Failover Time Evaluation Between Checkpoint
Services in Multi-Tier Stateful Applications

Demis Gomes, Glauco Gongalves,
Moisés Bezerra, Djamel Sadok
Federal University of Pernambuco

Recife, Brazil
Email: {demis.gomes, glauco,
moises, jamel } @gprt.ufpe.br

Abstract—Cloud applications are offered to users with high
availability and minimal data loss. Any (hardware or software)
failure must be detected and recovered quickly, in order to
maintain customer trust and avoid financial losses. When we
are dealing with multi-tier and stateful applications, the failure
recovery process is a big challenge because the whole state
of the failed application must be retrieved and restored in a
new instance. This process is named as failover; it can be
performed by a checkpoint service at application-level or at
system-level. Depending on the location of the checkpoint data
storage, it can be classified as non-collocated, collocated warm,
or collocated hot. This work presents an evaluation between
these two checkpoint services in both virtualized and physical
environments, considering a multi-tier and stateful application.

I. INTRODUCTION

Platform-as-a-Service (PaaS) is a Cloud Computing model
that provides mechanisms to manage, deploy, and execute
applications over the Internet [1]. In order to maintain a high
availability of services to their customers, a PaaS provider
must recognize failures and react as soon as possible, main-
taining the application working with minimal data losses. This
challenge becomes more complex when considering multi-
tier stateful applications, once that each tier handles with
different execution states. In this way, a failover process, which
involves restoring the application in another instance, should
be implemented in order to make checkpoints, periodically
preserve data at regular intervals [2], and recover this data in
another redundant instance [3].

The failover process is composed of three services: check-
point, error detection, and recovery [3]. The checkpoint service
is responsible for storing application states periodically. In
this way, when the error detection mechanism is fired, the
recovery mechanism will be able to retrieve data that was
stored by the checkpoint mechanism. Furthermore, the check-
point service can be implemented at system-level, in which
virtualization technologies provide checkpoint through virtual
machine (VM) snapshots; and at application-level, in which
the application should be aware and decide which data are
more critical, reducing the amount of data to be saved.

Despite the fact that some proposal of the state-of-the-art
present an alternative to checkpointing in stateful applications
[3], none of them makes a consistent comparison between

978-3-901882-89-0 @2017 IFIP

Patricia Takako Endo
University of Pernambuco
Caruaru, Brazil
Email: patricia.endo@upe.br

Calin Curescu
Ericsson Research
Kista, Sweden
Email: calin.curescu@ericsson.com

application-level and system-level checkpoint services. Those
works evaluate only their own proposals without comparing
them to other approaches. This paper presents an evaluation
of checkpoint strategies for stateful applications, comparing
checkpointing at system and application levels in relation to
failover time. We compared two different scenarios: virtual-
ized, running on top of the KVM hypervisor; and physical,
running on physical machines.

II. CHECKPOINT SERVICE

Checkpointing is a process to save state information neces-
sary to keep the application running at a later time [2]. So, in
the case of failure, the application could be restarted from the
last checkpoint saved with minimal data loss. The checkpoint
data can be replicated among other nodes by the checkpoint
service to improve the availability of the information, but
when using replication, it is necessary to maintain consistency.
The main problem of this service is handling the tradeoff
between consistency and resource usage [4]: having more
replicas increases availability, but the resource consumption
and OPEX (Operating Expense) also grows significantly.

A checkpoint service that works at the application-level
requires a state-aware application. Therefore, the application’s
developer must implement API calls for providing and recov-
ering its state in an integrated mode with other application
functions. An HA-agnostic application can be checkpointed
and restored by a checkpoint service at the system-level. The
checkpoint service periodically creates snapshots of the entire
system (VM or container) where the instance is running. A
state-aware application also can benefit from a checkpoint at
the system-level.

A. Checkpoint service at application-level

According to [5], the architecture is divided into two en-
tities, named Checkpoint Manager and Checkpoint Agents.
The Checkpoint Manager stores the state information of each
instance that runs an application, receiving information, such
as tier (frontend, backend, or database), checkpoint mode
(non-collocated, collocated warm, or collocated hot), and the
application’s name. These information define how checkpoint
data will be stored and requested, synchronize data with

797

standbys, and coordinate the failover process. Figure 1 shows
the application-level checkpoint mechanism, considering the
non-collocated mode.

- 5

Checkpoint Update the
nager statein)
Manage interval Active
> times Checkpoint Instance
«~—
w Agent
Container/VM
G5
Send state T Standby
to the standby Checkpoint Instance
Agent

Container/VM

Fig. 1: Checkpoint at application-level with non-collocated
mode

The Checkpoint Manager configures the Checkpoint Agent
to monitor the application’s state in order to able the Agent
to update the application’s state. The Agent synchronizes the
active and standby instances, and restores application data
from standby instances. Depending on the checkpoint mode,
the state is stored in different locations, as said previously.

The failover process begins with the Checkpoint Manager
receiving a fail alert indicating that an application has failed.
This way, the Checkpoint Manager seeks the standby re-
dundant replica, referring to a failed instance to make it an
active instance, and replacing the failed unit. Afterwards, the
Checkpoint Agent, running in a new active instance, changes
the configuration from standby to active.

The failover time depends on the checkpoint mode config-
uration. If the mode is cold or non-collocated, the Checkpoint
Agent requests the state from Checkpoint Manager and re-
stores it in the new application instance. If the mode is warm,
the Agent recovers the state locally, once that state is already
in the standby instance. Finally, if the mode is collocated
hot, the application on standby instance already has the last
correct state from failed instance, and the Agent only confirms
whether this state is updated or not.

B. Checkpoint service at system-level

Similarly to the application-level, the system-level check-
point architecture [6] has two different roles: primary and
secondary nodes. The primary node has a container that runs
the active instance of the application, while the secondary has
the replica. The Node Agent saves the state of the active
instance constantly. This state is shared via NFS (Network
File System) with the secondary node and the Node Manager.
This Node Manager is the NFS server, and the nodes are NFS
clients. Figure 2 describes this approach proposed by [6] with
non-collocated mode.

For simplification and naming normalizing reasons, we
adapted the system-level checkpoint as follows: the Node
Manager is named Checkpoint Manager, the Node Agent is
Checkpoint Agent, the primary node is active instance, and
the secondary node is standby instance.

Checkpoint

App container
p . via CRIU i
Checkpoint Container Active
Manager Il Instance
>) Checkpoint
O L Agent
Restore
App container
via CRIU
Container Standby
Share updated Instance
statevia NFS - Checkpoint
Agent
Restore message T

Fig. 2: Checkpoint at system-level with non-collocated mode

For our experiments, we utilize CRIU! as system-level
checkpoint service. CRIU saves the memory context of a
container, allowing it to be restored in another node, if it has a
container with the same configuration. In CRIU non-collocated
mode, standby instance gets the state via NFS, while in CRIU
collocated mode, the state is sent via rsyncz. Basically, the
difference between these two approaches is the network delay.
With rsync, the state is stored on a standby instance directly,
while in non-collocated mode, the state is in another machine
and is mounted through the NFS.

The failover process occurs when the Checkpoint Manager
receives a fail alert. It restores the container in the standby
instance with the state shared via NFS, if checkpoint mode
is non-collocated, or with the state already in the standby
instance shared by rsync, if the mode is collocated. When the
standby runs the container successfully, this container turns
active, which takes the Checkpoint Agent to make checkpoints
of the container periodically and sends them to the Checkpoint
Manager.

III. EVALUATION

Our evaluation is focused on state-aware applications, which
can benefit themselves of checkpoint and failover, both at
application-level and system-level. We developed a state aware
chat application composed of three tiers: frontend, backend,
and database. The chat is a stateful application that keeps the
state at each tier. The frontend tier stores the chat color, the
number of unread messages, and active users. The backend
tier keeps room data with messages exchanged between users,
and the database tier stores users, rooms, and the relationship
between users and rooms.

A. Methodology
We aim to measure and evaluate the failover time under

virtualized and physical scenarios, and we are considering

ICRIU - https://criu.org
2rsync - https://rsync.samba.org/

798 2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper

five checkpoint configurations, as enlightened in Table I.
For application-level checkpoint, we implement a service at
the application-level (chat) that collects checkpoint data and
restores the state (as described in Section II-A), exchanging
information through REST messages. States are provided via
JSON, a plain text message which can be compressed to reduce
data size. On the other hand, we use the CRIU (described in
Section II-B) as the system-level checkpoint service for our
comparison.

The reason for not evaluating collocated hot in the system-
level approach is due to CRIU limitation; the CRIU does not
restore a container when it is running, i.e., the container must
be stopped and restored when the checkpoint is updated.

The backend of our state-aware chat application contains
room data with messages and users logged in. In this case, as
the number of messages increases, the room’s state size also
increases. In this way, the application state size was chosen as
factor, with five levels: 1 MB, 2 MB, 5 MB, 10 MB and 25
MB, based on [6]. We defined the length of a message as a
tweet (140 characters) composed of lorem ipsum message. For
each different level and checkpoint mode, experiments were
carried out 100 times.

TABLE I: Checkpoint types measured on experiments

Application-level System-level

Non-collocated
and collocated
Cold and warm

Non-collocated
and collocated
Cold, warm and hot

Storage
Checkpoint

B. Scenarios

We defined two different scenarios for our comparison:
virtualized and physical with the goal to understand the virtu-
alization impact on the checkpoint service. For both scenarios,
we configured an entity, named experiment manager, that was
responsible for collecting logs, simulating events (such as
alerts triggers), and calculating the failover time.

Each checkpoint state size was loaded in the beginning of
the experiment, with the active instance recovering the state
data in the bootstrap process. We then simulate a fail event,
generating a fail message that starts the recovery process.

In the virtualized scenario, two backend instances are exe-
cuted in LXC on top of two distinct virtual machines hosted
in KVM, with the experiment manager running in the host
physical machine. On the other hand, in the physical scenario,
we configured three physical machines: one for the active
backend instance, another for the standby backend instance,
and the last for the experiment manager.

C. Results

Regarding to non-collocated mode, in the physical scenario
(Figure 3), the application-level presented lower time than
the system-level checkpoint in all cases, with the system-
level approach being more sensible to the state size increase.
On the other hand, in the virtualized scenario (Figure 4),
the application-level was more sensitive when the state size

increased, presenting the failover time as higher than the
system-level when the state size is 25MB. The failover time
difference between application-level and system-level was
bigger in physical scenario than virtualized one.

Regarding to the collocated modes, in physical scenario
(Figure 5), the application-level hot checkpoint obtained the
best performance in all cases; and the application-level warm
was the worst, presenting the higher increase with variation of
the state size. On the other hand, in virtualized scenario (Figure
6), the application-level hot checkpoint and the system-level
warm checkpoint had a small variation, being the application-
level hot the best.

IV. DISCUSSION

Regarding to the non-collocated mode, the system-level
checkpoint presented a smaller failover time in the virtualized
scenario than in the physical one. We can explain it, since
in the virtualized scenario, the virtual bridge configured in
the host machine allows a greater network throughput than
in the physical scenario, decreasing the failover time. This
experiment also showed that the NFS directly impacts on
the failover time when the state size increases; once that in
collocated warm mode the failover time in the system-level
checkpoint was similar in all cases.

An important result is the similar time between the collo-
cated warm and the non-collocated when using the application-
level checkpoint. This result is influenced by smaller state
size, because it is a plain-text compressed, which mitigates
the state transfer time through the network between manager
and agent, just the additional time which makes non-collocated
slower than collocated warm mode. Moreover, in application-
level, the implementation of an API directly impacts on the
recovery time, because the application must recover the state
via an API call and confirm that the state was recovered.
In system-level with collocated warm, and in application-
level with collocated hot, the failover times follow a constant
behavior, both in virtualized and physical scenarios, despite
the increase of the state size, which shows that state size
practically does not influence the failover time in these modes.
Despite the closeness of results, collocated hot in application-
level obtained smaller failover times than collocated warm in
system-level.

Finally, we can state that the application nature and require-
ments influence in the decision of which checkpoint approach
should be used. If an application can be executed with a
tolerable data loss, the checkpoint solution can be implemented
as an HA-agnostic application, with a smaller time of state
saving, operating at system-level. However, if the developer
can define which data from the application must be stored, a
state-aware application should be developed and a service at
application-level must make the checkpoint management.

V. CONCLUSION AND FUTURE WORKS

In the literature, checkpoint services are proposed in differ-
ent levels, such as application-level and system-level. How-
ever, there is not a consistent comparison between these

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper 799

Failover Time in Physical Scenario - Non-Collocated

~ Non-Collocated Checkpoint Levels !
I Application-level :
[system-level E
=

-

| = =

Time (s)
i
i

= 8
o .
Zs —
2 e
—_— 5
—
T T T T T
1MB 2MB 5MB 10MB 25MB

Checkpoint Data Size

Fig. 3: Non-collocated comparison in physical scenario

Failover Time in Virtualized Scenario - Non-Collocated

= = Non-Collocated Checkpoint Levels
I Application-level
[system-level
pugs
Q
= °
o © o Q
E ~ o g —L./—
= (<] g) -9- 2
8 § ==
8 o BE b
8 2 & ==
~ - i
= == e
(o} —_ P =1 —_
2 £ ——
= -
T T T T T
1MB 2MB 5MB 10MB 25MB

Checkpoint Data Size

Fig. 4: Non-collocated comparison in virtualized scenario

services with respect to failover time metric. Our results
demonstrated that application-level has smaller times in
non-collocated mode considering the physical scenario, and
system-level obtained the best results in a virtualized scenario
when state size increases, because the interaction between two
physical machines does not have shared resources.

As future works, we aim to investigate the load generated
on machines in application-level and system-level checkpoint
services, as well as checkpoint time between these approaches.

ACKNOWLEDGMENT

This work was supported by the RLAM Innovation Center,
Ericsson Telecomunicacgdes S.A., Brazil.

(1]
(2]

(3]

[4

=

[5

—

(6]

Failover Time in Physical Scenario - Collocated

© 3
=] Collocated Checkpoint Levels
I Application-level Warm
< - Application-level Hot
[System-level Warm
~
N
e 1]
° °]
z = T -
g :
F 3 T . &
. = i g
o \
- =]
-]
<« | B =1 g
8 i
TRk o 9% 8T
~ —_ - - = =
jage
T T T T T
1MB 2MB SMB 10MB 25MB

Checkpoint Data Size

Fig. 5: Collocated comparison in physical scenario

Failover Time in Virtualized Scenario - Collocated

© =
— Collocated Checkpoint Levels &
o
I Application-level Warm o
Y - mEmEE Application-level Hot
[System-level Warm i
~ o
N
-~ 2 o
w — o
<
@ o
E o | e 2
o o
o a Y - 2 o
© | 8 o § T ° - A o 8
o - T 22 - o 8
T o £ ° %- = — o ==
s m;, W """ -
I - =3
- == = — =
~ L - ol + I
Al

T
1MB 2MB SMB 10MB 25MB
Checkpoint Data Size

Fig. 6: Collocated comparison in virtualized scenario

REFERENCES

P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.
D. Singh, J. Singh, and A. Chhabra, “High availability of clouds:
Failover strategies for cloud computing using integrated checkpointing al-
gorithms,” in Communication Systems and Network Technologies (CSNT),
2012 International Conference on, pp. 698703, IEEE, 2012.

M. Nabi, M. Toeroe, and F. Khendek, “Availability in the cloud: State of
the art,” Journal of Network and Computer Applications, vol. 60, pp. 54—
67, 2016.

T. Chen, R. Bahsoon, and A.-R. H. Tawil, “Scalable service-oriented
replication with flexible consistency guarantee in the cloud,” Information
Sciences, vol. 264, pp. 349-370, 2014.

“OpenSAF Overview — Release 4.4 Programmer’s Reference.” http:
//sourceforge.net/projects/opensaf/files/docs/opensaf-documentation-4.4.
1.tar.gz/download.

W. Li, A. Kanso, and A. Gherbi, “Leveraging linux containers to achieve
high availability for cloud services,” in Cloud Engineering (IC2E), 2015
IEEE International Conference on, pp. 76-83, IEEE, 2015.

800 2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper

