and IPFIX
records, and IPSLA service level measurements. It also needs
to be expansible to cover other interfaces in the future, such as
syslog messages, IoT sensor data streams, and packet captures.

At the network controller level, the model needs to be very
easy to use and facilitate simple interactions between users (or
client applications) and the system. Specifically, the model has
to be able to encapsulate predefined analytics use cases and
allow for their customization, so that users can adapt the model
to their specific situation with minimal programming.

While the model needs to shield users from the need to
specify detailed analytics logic, it has allowed for the dynamic
introduction of new types of analytics tasks and queries by
experienced users, such as consultants of a services
organization or experienced network operations personnel
engaging in DevOps methodology [1].

At the device level, DNA Agents need to accommodate a
wide range of telemetry sources, including but not limited to
MIBs, CLI show output, Netflow records, active service level
measurements such as provided through IPSLA, as well as
YANG-defined objects themselves. In addition, DNA Agents
must be able to support a variety of analytics engines as well as
result exports, requiring analytics queries and result data to be
described in ways to support different formats.

B. Model Components
The data model at the controller consists of the components

that are depicted in Figure 2. Broadly speaking, the model
distinguishes between aspects that define how network
analytics tasks can be configured, and aspects that represent
instantiated analytics tasks during runtime. Each of those
aspects is further defined in the following sections. How those
components are represented using YANG is described in
Section IV.

a) Network Analytics Task Template
A network analytics task template, or simply analytics

Template, is a pre-canned analytics query with predefined

semantics, which does allow for some degree of customization
by a user. The idea is to have the DNA Controller provide a
library of predefined Analytics Templates that users can
choose from, and allow the users to make certain
customizations to those queries when they request an analytics
task. This enables network operators to articulate new network
analytics tasks in simple fashion without requiring specialized
analytics software development skills or complex testing of
analytics logic. Customizations can affect aspects such as
which data items to subject to a query or which of a set of
aggregators to apply to a set of data items, but they do not
affect the logic flow per se (which would require
programming).

Figure 2: Network Analytics Model Components

b) Network Analytics Task
A network analytics task represents a task requested by a

user. It instantiates an analytics template with a set of
parameters as applicable. It also includes scheduling
information (as tasks will typically be running for longer
durations of time) and a network scope, i.e. a policy regarding
which devices in the network will be subjected to the task, such
as an enumerated set of devices in a list, all devices of a certain
type, or all devices tagged with a certain property.

c) Maplet (and Reducelet)
A maplet represents the task that is deployed and run at a

device. The maplet defines the analytics query, data streams
that are to be subjected to the query, as well as additional
information needed to configure sources of the data streams.
In addition, the maplet can include scheduling information.

The information contained in the maplet needs to be
sufficient to render the data stream. For example, if the data
stream involves flow records, the stream configuration needs to
include parameters such as flow expiration timers. Similarly, if
the data stream involves IPSLA service level measurements,
the stream configuration needs to include information that
characterizes the test traffic, such as the number of test packets
and probing intervals.

A reducelet defines an analytics query that is used to
correlate result streams sent by DNA Agents to the DNA
Controller. In many cases, the reducelet will in effect be an
identity query. For example, when the purpose of a network
analytics task is to monitor certain conditions inside network
elements which when met are reported back to the user, no
further analysis is required at the controller. However, certain
network analytics tasks may involve comparing results, such as

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper670

when the severity of conditions needs to be ranked across
devices.

d) Maplet (and Reducelet) bindings
To run an actual Analytics Task that instantiates an

Analytics Template, the query that is implied as part of an
analytic template needs to be translated to an actual analytics
query respectively device analytics task that can be deployed to
the device. This means that for a given Analytics Template,
rules for how to generate a corresponding query (that can be
fed to an analytics engine) need to be defined which can be
interpreted at runtime. In addition, rules need to be defined for
how the parameters with which the user can customize the
query map into that query. We refer to the corresponding
mapping rules of an Analytics Template as a binding.

In addition to the mapping rules and the Analytics
Template that it supports, a binding may also contain a list of
prerequisite capabilities that need to be supported by DNA
Agents for the generated maplets to be run. An example of a
prerequisite capability is the support for a specific analytics
engine or for a specific type of data source. It is therefore
conceivable that several bindings for the same Analytics
Template exist, providing alternative mappings dependent on
supported capabilities. For example, low footprint devices
might support only basic analytics processing capabilities,
whereas higher footprint devices might support advanced
analytics processing capabilities that could be optimized in
different ways. Similarly, with evolution of technology
landscape, there may be new analytics engines to take
advantage of in the future. Instead of defining Analytics
Templates with a specific engine in mind, the ability to define
separate bindings allows to separate the concerns of how to
present an analytics task to the user, from how to map it.

Bindings are maintained and interpreted at the controller to
render a maplet that is then deployed at the DNA Agent. An
alternative design would have been to maintain bindings at the
DNA agent and render the maplets locally there. In that case,
DNA Agents would need to become Analytics Template aware
and allow to dynamically deploy bindings to DNA Agents,
either as part of the query or through a separate control
flowThe DNA Controller would in that case not deploy
analytics tasks containing analytics queries to the DNA Agent,
but analytics tasks requests would simply contain the
instantiated template.

e) Capability Definitions and NE Inventory
Networks are heterogeneous in nature. Analytics Tasks

will therefore have to be able to run across a multitude of
devices. Those devices may differ in terms of what telemetry
data sources they support. Some telemetry sources may not be
supported everywhere – for example, IPSLA will be supported
on some but not all devices. Some devices support Netflow v9
or IPFIX, others support only Netflow v5. Even more
importantly, the data offered across the same type of telemetry
source will differ. Some MIBs may be supported on some
devices but not on others. Sometimes, the same data is
supported on different devices, but resides in different MIBs.

The value of DNA lies in no small extent in its ability to
support operational scale in a diversity of platforms. Users can
articulate a single query and the query should be deployed
across the network, regardless of which or how many devices
need to participate in the query. Differences between devices
affect the ability to deploy an analytics task across the network,
inconveniencing users and potentially reducing DNA’s
effectiveness. Where a single analytics request might have
sufficed, multiple analytics requests would now be required,
one for each set of devices that supports a given functionality.
In addition, multiple bindings or even Analytics Templates
need to be maintained.

Homogenization of manageability interfaces goes beyond
the scope of DNA. However, DNA can mitigate the impact of
heterogeneity. This is achieved through the concept of
capabilities.

A capability refers to a set of functionality with pre-
established meaning that is supported by a DNA Agent.
Capabilities can refer to specific data sources (e.g., IPSLA,
Netflow v5, Netflow v9, SNMP MIBs), to specific sets of data
(e.g., interface-stats, bgp-stats), or even to analytics capabilities
(e.g. Spark-Streaming, Storm). DNA Agents are aware of the
capabilities they support and announce those capabilities to the
Controller.

The functionality that a capability refers to is in many cases
pre-established. For example, there is a predefined list of
capabilities that refers to data sources and analytics
capabilities. However, in the case of capabilities that refer to
sets of data supported by a device, new capability definitions
can be dynamically added. For this purpose, new capability
definitions can be introduced that include a list of named data
items that specify particular data items and their data types that
can be subjected to analytics. The rendering of named data
items to specific data sources is up to the DNA Agent that
supports the capability. For example, a capability
“Interface_Stats” might include a set of named data items such
as “inOctets” and “inDiscards”, which a DNA Agent might
map to a set of MIB objects as defined in RFC 2863 [10].
This is a pure convenience function that allows users and
controllers to reference frequently analyzed data items by a
common name. Alternatively, data items can be referenced by
identifiers as implied by the data source.

DNA Agents are aware of the capabilities that they support.
Information about supported capabilities is maintained as part
of the DNA Controller’s network inventory. This way, when
an Analytics Task is requested, the DNA Controller can select
matching bindings and validate whether prerequisite
capabilities are supported by DNA Agents that are within the
task’s scope, as well as handle interactions with users when
they are not and a requested analytics task will be degraded
accordingly.

C. Model usage
Figure 3 depicts how the model components are used to

collectively drive the deployment of an analytics task across
the network. First, a user defines a network analytics task by
selecting a template from the controller’s template library. The
user customizes the task with parameters such as which data

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 671

items to subject to the task (for example, interface or BGP or
ACL statistics), which one of a set of trending functions to
select, or which percentile value to compare a dynamic
threshold against. Subsequently, the controller needs to
generate a set of maplets to deploy to the network devices
within network scope. For this purpose, the controller checks
the template bindings. Where more than one template binding
exists, the controller selects one, for example based on the
capabilities that are supported by the device in question.
Subsequently, maplets are deployed.

Figure 3: Use of the model to drive an analytics task

IV. YANG DATA MODEL

The following section provides an overview of how the
model is mapped into YANG, and why YANG was chosen as
data definition language in the first place.

A. The Rationale for YANG
 YANG was chosen as data definition language for a

number of reasons that include the following:

- YANG is readily supported by controller frameworks,
such as Open Daylight (foundation for DNA
Controller) or Network Service Orchestrator [14], as
well as agent frameworks, such as YumaPro [15] or
Cisco’s ConfD. This facilitates implementation on both
agent and controller.

- YANG is readily supported by Netconf and Restconf,
making the resulting analytics model easily accessible
for applications

- With proper structuring of the model, YANG allows
for easy extensions using YANG augmentations
without needing to churn the base model.

- Model definition using YANG allows for easy tie-in of
the analytics model with data source configuration,
which may be configurable via a YANG-supported
interface already

- As YANG is gaining traction with networking
vendors, the number of data models specified using
YANG is exploding, allowing for easy tie-in with
model-driven analytics that is YANG based. By the
same token, it allows for easy tie in with MIB data

(still an important category of telemetry data), which
can be easily transposed into YANG [13].

- It facilitates an integration strategy with YANG-Push
that allows applications to subscribe to YANG data
[6], for example in cases where subscribed data should
also be subjected to analytics.

B. Module Structure
The DNA Yang module tree diagram is depicted below. In

the interest of brevity, simplifications have been applied and

only some key parts are shown.

module: task-templates
 +--rw task-templates
 +--rw task-template* [tt-name]
 +--rw tt-name string
 +--rw stream* [stream-name]
 | +--rw stream-name string
 | +--rw field* [field-name]
 | +--rw field-name string
 | +--rw type? datatype
 +--rw task-parameters* [param-name]
 | +--rw param-name string
 | +--rw type? datatype
 +--rw result-stream
 +--rw field* [field-name]
 +--rw field-name string
 +--rw type? Datatype

Figure 4: YANG tree for task templates

Task templates specify merely the structure of data streams
to be processed as well as the result stream. Task parameters
include all additional parametrization, such as which input data
to populate particular fields with or which aggregation function
to apply.

module: bindings
 +--rw bindings
 +--rw maplet-binding* [tt-ref mb-name]
 | +--rw tt-ref tt:template-ref
 | +--rw mb-name string
 | +--rw required-capability* capability
 | +--rw stream-binding* [stream]
 | | +--rw stream tt:stream-ref
 | | +--rw field-binding* [field]
 | | | +--rw field tt:field-ref
 | | | +--rw binding? string
 | | +--rw source-config* [source]
 | | +--rw source tt:source-type
 | | +--rw source-config
 | +--rw (analytics-binding)?
 | +--:(csa)
 | | +--rw csa-binding
 | +--:(spark-streaming)
 | +--rw spark-binding
 +--rw reducelet-binding* [tt-ref rb-name]
 +--rw tt-ref tt:template-ref
 +--rw rb-name string
 +--rw (analytics-binding)?
 +--:(csa)
 | +--rw csa-binding
 +--:(spark-streaming)
 +--rw spark-binding

Figure 5: YANG tree for bindings

Bindings include the rules for how to generate a query for a
task template, based on parameters supplied by the user for
which parameter substitution is applied. The specific rules
depend on the target analytics engine, subsumed e.g. under
“csa-binding” and “spark-binding”.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper672

module: device-tasks
 +--rw device-tasks
 +--rw task* [task-id]
 +--rw task-id string
 +--rw stream* [stream]
 | +--rw stream tt:stream-ref
 | +--rw field-binding* [field]
 | +--rw field tt:field-ref
 | +--rw (source-type)?
 | +--:(IPFIX)
 | | +--rw ie-id? ie-id
 | +--:(MIB)
 | +--rw oid? oid
 +--rw source-config
 | +--rw (source-type)?
 | +--:(IPFIX)
 | | +--rw ipfix-config
 | | +--rw expiration-timer? uint32
 | +--:(MIB)
 | +--rw mib-config
 | +--rw interval? uint32
 +--rw (analytics-query)?
 +--:(csa)
 | +--rw csa-query? csa-query
 +--:(spark)
 +--rw sstream-query? sstream-query

Figure 6: YANG tree for instantiated device analytics tasks

Device tasks finally include the instantiated analytics
query, as well as the precise source configuration to populate
the data streams. Data source specific parameters are defined
via augmentations in additional modules. For example, to add
support for IPSLA, IPSLA specific configuration parameters
such as type of probe, number of packets, probe intervals will
be defined in a new “case” statement in a module that
augments the “source-config” choice.

V. EXPERIENCES, CONCLUSIONS, FUTURE WORK

We have applied the model to a variety of use cases and
have received overwhelmingly positive feedback by network
providers deploying Distributed Network Analytics in their
networks. One use case involves a monitoring scenario, in
which device analytics tasks involve computing a baseline for
the normal operating range of key statistics and performance
indicators. Subsequently, the current state of those statistics
and performance indicators is compared against the baseline.
When the top of the baseline is approached, for example the
top percentile is breached, an analytics match is found and a
result sent, which is in effect treated as a special type of
threshold crossing alert. Other use cases are similar, involving
for example analysis of trends and reports when sustained
trends are observed, even when nowhere near extremes.

In general, we have found that the system is used to
perform overwhelmingly fairly simple analytics. While the
Agent includes a full-fledged stream processing engine, most
of the use cases involve simple aggregations and time series
analysis. The most important requirements of users are the
ability to do away with polling, be able to cut down on the
volume of analytics data, and simplify the configuration of data
generation tasks across the network; beyond that, the 90/10
rule applies (over 90% of analytics use cases exercise less than
10% of analytics processing features).

We have found that the model addresses our requirements
to conduct network analytics very well. YANG has proven
adequate to represent our analytics model; the ease with which

it can be integrated into SDN and networking environments
and their associated control interfaces has made it a smart
choice.

That said, there are a number of possible extensions that
have not yet been addressed, which would bring the power of
the solution concept to yet another level. One concerns the
ability to close control loops and specify actions to take in
response to analytics conclusions. Such an ability will be key
to true automation and greater network intelligence. Of course,
challenges abound, from security to the problem of how to deal
with heterogeneous devices lacking a common network
programming model. A second extension concerns the ability
to stage different phases of analytics to spin off additional
analytics tasks when warranted by conditions. For example,
upon observation of a baseline violation, additional supporting
evidence might be collected and secondary forensics analytics
tasks be launched. This type of capability will be key for smart
analytics tasks that dynamically adapt processing and are able
to zoom into underlying data sources precisely when needed
during any given analytics task.

REFERENCES

[1] L. Bass, I. Weber, L. Zhu: “DevOps – A Software Architect’s
Perspective“, Addison Wesley, 2015.

[2] A. Bierman, M. Bjorklund, K. Watsen: “RESTCONF Protocol”, draft-
ietf-netconf-restconf-17, IETF, September 2016 (work in progress).

[3] M. Bjorklund, "YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF)", RFC 7950,
August 2016.

[4] M. Chibha, A. Clemm, S. Medley, J. Salowey, S. Thombare, E.
Yedavalli: “Cisco Service-Level Assurance Protocol”, RFC 6812, IETF,
January 2013.

[5] A. Clemm, M. Chandramouli, S. Krishnamurthy, “DNA: An SDN
Framework for Distributed Network Analytics, IEEE/IFIP International
Symposium on Integrated Network Management (IM 2015), Ottawa,
Canada, May 2015.

[6] A. Clemm, A. Gonzalez Prieto, A. Tripathy, E. Nilsen-Nygaard:
“Subscribing to YANG datastore push updates”, draft-ietf-netconf-
yang-push-03, IETF, June 2016.

[7] A. Clemm, R. Wolter (eds.): “Network-Embedded Management and
Applications”, Springer, New York 2013.

[8] R. Enns, Bjorklund, M., Schoenwaelder, J., and A. Bierman, "Network
Configuration Protocol (NETCONF)", RFC 6241, June 2011.

[9] D. Kreutz et al., “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE Vol 103 No 1, January 2015.

[10] K. McCloghrie, F. Kastenholz: “The Interfaces Group MIB“, RFC 2863,
IETF, June 2000.

[11] J. Medved, A. Tkacik, R. Varga, K. Gray: “OpenDaylight: Towards a
Model-Driven SDN Controller architecture”, IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
2014.

[12] T. Nadeau and K. Gray: “SDN: Software Defined Networks”, O’Reilly
Media, 2013.

[13] J. Schoenwaelder: “Translation of Structure of Management Information
Version 2 (SMIv2) MIB Modules to YANG Modules”, RFC 6643,
IETF, July 2012.

[14] “Cisco Network Services Orchestrator Enabled by Tail-f”. Accessible at
http://www.cisco.com/go/nso (last accessed 29 September 2016).

[15] YumaPro. https://www.yumaworks.com/yumapro-sdk/

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 673

